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Summary 30 

The response of arbuscular mycorrhizal (AM) symbiosis to environmental fluctuations 31 

involves complex interactions between host plants and fungal partners, between 32 

different AM fungal members, and between AM fungal vegetative or reproductive 33 

structures; yet a systematic understanding of these responses to meadow degradation 34 

remains relatively unknown, particularly in Tibetan meadow. Here, we approached this 35 

knowledge gap by labeling dual isotopes of air 13CO2 and soil 15NH4Cl, computing 36 

ecological network of AM fungal community, and quantifying AM fungal biomass 37 

allocation among reproductive spore, and vegetative intra- and extra-radical hyphae. 38 

We found that the exchange currency of photosynthate and nitrogen between plants 39 

and AM fungi was increased with increasing severity of meadow degradation, 40 

indicating greater dependence of host plant on this symbiosis for resource acquisition. 41 

Besides, using 18S rRNA amplicon sequencing, we found that AM fungal co-occurrence 42 

networks were complexified by meadow degradation, supporting the stress gradient 43 

hypothesis. Meadow degradation also increased AM fungal biomass allocation toward 44 

traits associated with resource acquisition (intra- and extra-radical hyphae) at the 45 

expense of reproductive spores. Our findings suggest that an integrated consideration 46 

of resource exchange, ecological networks and biomass allocation may be important 47 

for the restoration of degraded ecosystems. 48 

 49 

Keywords: arbuscular mycorrhizal fungi, resource exchange currency, network, 50 

biomass allocation, Tibetan alpine meadow, degradation 51 

  52 
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Introduction 53 

The Anthropocene has witnessed significant degradation of grasslands, along with 54 

declines in biodiversity and ecosystem services (Gibbs & Salmon, 2015; Bardgett et al., 55 

2021; Bai & Cotrufo, 2022). Alpine meadows are especially sensitive to degradation 56 

caused by anthropogenic activities and climate change due to the short growing 57 

seasons and often slow growth strategies of many of the local biota (Dong et al., 2020; 58 

Breidenbach et al., 2022). The Tibetan Plateau, the largest high-altitude meadow 59 

system in the world, plays an essential role in water storage for local ecology and 60 

human populations (Bai & Cotrufo, 2022; Zhu et al., 2023). However, as a result of 61 

overgrazing, exotic species invasion, and climate change-induced warming and 62 

drought, approximately 90% of the Tibetan Plateau is considered degraded (Harris, 63 

2010). These degraded alpine meadows are characterized by a reduction in plant cover, 64 

nitrogen (N) availability, soil erosion, and substantial nutrient losses (Breidenbach et 65 

al., 2022; Li et al., 2022), potentially further exacerbating the sensitivity of these 66 

systems to future disturbance.  67 

To cope with these environmental perturbations like those in this meadow system, 68 

plants often enlist microbial partners (de Vries et al., 2020; Coban et al., 2022). In 69 

particular, root-associated mutualists known as arbuscular mycorrhizal (AM) fungi can 70 

play an outsized role in the stability and functioning of grassland systems (Smith & 71 

Read, 2008; Davison et al., 2015; Vetrovsky et al., 2023). These fungi can increase plant 72 

access to limiting soil nutrients (Hodge et al., 2010) and water (Kakouridis et al., 2022). 73 

The response and functioning of arbuscular mycorrhiza to grassland degradation may 74 

involve the interaction between the host plant and AM fungal partner, the interaction 75 

between different AM fungal taxa, and the biomass allocation among AM fungal 76 

vegetative and reproductive structures. Thus, a thorough understanding of the 77 

response and function of AM symbiosis to grassland degradation is important for the 78 

sustainability of the Tibetan Plateau. 79 

The stability of plant-AM fungal symbiosis depends on cooperation of both 80 

partners, where the fungus provides the plant with access to limiting nutrients, while 81 
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the plant supplies the fungal partner with photosynthate (Kiers et al., 2011). Biological 82 

market theory posits that the reciprocal regulation of these “goods” between the host 83 

plant and AM fungi is essential for the maintenance and prosperity of AM symbiosis 84 

(Selosse & Rousset, 2011; Bennett & Groten, 2022; Martin & van der Heijden, 2024). 85 

