
The Inhomogeneous Universe

The density contrast random field



First Principles

The density field of the inhomogeneous Universe is not constant everywhere, but
it varies with spatial location. 

(At first) the density values at different locations do not differ much from the mean
density

à they are perturbations.

It is usual to define the density contrast δ(x):

the deviation with respect to the mean density (averaged over space)



During the evolution of the Universe (evolution of the mean density),
the density contrast at each point also evolves, either increasing or decreasing, 

driven by gravity. 

An increase of δ means clustering of matter à in practice a local region of the 
Universe expands slower than the global expansion.

The process of evolution of the density contrast is called structure formation, 
turning density fluctuations in cosmological and astrophysical structures.

δ can become very large (not a density perturbation anymore) but the 
associated gravitational potential always remains a perturbation to the metric.



overdensities
and

undersdensities

on two different scales

Density map and scales



Why the very early Universe is not exactly homogeneous?
(how do initial fluctuations around the mean arise?)

The reason is: quantum fluctuations

In the quantum universe, there is a large number of random steps, i.e., in the very
early Universe the value of density at a given location changes all the time as the
result of a stochastic (random) process. 

(In very short timescales as compared with the expansion rate of the Universe)

It is not possible for the cosmological model to determine the value of
density at a given location at a given time, in a deterministic way. 



à the quantum density field is a Gaussian random field.

Initial population of δ values in 
a location: histogram of values of δ in
during the stochastic process
(which forms a population)

After a certain time there is
an average value of δ there 

In other time intervals, the average value is different à the average values will also 
form a distribution (the sampling distribution).

Since there is a large number of 
independent random processes 
involved,  the sampling distribution 
of the averages is a Gaussian 
distribution, centered on the true 
mean, whatever the form of the 
population distribution.
(Central limit theorem)



Later, the inflationary mechanism makes the transition from quantum to 
macroscopic world

à it produces a density field of macroscopic perturbations - called the
primordial perturbations - this field is the initial condition for the subsequent
time evolution of δ(x), but again its actual value is not known, it is a particular 
realization among all possible realizations of the average δ value.

Note that the depending on the inflationary model, the Gaussianity of the density
random fields may or may not be preserved during inflation à search for possible 
primordial non-Gaussianity is a test of inflation.  

(This is the goal of the measurements of the fNL parameter in CMB observations)

In standard inflation, the Gaussianity is preserved.



The value of density at a given location is then a value taken from a Gaussian
distribution à the actual values of δ(x) at each point are not known. 

We only know that the density contrast at each point is a random variable, and its
value is one among the various possible realizations of a Gaussian distribution, 

The density contrast random field is thus described by the parameters of its
Gaussian distribution à as we know, a Gaussian distribution has only two
parameters (its moments): mean and variance.

The mean, 𝝁, can be estimated from a sample of M elements of the population of δ1
as



The variance, 𝝈, can be estimated from a sample of M elements of the population
of δ1 as

If both the mean and the variance are estimated from the sample, then the 
variance can be estimated in an alternative way:

(the square root of the variance is known as the standard deviation)

The value of density at a given location is a realization of this distribution. The
Universe has only one value δ1(t), i.e., one specific realization. 

So, what are the other elements of the population? They could be realizations 
in alternative Universes.



Note that there is one Gaussian distribution for each spatial location (hence the
subscript in δ above) à In principle each location may have its own mean and
variance à the stochastic processes may be different in each location, leading to 
different values of mean and variance.

Let us consider the full density contrast field (assuming a discretization)

We need N distributions P(δi)   (one for each location in the Universe; of course the
problem is continuous Nàinfinity).

An important point is that with time  the N variables δ1 ... δN cease to be
independent. 

à The value at a point depends on the values of neighboring points
(due to the gravitational interactions between them).