For example, fostered by dual-labeling of carbon (C) and N isotopes, several previous 86 

studies have found that the currency in exchanging plant-derived C for AM fungi-87 

derived N was variable with the identity of AM fungal taxa (Arguello et al., 2016), soil 88 

nutrient availability (Liu et al., 2021), plant development stage (Tome et al., 2015), and 89 

atmospheric CO2 concentrations (Tome et al., 2015; Zhang et al., 2015; Charters et al., 90 

2020) (Table S1). The degradation of grassland is often coupled with a reduction in N 91 

availability and an increase in harsh environmental conditions, due to heavy soil 92 

erosion and substantial nutrient losses (Breidenbach et al., 2022; Li et al., 2022). In the 93 

context of our system, plants in degraded alpine meadows must cope with declines in 94 

N availability, which may shift “market” exchange rates for plant-fungal partners. 95 

Thereby, we hypothesize H1 that the currency in exchanging plant C for AM fungal N 96 

will be higher in the degraded meadow than in the non-degraded meadow. 97 

In addition to the reciprocal regulation between plant and AM fungi, the 98 

response of AM symbiosis to meadow degradation may also involve the interaction 99 

with different members of the AM fungal community, which may be depicted by the 100 

complexity of co-occurrence network. Our hypothesis in this area is guided by the 101 

stress gradient hypothesis (Brooker et al., 2007; Hammarlund & Harcombe, 2019), 102 

which posits that positive associations should increase in frequency under stress. 103 

Several recent studies found that the positive associations of fungal and bacterial 104 

communities were increased by stress caused by drought, degradation, and 105 

elevation/water availability (Che et al., 2019; Hernandez et al., 2021; Gao et al., 2022). 106 

However, to our knowledge, how the associations among AM fungal taxa response to 107 

meadow degradation remains unknown. Here, guided by the stress gradient 108 

hypothesis and considering the increase of resource scarcity and environmental 109 

harshness in degraded meadow, we hypothesize that H2, the complexity of co-110 
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occurrence network increases in degraded meadow compared to non-degraded 111 

meadow. 112 

The functioning of arbuscular mycorrhiza is eventually defined by the biomass 113 

allocation among three typical morphological structures, i.e., intraradical hyphae 114 

(arbuscule, vesicles and coils), extraradical hyphae, and asexual spores (Choi et al., 115 

2018; Chaudhary et al., 2022). Extraradical hyphae are responsible for accessing critical 116 

inorganic nutrients from the soil matrix, intraradical hyphae (e.g. arbuscules) form the 117 

interface for the exchange of these inorganic nutrients and plant photosynthates, and 118 

dormant asexual spores are important propagules for AM fungal colonization and 119 

dispersal that represent an important survival strategy under adverse environmental 120 

conditions (Chagnon et al., 2012; Chaudhary et al., 2022) (Table S2). A recent study in 121 

wheat field found that the ratio of AM fungal extraradical hyphal density (ERHD) to 122 

intraradical colonization rate (IRCR) was decreased significantly with N fertilization 123 

(Babalola et al., 2022). However, few studies have investigated how meadow 124 

degradation may impact AM fungal biomass allocation to growth versus reproduction 125 

(Tian et al., 2009; Mao et al., 2019). Under resource limitation, trait tradeoffs theories 126 

for microbes suggest that traits associated with stress tolerance and resource 127 

acquisition would be upregulated (Malik et al., 2020; Wang et al., 2023). For example, 128 

AM fungi would be more likely to invest in traits associated with resource acquisition 129 

such as (intra- and extra-radical) hyphal growth to improve C for nutrient exchange 130 

with host plants, this would come at the cost of fungal spore production. Besides, in 131 

adapting to the stressed degraded meadow, dormant AM fungal spores may germinate 132 

to active (intra- and extra-radical) hyphae to improve the nutrient condition of the host, 133 

as a result depleting the soil spore pool. Therefore, we hypothesize H3, that 134 

degradation increases AM fungal biomass allocation to vegetative hyphae at the 135 

expense of reproductive spore. 136 

Here, we test these three hypotheses along a meadow degradation gradient in 137 

the Tibetan Plateau (Fig. S1), by blending 13C and 15N isotope labeling, 18S rRNA gene 138 

amplicon sequencing, and morphological examination. Our H1 (degradation increases 139 
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the currency in exchanging plant C for AM fungal N) was supported by the finding that 140 