So we cannot describe the system by considering N independent Gausian
distributions, but we need a multi-variate Gaussian: 



(The random variable δ has dimension N, and the N-dimension Gaussian distribution has a 
N-dimension vector of means μ and a N x N covariance matrix C. )

For example, in the case of only 2 random variables (we could bin the density
field such that it would have only two locations), we would need a 2-dimensional 
Gaussian, with covariance:

The diagonal of the matrix contains the variances of each variable and the off-
diagonal contains the covariance between the variables:



The alternative form of the covariance is written introducing the correlation 
coefficient between the variables:

𝝆12 = σ12 / (σ1 σ2)

The correlation between the variables can also be written in the form of a correlation 
matrix

So, the 2-dimensional Gaussian distribution is 



Since the two random variables are not independent, the correlation coefficient is
different from zero, and the covariance matrix is not diagonal.

The two distributions 
have different variances 
à different widths

and non-zero correlation 
à the iso-probability 
contour (an ellipse) is not 
aligned with the axes

The joint probability of having a value δ1 at the location 1 and having at the same
time a value δ2 at the location 2 can be written as:

P(δ1 ,δ2) = P(δ1) P(δ2 |δ1)    (which introduces P(δ2 |δ1) the conditional probability)



It seems that the stochasticity increases the complexity of the treatment of 
the first-order density field:

If the problem was deterministic: 
system described by the field δ(x) à N values

Because the problem is stochastic: 
system not described by the actual values of δ(x) but by the moments of

the N-dimensional distribution (of which the values of δ are realizations).

The number of moments of an N-dimensional Gaussian is
à N(N+1) (N values of mean, NxN values in the covariance matrix)

Since the correlations are symmetric, there are only N(N-1)/2 off-diagonal 
correlation coefficients à a total of N(N+1)/2 elements in the covariance matrix

à a total of N(N+3)/2 moments.

So the N Gaussian random variables are described by N(N+3)/2 variables (the 
moments of the distribution).



However, the complexity is reduced thanks to the

Generalized cosmological principle: 

“The universe is statistically homogenous and isotropic”

This means that perturbations to the homogeneity are not completely free.
They are described by a probability distribution with a homogeneous and 
isotropic set of moments. 

à The moments of the distribution do not depend on location 
or orientation.

(unlike the values of the density field themselves)



Statistical Homogeneity

implies that:

i) The means do not depend on location à all N means are identical (one for 
each random variable δi). 

Can we measure the means of the distributions?

If we had a sample from the distribution, we could just measure its average in
the usual way (summing the values and dividing by their number) - this is called
the ensemble average. This statistic (the ensemble average) is known to give an
unbiased estimate of the mean of a distribution (if the sample is large enough).

Problem: However we only have one realization - which is the Universe itself -
instead of a full sample (unless there are parallel universes), i.e., we can only
measure one value of δ in a given location, and we cannot repeat the 
experiment to get more values.



Solution: We assume that the whole Universe provides a representative set of
all possibilities, i.e., the Universe includes in itself all possible realizations of the
distribution.

In other words, distant parts of the field in separate parts of the Universe are 
independent of each other.  The values of δ there are not correlated with the
values of δ here. Those values are independent realizations of the same
distribution that provides the values here (the distributions are the same due to 
statistical homogeneity). 

In this way we can have access to different realizations of the same distribution, 
and get a sample

à we can then make spatial averages instead of ensemble averages in 
order to find the moments. This is called the ergodic hypothesis.

(sample average equals spatial average)



Using the ergodic hypothesis, we can easily compute the mean of the
distribution of δ. From its definition,

the mean value of the distribution can then be computed by the ensemble (now
equivalent to spatial) average of the values of δ across the spatial field. 

The result follows immediately:

<δ>=0

This means that the value of δ on any point of the Universe is a random value
around the mean δ = 0.



This also implies that the amplitude of cosmological perturbations will not
be given by the mean value of their distribution but by the variance of the
distribution (a larger variance allows for the possibility of producing
realizations with larger values of δ).

The N-dimensional distribution is then essentially described by the NxN covariance
matrix. Its elements are:

Variance: i.e. the N terms of the diagonal  (also called auto-correlation)

Covariances: i.e., the N(N-1) off-diagonal terms (also called the cross-correlations)



Statistical homogeneity further implies that:

ii) The variances do not depend on location à all N terms of the diagonal are 
identical. 

Can we measure the variances of the distributions?

Yes, by measuring a sample of values of δ at different locations and computing the
variance in the usual way:

iii) The correlation coefficients do not depend on location 

à this does not mean that all N(N-1) terms of the off-diagonal are 
identical. It means that the correlation coefficient between a pair of points
separated by a given vector is the same for all pairs separated by identical
vectors.



Statistical Isotropy

implies that:

iv) The correlation coefficients do not depend on orientation 

à the correlation coefficient between a pair of points separated by a 
given vector modulus (i.e. a given distance, irrespective of the orientation) is
the same for all pairs separated by the same distance.

Eg: σ14 = σ37 (covariance between locations 1 and 4 and between locations 3 and 7)



Can we measure the variances of the distributions?

Yes, by measuring a sample of values of δ at different locations and computing
the covariance using only pairs of points at the same separations:

In summary, the density contrast random field (discretized in N positions of a 
regular grid) is described by N values:

• 1 variance (auto-correlation)

• N-1 covariances (since the condition iv reduces the original N(N-1) correlation 
coefficients to N-1)

and hence it is not more complex than the deterministic problem.

(the Dirac delta indicates the sum only includes
points at a separation d from each other)



The N-1 covariances define a function known as the 2-point correlation function : 

(r=|x -x’|)

(δ* accounts fot the possibility of having complex fields)

These N quantities contain the full cosmological information of a Gaussian
δ(x) map.

The randomness aspect and the generalized cosmological principle, imply that the
most natural spatial variables to use in the treatment of the inhomogeneous 
Universe are not locations but separations between locations.

Correlation function

Definition and standard computation



large scales

For a given δ(x), we can compute the correlation from its
definition

The dark matter density correlation function of the overdensity field predicted by the 
ΛCDM model is positive and decreases with separation. 
(Theoretical predictions are computed from the linear structure formation 
mechanism, and the non-linear gravitational collapse).

Its amplitude increases with structure formation (as the clustering of matter 
increases) à it decreases with redshift.



The correlation function of the density contrast field contains all the statistical 
information on the Gaussian density contrast field à and so it describes how 
matter is distributed in the Universe, because it is all information we need to 
compute the joint probability of having a value δ1 at a location “1” and having a 
value δ2 at a location “2”. 

The joint probability is written as:

and depends on the conditional probability of having a value δ2 at a location “2” 
separated by “r” from a location “1” where there is a value δ1  

In this form it becomes explicit that the correlation describes the clustering
properties of the field.    

P(δ1 ,δ2) = P(δ1) P(δ2 |δ1)



dV1

dV2

Case of uncorrelated distribution

(i) Case of an uncorrelated distribution

The probability of having a galaxy in the 
shell volume dV1 is given by the number 
of galaxies within that volume divided by 
the total number of galaxies N:
dP1 = n dV1 / N = dV1 / V

The probability of having a galaxy in the shell 
volume dV2 is independent of dP1 :
dP2u = n dV2 / N = dV2 / V

The correlation function can be estimated in an alternative way. Instead of 
making a direct application of its formula, we may use use its role in the 
probability distribution.

Let us consider N galaxies on a volume V, with a number density of n=N/V
(and assume that the position of a galaxy indicates a matter overdensity)

Alternative computation



dV1

dV2

Case of correlated distribution

(ii) Case of a correlated distribution

The probability of having a galaxy in the 
shell volume dV2 depends on dP1 . 