the ratio of 13C: 15N increased from non-degraded, through moderately degraded, to 141 

severely degraded meadow. The H2 (degradation increases network complexity) was 142 

supported by the finding that the complexity of the AM fungal co-occurrence network 143 

increased from non-degraded, through moderately degraded, to severely degraded 144 

meadow. The H3 (degradation increases AM investment in nutrient acquisition at the 145 

cost of reproduction) was supported as that meadow degradation significantly 146 

decreased AM fungal reproductive spore density (SD), but increased vegetative intra- 147 

and extra-radical hyphal density. 148 

 149 

Results and discussion 150 

Before hypotheses testing, we measured vegetation and soil variables in the non-151 

degraded, moderately degraded and severely degraded meadows (Fig. S1). The results 152 

showed that plant aboveground biomass, plant belowground biomass, plant species 153 

richness, plant coverage and soil available phosphorus (AP), ammonium-nitrogen 154 

(NH4
+-N), nitrate-nitrogen (NO3

--N), soil organic carbon (SOC), total nitrogen (TN), 155 

easily extractable glomalin-related soil protein (EE-GRSP) and total glomalin-related 156 

soil protein (T-GRSP) were all decreased by meadow degradation (Fig. S2-3).  157 

AM fungal community characterization: AM fungal community was characterized 158 

from root and soil samples collected from the same non-degraded, moderately 159 

degraded and severely degraded meadows using 18S rRNA metabarcoding amplicon 160 

sequencing. Our analysis detected 115 AM fungal operational taxonomical units (OTUs) 161 

dominated by Glomus, Claroideoglomus and Rhizophagus (Fig. 1a; Fig. S4-6). Principal 162 

coordinate (PCo) analysis detected significant associations of AM fungal community 163 

composition with compartment (root v.s. soil), degradation stage (non-, moderately, 164 

or severely), and their interaction (Fig. 1b). The effects of compartment and meadow 165 

degradation on AM fungal community is complemented with the detection of 16 AM 166 

fungal OTUs significantly biased in the three meadow degradation stages and two 167 

compartments (Fig. 1c-d; Fig. S7). Furthermore, the Bray-Curtis dissimilarity of AM 168 
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fungal community between root and soil was increased significantly by meadow 169 

degradation (Fig. 1e), suggesting increases of niche differentiation between root and 170 

soil AM fungal community. Meanwhile, meadow degradation caused the dispersion in 171 

beta diversity of AM fungal community in root but not in soil (Fig. 1f).  172 

 173 

Testing H1: Meadow degradation increases the currency in exchanging plant-derived 174 

C for AM fungi-derived N 175 

To test our H1 that meadow degradation increases the currency in exchanging plant C 176 

for AM fungal N, we performed a greenhouse experiment of meadow plants growing 177 

on soil collected from the non-degraded, moderately degraded and severely degraded 178 

meadow (Fig. S1). The system was dual labeled with 13CO2 (air chamber) and 15NH4Cl 179 

(in-growth bottle) 94 days after the seedling was planted (Fig. 2a-b), and harvested 180 

three days later. We measured the concentration of 15N in each individual plant and 181 

the concentration of 13C in AM fungal biomass, via phospholipid fatty acid (PLFA) 182 

analysis (Olsson et al., 1995). The currency of resource exchange is depicted by the 183 

ratio of AM fungal 13C: plant 15N (C: N). 184 

 We found that the concentration of 13C detected in AM fungal hyphae was 185 

significantly lower in non-degraded meadow as compared to the moderately and 186 

severely degraded meadows (Fig. 2c), whereas the concentration of 15N detected in 187 

plants was not significantly affected by meadow degradation (Fig. 2d). As a result, the 188 

resource exchange currency as depicted by the ratio of 13C: 15N was significantly higher 189 

in the moderately and severely degraded meadows, as compared to that in the non-190 

degraded meadow (Fig. 2e). 191 

Our dual isotopes label-based research supports H1, as degradation increased the 192 

currency in the exchange of plant photosynthate and AM fungal absorbed N (Fig. 2). 193 