In other words, the value of dP2 depends on 
the correlation between the locations 1 and 2, 

i.e., it depends on the correlation at the 
separation r12 :

dP2c = n dV2 ( 1+ξ(r12) ) / N = dV2 (1+ξ(r12) ) / V

So, the number of galaxies found is no longer just a function of the size of dV2
but it also depends on the way the galaxies are distributed in the volume (which 
depends on correlation with the neighbors, i.e., on the correlation function)

Note that the correlation can be positive or negative:

correlation,  ξ > 0 à dP2c > dP2u
(anti-)correlation, ξ < 0 à dP2c < dP2u



We can compute the total number of galaxies in a volume up to a radius r.

It is given the integral of the quantity N multiplied by its weight function. The weight 
function is the ”histogram” of the distribution of galaxies per bins of r, i.e. it is a 
“distance function”, the number of objects per distance bin dN (r).

So,    N(r) =       N dP(r) 

In the uncorrelated case (the conditional probability is 1), N(r) is simply

N(r) =   N/V dV = n      dV/dr dr ~ r3 à the number increases with the volume

In the correlated case,  N(r) =  n      (1+ ξ(r) ) dV/dr dr à the slope will be different

from r3, depending on the correlation function ξ(r)  à the number is higher on a 
highly correlated area (usually on small separations).



From this result, we see that the correlation function can be equivalently 
defined as the excess N(r) between the clustered and the random cases:

If we compare the probabilities dP(r) for the correlated and the uncorrelated 
cases,

dP2u = n dV2 / N 

dP2c = n dV2 ( 1+ξ(r) ) / N 

we see that 1+ξ(r) is given by the ratio of the probabilities, i.e., by the ratio of 
the two “distance functions” (the number of galaxies as function of r):

1+ξ(r) = Nc (r) / Nu (r)



Note on discrete distributions

We can define a δg (x), which is basically N_gal (x).

the number of galaxy pairs as function of separation  can be written 
schematically as 1x1 + 1x0 + 1x0 + 1x1 + …. à it is “a kind of” <δg(x) δg(x)>

Note however that the number of galaxies at a location is 0 or 1; it cannot be 
negative à the N_gal (x) is not entirely equivalent to a δ(x) field

In other words, the correlation found from this method is not normalized, its absolute 
value is not correct. What we can do, to be able to use this information, is to 
compare the N_pairs (x) with the N_pairs (x) from a uncorrelated field.

The ratio of the two has the correct 
information.

This method requires that we build a sample 
of mock galaxies (the “randoms”), in the 
same survey volume and geometry, with the 
same spatial sampling as the data sample, 
but with uncorrelated positions, (i.e. with 
P(1) independent of P(2)).



Using this we can measure:

DD (r) - number of galaxy-galaxy pairs as function of separation
RR (r) - number of  mock-mock pairs as function of separation
DR (r) - number of  galaxy-mock pairs as function of separation

Several estimators of the correlation function can be defined, based on different 
ways of making the data-random comparison:

The 4 estimators have 
different noise properties. 

Number 4 has the best
signal-to-noise ratio.



The typical result obtained for the correlation function (of galaxies positions) is a 
power-law, with slope 𝛾= 1.7 

(r0 is a critical separation that depends on the type of galaxies, a typical value is r0
~ 5 Mpc/h)

Note that the correlation function obtained from galaxy surveys is different from the 
one measured directly on the δ(x) field (from simulated dark matter fields using N-
body simulations), which is not a power-law slope.



This shows that there is a bias between the spatial distributions of galaxies and dark
matter, i.e., 

δg(x) = b(r,z) δ(x)   (in a linear approximation)

The bias “b” is not a constant. It can be modeled as function of redshift and scale, 
introducing additional nuisance parameters.

(It is known to be larger for brighter galaxies - like the galaxies in clusters - à there is also an 
environment dependence)

So, light only follows matter in an approximate way



The correlation coefficient of 2 points separated by r tells us about structure - the
central property of the inhomogeneous universe that we want to describe. It
quantifies the clustering of the density field (the “degree of collapse”) - the
formation of structure. 