The detected increase in C: N currency exchange is not due to the reduction of 194 

resource availability in the severely degraded meadow, as the same substrate was 195 

used in our greenhouse-based dual isotope research. Because our system was 196 

inoculated with AM fungal community derived from soil of different degradation 197 
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levels, our finding suggests that the variation in AM fungal community structure might 198 

be responsible for the increase in the currency of C: N exchange with increasing 199 

intensity of meadow degradation.  200 

Our study built on previous studies that used a single AM fungal species, by using 201 

an AM fungal community to investigate the currency of resource exchange between 202 

plants and AM fungi. For example, a previous study suggested that the currency in the 203 

exchange between plant C and AM fungal N can vary with the identities of plant and 204 

AM fungi (Funneliformis mosseae or Rhizophagus intraradices) that are involved in the 205 

formation of common mycorrhizal networks in a compartmentalized pot system in a 206 

greenhouse (Walder et al., 2012). Furthermore, a positive correlation between a plant 207 

photosynthetic rate and the hyphal N absorption capacity of two AM fungal species 208 

(F. mosseae and R. intraradices) has been implied in a compartmented pot system 209 

(Tome et al., 2015). To our knowledge, we are the first to show that the currency in 210 

exchanging C and N between plant and AM fungi is increased by inoculation of AM 211 

fungal community from the soil with increasing intensity of degradation. Our finding 212 

suggests a greater dependence of host plant on AM symbiosis for resource acquisition 213 

in degraded meadow, and this conditioned might be harnessed for the resistance, 214 

resilience, and restoration of Tibetan meadow. 215 

 216 

Testing H2: Meadow degradation increases network complexity 217 

Our H2 was tested by computing the pairwise Spearman correlations among AM fungal 218 

OTUs in each meadow degradation level. The distribution density curve of all-219 

correlations (both significant and non-significant) showed that the proportion of 220 

positive correlations was significantly higher in the severely and moderately degraded 221 

meadows, as compared to the non-degraded meadow (Fig. S8-9). We found support 222 

for the stress gradient hypothesis because meadow degradation increased the relative 223 

frequency of positive correlations among AM fungal taxa (Fig. S8-9).  224 

Our co-occurrence network analysis showed that meadow degradation increased 225 

the complexity of the AM fungal network from non-degraded meadow, through 226 
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moderately to severely degraded meadow, as evidenced by the doubling of edge 227 

number, connectivity, average degree and average clustering coefficient, and 228 

increasing dominance of Glomus taxa (Fig. 3d-h). Specifically, the number of significant 229 

positive correlations doubled in the severe degraded meadow as compared to the 230 

non-degraded meadow (Fig. 3). Note, in our system, the number of positive 231 

associations was highest in resource poor (low in N and phosphorus availability), 232 

severely degraded meadow; however, a recent study found that positive associations 233 

were highest in grassland receiving the highest amount of N input (Wu et al., 2022). 234 

Due to the huge difference in experiment design (degradation v.s. N addition), 235 

ecosystem type (alpine meadow v.s. temperate grassland), and sampling types (root + 236 

soil v.s. soil only) and the complex function that AM fungi perform with respect to 237 

resource absorption, how the AM fungal community might respond to environmental 238 

changes remains to be investigated. Our finding suggests more cooperation among AM 239 

fungal taxa in degraded meadow, which may be essential for resource scavenge and 240 

stress resistance in degraded meadow. 241 

 242 

Testing H3: Meadow degradation increases AM fungal biomass allocation to hyphae 243 

at the expense of spore. 244 

To test our H3, we measured root AM fungal IRCR and soil ERHD and SD, and calculated 245 

the ratios between IRCR: ERHD, IRCR: SD, and ERHD: SD. Our analysis supports the H3, 246 

as degradation increased AM fungal biomass allocation to hyphae at the expense of 247 

spore (Fig. 4). Specifically, in the severely degraded meadow as compared to the non-248 

degraded meadow, AM fungal ERHD and IRCR roughly doubled, whereas AM fungal 249 

soil SD roughly halved (Fig. 4b, c). As a result, with a stable ERHD: IRCR ratio, both the 250 

SD: ERHD and SD: IRCR dropped with increasing degradation level (Fig. 4d-f). Our 251 

findings in Tibetan meadow are partially supported by a previous study in Inner 252 

Mongolia grassland. Tian et al found grazing-induced degradation decreased AM 253 

fungal SD and increased or decreased IRCR depending on the identity of the plant 254 

species (Tian et al., 2009). In addition, another study along a transect from Tibetan 255 
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meadow to steppe found that topsoil removal-induced degradation decreased ERHD 256 

and SD but increased IRCR (Mao et al., 2019). However, neither study captured the 257 

signal of AM fungal biomass allocation, because the SD: IRCR, SD: ERHD and ERHD: 258 