For example, if there is correlation on all separations up to a separation r and then
the correlation drops, it shows that (on average) there are overdensity regions
from x to (x+r) à there is a halo of size r 

However the relation between correlation as function of separation, and size of
the overdensity is not a one-to-one relation à from this example, we see that we 
need to know the correlation at various separations to find out if there is an 
overdensity of a given size r.

Correlation Function in Fourier space

We would like to have a function that directly shows the clustering 
amplitude on a given size. Is this possible?

Power Spectrum



Let us consider the Fourier transform of the density contrast field

Convention:

- we are writing the plane waves as ikx and not i2πkx à this makes a 
factor (2π/k)3 to appear

- the integrals are normalised by the volume V, which ensures that  δk is 
dimensionless if δ(x) is also dimensionless

This defines a set of Fourier modes k (3d vectors), with associated sizes 2π/k 
(or wave numbers)



Let us compute the 2-point correlation function in k-space : 

The ergodic hypothesis allows us to put the brackets inside the integrals

Inserting the definition of the correlation function, we can write:

where y is the separation vector between x and x’, 

Note that for fixed x the integration over x’ is the same as an integration over y. 



The first integral is the (dimensionless) Dirac delta.

Recall the Dirac delta is the (standard) Fourier transform of f(x)=1:

So, we are left with an integral in x with no function dependent on x (except the 
plane waves), 

and an integral in y that is a (normalised) Fourier transform of the correlation 
function:



The second integral is the (normalised) Fourier transform of the correlation
function, which is called the dimensionless power spectrum:  

Pδ (|k|) / V

Note that due to isotropy it only depends on the modulus of the k-mode vector.

The power spectrum of a random field is defined 
as the (standard) Fourier transform of the 
correlation function of the same field,

(and reciprocally, the correlation function is the 
Fourier transform of the power spectrum )

(the ΛCDM power spectrum of the 
density contrast field looks like this)

large scales



So the result is

where δD here is the dimensionless Dirac delta 

=Δ2 (k)

where we used the fact that the length associated to a Fourier mode k is 2π/k, and so the
corresponding volume is V = (2π/k)3

Notice that the power spectrum P(k) has dimensions of volume [ (Mpc/h)3 ] 

and   Δ2 (k) = k3 P(k) is the dimensionless power spectrum, 

also known as the power spectrum per interval of ln(k).



The important result we obtained here is that

the correlation function of the density contrast field in Fourier space
is the (standard) Fourier transform of the correlation function multiplied by  
the Fourier volume k3 and by a dimensionless Dirac delta function, i.e., 

it is the dimensionless power spectrum multiplied by a Dirac delta function

The presence of the Dirac delta makes the coefficients δk to be independent, 
and

the elements of the correlation function in Fourier space are independent, 
as are the elements of the power spectrum



It is also useful to compute the auto-correlation function of the density contrast 
field, i.e. the variance:

where x=x’

Inserting the result for                 

Variance



one of the integrals is just the Fourier transform of the Dirac delta, which is 1
(and also cancels with one of the volumes);

k3 cancels with the other volume

and we are left with:

So, the variance of the delta field (in real space) is a 3d integral of the power 
spectrum.  Since the power spectrum is isotropic, we can integrate the angular 
part of 

which is 4πk2

resulting in:                       



Writing k2 as k3/k shows explicitly that:

to integrate k2 P(k) on the linear domain dk is equivalent to integrate the 
dimensionless power spectrum in the logarithmic domain dk/k

This is the reason why the dimensionless power spectrum is known as the power
spectrum per interval of ln(k).