IRCR ratios were not calculated. Together, our current work and certain previous 259 

studies confirm that habitat degradation induces changes in AM fungal biomass 260 

allocation, though the precise patterns of changes may differ with ecosystem and 261 

degradation type. Our finding showed that meadow degradation increased AM fungal 262 

biomass allocation to hyphae at the expense of spore, indicating that restoration of 263 

degraded meadow might be accelerated by exogenous additions of AM fungal spores.  264 

 265 

Conclusion  266 

We detected a systematic response of AM symbiosis to meadow degradation, by 267 

showing an increase in the exchange currency between plant C and AM fungal N, an 268 

increase in the complexity of AM fungal co-occurrence network and an increase in AM 269 

biomass allocation toward hyphae at the expense of spores. Our ability to detect this 270 

systematic response largely relies on blending techniques of dual isotope labeling, 18S 271 

rRNA gene amplicon sequencing, and morphological examination. Our finding is 272 

important because Tibetan meadow is one of the most fragile yet essential ecosystems 273 

on the planet, and we found that AM symbiosis is more than only responsive and may 274 

be essential to the restoration of meadow degradation.   275 

 276 

Materials and Methods  277 

Our research site was located at the Naqu Ecological and Environmental Observation 278 

and Research Station (31°16′N, 92°06′E, 4500 m above sea level, mean annual 279 

temperature of -2.1 °C, mean annual precipitation of 406 mm), a distribution center of 280 

Kobresia pygmaea, the iconic plant species of the Tibetan alpine meadow ecosystem 281 

(Li et al., 2016). Our research used 18 total plots of non-degraded (6 plots), moderately 282 

degraded (6 plots), and severely degraded (6 plots) meadows previously established 283 

by Li et al. (2016) (Fig. S1). Briefly, six replication plots, each 5 m × 5 m, and at least 20 284 

Page 10 of 47

Manuscript submitted to New Phytologist for review



For Peer Review

11 

 

m away from each other were randomly selected for each degradation level. The non-285 

degraded meadow was intact turf with >90% canopy coverage dominated by Kobresia 286 

pygmaea; the moderately degraded meadow was patched turf with ~40% coverage by 287 

Kobresia pygmaea accompanied with crusts of Cryptogams; the severely degraded 288 

meadow was deserialized turf dominated by forbs (e.g. Lancea tibetica) (Fig. S1). In 289 

July 2018, a vegetation survey and sampling of roots and soil were performed in each 290 

plot. Plant community coverage, species identity, richness and composition were 291 

measured using point-intercept sampling with a 50 cm × 50 cm square frame. 292 

Subsequently, plant aboveground biomass was collected by clipping each plant at the 293 

soil surface, and plant belowground biomass was collected from two soil cores 294 

(diameter 5 cm, depth 20 cm), both of which were then dried at 60 °C for 48 hours.  295 

At each quadrat, five soil cores were collected randomly and mixed into one 296 

sample. Soil samples were sifted through a 2-mm mesh sieve, the recovered roots 297 

were washed with distilled water. The root and soil samples were immediately packed 298 

in an ice box and transported to the laboratory. Root samples and soil subsamples 299 

were stored at -20 °C for DNA extraction and measurements of AM fungal IRCR and 300 

ERHD. Fresh soil subsamples were used to measure soil AP, NH4
+-N, NO3

--N, pH and for 301 

the mycorrhizal inoculation experiment. The other portion of each soil sample was air-302 

dried to measure SOC, TN, TP, AM fungal SD, EE-GRSP and T-GRSP. Five dominant and 303 

companion plant individuals were selected randomly from each quadrat and pooled 304 

as one sample to store at -20 °C for DNA extraction. In total, 72 samples were collected 305 

(three degradation stages × four types of samples (soil + mixed root + dominant plant 306 

+ companion plant) × six replicates). 307 

Soil AP and TP were extracted with NaHCO3 and KClO4-H2SO4 respectively, and 308 

then quantified with the Mo-Sb colorimetric method (Bray & Kurtz, 1945; Bowman, 309 

1988). Soil NH4
+-N was measured by the indophenol blue method (Dorich & Nelson, 310 