This result tells us that the variance of the density contrast field has
contributions from all scales of the power spectrum. 
Each logarithmic bin contributes with a certain value (the value of the
dimensionless power spectrum of that scale)

and so, the amplitude of the dimensionless power spectrum is a 
direct  indication of the amplitude of clustering

Δ < 1 - weak clustering, linear structure

Δ > 1 - strong clustering, non-linear structure : large over-densities, 
or large under-densities (voids)



Let us now consider the power spectrum as the basic quantity and
compute the correlation function from it: 

We need to compute the inverse Fourier transform of the power spectrum:

The correlation function is real so we just need to consider:

and the power spectrum is isotropic (it depends only on the radius |k| à we
can integrate over the angular part: 

(in spherical coordinates the integral element is

Covariance



The result is:

This means that the correlation function is a filtered linear combination
of the power spectrum à one separation r is a combination of various

scales k à k are the independent and fundamental cosmological scales, the 
separations r are not independent.

There is not a one-to-one correspondence between separation and scale
(unless the filter in the integral, also called window function, is very narrow).

The filter (the function that multiplies k2 P(k) in the integral) is the spherical Bessel 
function of the first kind for n=0  :  j0 (kr)



The shape of j0 (the solid line) shows that most of the contribution for the correlation
at a separation r  - ξ (r) - comes from larger scales: k < 2.6/r  (the range where the
contribution is large, with filter amplitude > ~0.2)

In summary: power spectrum and correlation function have the same
information, but the N components of the power spectrum are 
independent and give directly the amplitude of clustering as function of
scale, while the N components of the correlation function do not.



The fact that the dimensionless power spectrum contains variances instead of 
covariances, means that it gives directly the information of a mode - or scale -
(instead of relying on separation between points).

Note that A small value of k is called a large scale
A large value of k is called a small scale

because the inverse of the scale - 2π/k - corresponds to a physical size

So the value of the dimensionless power spectrum on a given Fourier mode, 
is the variance on that scale, i.e., the degree of clustering (the clustering
amplitude) that exists on that scale of the Universe on average.

Power spectrum vs. Correlation function

Both descriptions - in real and Fourier space - have the same information. 
Both are valid to describe the cosmological field.



- Remember the variance is a moment of a distribution à the fact that a 
certain scale has a certain amplitude does not mean that all regions of the
Universe of that size will have that same value of density contrast, 

- The value of the density contrast of a region of a given scale will be a 
realization of a Gaussian with the variance at that scale (which is given by the
amplitude of the dimensionless power spectrum).

- Each scale has a different variance
(unlike the real-space description, where all locations have the same variance
and the information is on the correlation function between locations)

- Recall that the for a random variable of zero mean, its amplitude is indicated 
by its variance - and not by its the mean! -



While the original correlation function describes the density contrast field 
using a set of N-1 non-independent covariance (cross-correlations) variables 
(plus one variance) that depend on separation on the real space,  

the power spectrum describes the same field using a set of N independent 
variance (auto-correlations) variables in the harmonic space: the set of 

Even though the 2-pt correlation function is highly correlated and does not give 
direct information on an individual scale, it is a useful quantity to consider because

it is defined in real space à it can be measured directly from data 
measured in the sky.

(The power spectrum needs to be estimated from data in an indirect procedure).



Power spectrum estimator: shot noise

Measurements of discrete galaxies positions can also be used to estimate the 
power spectrum of the underlying continuous δ field.

Consider N galaxies (particles) of mass m=1 in a volume V, corresponding to a 
mean density

Assume there is no galaxy bias, i.e., 
galaxy positions trace perfectly
the mass distribution

The density ρ at a location takes values
0 (at a point x with no particle) 
or 1 (at a point x with a particle).



With this set up, the density contrast may be written using the Dirac delta function
(which will be convenient later on). 
Note this is just a sophisticated way of writing 0 or 1.

Note that the integral of the Dirac delta is 1 (over the full infinity range), or zero (if
the sum range does not contain the peak). 