1983), and NO3
--N was measured with a UV spectrophotometer at wavelengths 270 311 

nm and 210 nm (Norman et al., 1985). Soil TN was determined by the Kjeldahl method 312 

(Davidson et al., 1970). SOC was estimated by the potassium dichromate titrimetric 313 
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method (Sims & Haby, 1971). Soil pH was measured in a 1:2.5 (w/v) soil-to-water 314 

suspension with a pH meter. EE-GRSP and T-GRSP were determined by the procedures 315 

reported by Wright and Upadhyaya (1996). 316 

AM fungal spores were extracted from 50.0 g of air-dried soil by wet sieving 317 

(bottom 38 μm mesh) and the sucrose centrifugation method (Brundrett et al., 1994). 318 

The extraradical hyphae were extracted from 5.0 g of frozen soil using a membrane 319 

filter, stained with Trypan blue and examined using the grid line intersection method 320 

under ×200 magnification by observing 25 random fields of view (Brundrett et al., 321 

1994). The plant roots were washed carefully and cut into 1-cm fragments, treated 322 

with 10% KOH at 90 ◦C for 30 min, and acidified in 2% HCl at room temperature for 10 323 

min, followed by staining with 0.05% Trypan blue at 90 ◦C for 10 min. Finally, 100 dyed 324 

root segments were randomly selected and measured for AM fungal colonization by 325 

the grid line intersection method under ×200 magnification (Mcgonigle et al., 1990).  326 

The DNA was extracted from 0.1 g fine roots and 0.5 g soil using the Powerplant 327 

and Powersoil DNA Isolation Kits (MoBio Laboratories, USA), respectively. To amplify 328 

the 18S rRNA gene, a two-step polymerase chain reaction (PCR) was performed using 329 

the NS31/AML2 primer pair (Lumini et al., 2010) and AMDGR/AMV4.5NF (with 12-base 330 

barcode sequences) primer pair (Sato et al., 2005; Van Geel et al., 2014), using the PCR 331 

conditions described by Dong et al. (2021). The PCR products were purified with an 332 

agarose gel DNA purification kit (AP-GX-250G; Axygen, United States) and quantified 333 

using a NanoDrop 8000 (NanoDrop Technologies, Wilmington, DE, USA), then pooled 334 

together with the same molar amount (100 ng) from each sample and sequenced on 335 

the Illumina MiSeq PE250 platform at Chengdu Institute of Biology, Chinese Academy 336 

of Sciences, China. The sequences obtained in this study were submitted to the 337 

GenBank database (PRJNA1060898). 338 

The raw sequence was subjected to quality control using Quantitative Insights 339 

Into Microbial Ecology (QIIME v1.7.0), and the obtained high-quality sequences were 340 

imported into USEARCH v11.0 for dereplication, and chimeras were detected and 341 

removed (Caporaso et al., 2010; Edgar, 2013). All non-chimeric sequences were 342 
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clustered into OTUs at a 97% similarity level. The representative sequences of OTUs 343 

were uploaded to the National Center for Biotechnology Information (NCBI) and the 344 

MarrjAM database (Opik et al., 2010) for taxonomic identification. The phylogenetic 345 

tree of AM fungal OTUs was constructed according to Neighbor-Joining by using MEGA 346 

7.0 software (Kumar et al., 2008). 347 

The greenhouse microcosm experiment, consisting of dominant and companion 348 

plants with and without mycorrhizal inoculum was performed at the Lhasa 349 

agroecological experiment station (29°40′N, 91°20′E, 3688 m above sea level) in July 350 

2019. Each pot (height: 45 cm, diameter: 32 cm) was filled with 2.0 kg of substrate 351 

mixed with soil collected from nearby meadows and river sand (1:1, V/V), and steam-352 

autoclaved twice (1 day interval, 121 °C for 2 hours). Fresh soil collected from the 353 

aforementioned meadow plots were used as mycorrhizal inoculums (40 g per pot), 354 

which was added into the center of the autoclaved substrate soil in each pot. In 355 

addition, 40 g of corresponding sterilized soil inoculum was added to create the non-356 

mycorrhizal treatment (NM, 4 replications). To correct for the differences in 357 

communities of other non-AM fungi soil microbe, a soil microbial wash treatment was 358 

applied to each NM pot, and it was prepared according to Jiang et al. (2018). We 359 

blended 40 g of living-soil inoculum in 200 ml water, passed it through a 38 μm sieve, 360 

and added the soil filtrate to each NM pot.  361 

For transplantation of dominant and companion plants, three individuals of 362 

either dominant or companion plant were collected at an early growth stage with the 363 

same height from the corresponding degradation plots. Prior to transplantation, the 364 

roots were washed and sterilized with 75% alcohol for 10 min. The main root of each 365 

plant was retained, and the fine roots were cut off to eliminate the influence of 366 

indigenous microorganisms. The three individuals of dominant or companion plant 367 

were transplanted into pot separately, and 10 days later, the seedlings were thinned 368 

to one individual per pot. A total of 48 pots (three degradation stages × two plant 369 

species × two inoculation types × four replicates) were grown in the greenhouse (day 370 

25 ◦C, night 17 ◦C), watered every 2 days, and the location of pots was randomly 371 
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switched every week.  372 

The in-growth bottles (8 cm high, 3 cm diameter, connected with a 10 cm syringe 373 

for 15NH4Cl injection) containing sterilized substrate were buried to a depth of 5-15 cm 374 

in soil and 5 cm away from the plants. The bottle mouth was covered by 30 μm mesh 375 

(allowing the hyphae to pass through, but not roots). We put the in-growth bottles 376 

with inclining at 45° to prevent leakage of 15NH4Cl labeling solution (Fig. 2a, b). We 377 

dissolved 2 mg of 15NH4Cl in deionized water (i.e., 99 atom% 15N, applied 1 mL of 2 378 

mg/mL) with a nitrification inhibitor (3,4-dimethyl pyrazole phosphate) that inhibits 379 

the transformation of NH4
+-N to NO3

--N (Zerulla et al., 2001). The 15N isotope labeling 380 

was performed in the AM treatment, and the same corresponding amount of 14NH4Cl 381 

was in the NM treatment.  382 

The target plant was covered with a 13CO2 pulse-labeling chamber (30 cm high, 383 

12 cm diameter) with a 5 mm pinhole at the top (Fig. 2a, b). We applied pulse labeling, 384 

i.e., 20 ml of 13CO2 (99 atom% 13C) through the pinhole every 2 hours 3 times, and 385 

sealed the pinhole immediately after each labeling. At midday, the AM inoculated 386 

plants were labeled with 13CO2 for 6 hours. Correspondingly, the non-mycorrhizal 387 

plants were placed in the open air. The plants and in-growth bottles were destructively 388 

harvested 3 days after isotope labeling (Koegel et al., 2013). 389 

After 14 weeks, all individual plants were harvested to determine the 15N 390 

concentration of the plant, and the 13C concentration of AM fungal hypha. Plants were 391 

dried and ground into powder, and the 15N concentration was determined using a 392 

Delta V Advantage isotope ratio mass spectrometer and an EA-HT element analyzer 393 

(Thermo Fisher Technology Company, USA). Soil PLFA extraction and 13C-PLFA analysis 394 

from in-growth bottles were carried out according to Zhang’s method (Zhang et al., 395 

2019).  396 

The concentrations of plant 15N and AM fungal 13C were calculated as follows: 397 

Plant 15N or AM fungal 13C = T% ×(atom% AM –atom% NM) × 100/(99-atom% NM) 398 

Where atom% AM is the atom percentage excess 15N of plant or PLFA 16:1ω5c-399 

13C of AM fungal hyphae in AM inoculated treatments, atom% NM is the mean atom 400 
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percentage excess 15N of plant or PLFA 16:1ω5c-13C of AM fungal hyphae from four 401 

randomly chosen NM treatments, and T% is the total N concentration of plant or C 402 

concentration of AM fungal hyphae in AM inoculated treatments.  403 

Statistical analysis 404 

To estimate the effects of degradation and plant species on the currency in 405 

exchanging plant C for AM fungal N, the concentration of AM fungal 13C and plant 15N, 406 

and the ratio of 13C: 15N were analyzed by linear mixed-effect models using the lmer 407 

function in the lme4 package (Bates et al., 2015), in which degradation was treated as 408 

a fixed factor, and plant species as a random factor. 409 

All statistical analyses were conducted using R v.4.1.3 (R Development Core Team, 410 