Now, in order to compute the power spectrum, we need first to Fourier transform
δ(x):

where the integral 
over the 
Dirac delta
sets x=xi in the 
plane wave



and compute the correlation function in Fourier space

To evaluate the 1st term - we may separate the terms i=j from i≠j :



Note: What is the sum of a ‘bracketed’ quantity?

The ensemble average of a random variable ‘x’ is the sum over all its
realizations (all elements in a sample). 

If we do not have a sample but know the probability function of ‘x’ we could
generate a sample and average. 

Or, more precisely (and without recurring to numerical methods), we need to 
sum over ‘x’ multiplied by its probability à it is a weighted sum.

In general an ensemble average of a function f is then

<f> = integral (dx f(x) p(x))

or, in 2 dimensions:



So in order to proceed with the derivation and compute the ensemble
averages in this first term, we need first to write the probabilities.

In the case i=j, we need to compute <exp(-ikxi) exp(ik’xj)>
It is a 1-dimensional problem, the ensemble average is an integral over xi

What is the probability of having a particle in xi?

It is just P(xi) = 1/V

So now we can proceed and get:

(where the integral gives a Dirac delta and the sum is over the N cases i=j)



This is the probability of xi times the conditional probability of xj given xi.

If they are independent this is just P(xi,xj) = P(xi) P(xj) = (1/V)2

But if there is a correlation, the probability of finding a particle in xj depends
on having or not a particle in xi.

If they are (positively) correlated the joint probability is larger than (1/V)2 :

P(xi,xj) = P(xi) P(xj|xi) = ( 1+ξ (|xi-xj|) ) / (V2) 

This is, of course, the definition of correlation function.

In the case i≠j, we need to
consider the joint probability
of having two particles, 
one in xi and another in xj. 



So the ensemble average introduces in a natural way the correlation
function of the continuous field in the derivation.

The sum has N(N-1) cases and (1+ξ) separates in 2 terms: 

- an integral over the plane waves à giving 2 delta functions 

- and the Fourier Transform of the correlation function (where z=|xi-xj|). 



Going back to the expression for 

The 2nd term has nothing to compute,

and the 3rd and 4th terms 

are similar to the i=j part of the 1st term:



Putting all terms together:

The first term of the i≠j term and the 2nd, 3rd and 4th terms are all double Dirac 
deltas, and all cancel each other.

The result is then the i=j term, plus the second term of the i≠j term :

We derived that the correlation function in the Fourier space is the power spectrum 
plus a constant term (V/N).

(Instead of being just the power spectrum, as we had seen before)



This is a general property of any power spectrum estimated from a
discrete spatial distribution.

Why is now the result  P(k)+V/N  instead of P(k) ?

The extra contribution comes from the i=j term of the derivation à it is a
term of auto-correlation and not a term of covariance à it has no 
cosmological information related to a scale, because a scale needs a 
separation à it is a monopole term.

In our derivation, starting from measurements in the real space, it would be very 
easy to avoid ending up with this term à we just needed to discard auto-
correlations in the estimator à consider only pairs of galaxies where the 2 
galaxies are different.



But when we estimate directly the power spectrum from a discrete map, in a more 
indirect way, the result will always implicitly include this monopole à this term 
cannot be avoided:

Notice that, since a scale k is a linear combination of all separations r
within the window function, the i=j monopole affects the estimated amplitudes 
of P(k) for all scales à it is an overall constant shift in amplitude.



However, the fact that the monopole amplitude is given by V/N tells us that its
amplitude will decrease in future surveys à larger V and larger N
(with V being limited while N can tend to ∞)

So, the galaxy power spectrum estimator is not biased:

The monopole adds uncertainty to the estimated power spectrum, but does
not bias the measurement.  It does not to be subtracted, it is part of the noise and 
contributes to the error bars.  The monopole term is known as the shot noise (also 
called discreteness noise).

If we want to limit the shot noise in a future survey, we should build a deeper
survey rather than a wider one (i.e., increase the density of galaxies n = N/V).