2018). First, the normality and homoscedasticity of the data were determined by using 411 

the Shapiro and Bartlett tests. When the data of soil properties, plant community 412 

characteristics, isotope concentration, AM fungal community variables, and 413 

morphological structure traits satisfied the assumption of homogeneity of variance, all 414 

significant differences of these data were tested by analysis of variance (ANOVA) 415 

followed by Tukey’s honestly significant difference (HSD) at P < 0.05. If the data did not 416 

satisfy the homogeneity assumption, a nonparametric Kruskal–Wallis test was carried 417 

out by using the kruskal.test function in R.  418 

To examine how correlations between AM fungal taxa change along a degradation 419 

gradient, we conducted a co-occurrence network analysis using the igraph package 420 

(Csárdi G et al., 2024). The Spearman’s correlation (Rho) coefficient between the 421 

pairwise OTUs was inferred by the psych package with a threshold of FDR-adjusted P 422 

< 0.05 and r > |0.6|(Revelle, 2023). To visualize the variations in AM fungal community 423 

composition, the AM fungal Bray–Curtis dissimilarity was subjected to PCo analysis 424 

using the pcoa command in the ape package (Paradis et al., 2004). The distance 425 

matrices of the AM fungal community (Hellinger transformed) were calculated by 426 

Bray–Curtis dissimilarity using the vegdist command in the vegan package (Clarke et 427 

al., 2006). Permutational analysis of variance (PERM ANOVA) was carried out to assess 428 

the effect of compartment (root v.s. soil), degradation stage, and the interaction 429 
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between them on Bray–Curtis dissimilarities using the adonis command in vegan 430 

package (Oksanen J et al., 2022).  431 

To explore the distribution of root and soil AM fungal taxa recovered from the 432 

non- degraded, moderately degraded and severely degraded meadow root and soil 433 

samples, we plotted ternary diagrams using the ggtern package (Hamilton & Ferry, 434 

2018). In addition, we conducted indicator species analysis of AM fungal OTUs for each 435 

degradation using the indval function in the labdsv package with the indicator values 436 

(indval) and P < 0.05 (Roberts, 2023). To test the homogeneity of the AM fungal 437 

community in root and soil along a degradation gradient, the beta-dispersion of AM 438 

fungal communities was explored with the betadisper function in the vegan package 439 

(Oksanen J et al., 2022).  440 
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Figure Legends 658 

 659 

Fig. 1 Meadow degradation promotes niche differentiation between root and soil 660 

arbuscular mycorrhizal (AM) fungal communities. a Bar graph showing the relative 661 

abundance of AM fungal operational taxonomic units (OTUs) in root and soil along a 662 

degradation gradient. b Principal coordinate (PCo) analysis of AM fungal community 663 

Bray–Curtis dissimilarity with permutational analysis of variance (PERM ANOVA) 664 

showing significant association of AM fungal community composition with 665 

compartment, degradation stage, and their interaction. c-d Ternary plot 666 

demonstrating the distribution of c root and d soil AM fungal indicator taxa detected 667 

from the non-, moderately and severely degraded meadows. c Note we detected 668 

biases for seven taxa of Acaulospora (1), Claroideoglomus (5), and Rhizophagus (1) 669 

toward non-degraded meadow, and four taxa of Glomus toward moderately or 670 

severely degraded meadows in root. d Five Glomus taxa exhibited significant bias 671 

toward non-, moderately, or severely degraded meadows in soil. e Pairwise 672 

dissimilarity between root and soil AM fungal community significantly increased from 673 

non-, through moderately to severely degraded meadow. The P value above the 674 

horizontal lines marked treatments in comparison, and the significance of difference 675 

was tested by the Wilcoxon signed-rank test. f Beta-dispersion analysis showing that 676 

the dissimilarity of AM fungal community was significantly higher in root than in soil 677 

under moderately and severely degraded meadows, but not under non-degraded 678 

meadow, as detected by the paired T-test at P < 0.05. 679 

  680 
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Fig. 2 Meadow degradation increased the currency in exchanging carbon (C) for 681 

nitrogen (N) between plants and arbuscular mycorrhizal (AM) fungi. a The schematic 682 

diagram of the in-growth bottles and 13CO2 pulse-labeling chamber used in the isotope 683 

labeling experiment. The in-growth bottles (8 cm high, 3 cm diameter, connected with 684 

a 10 cm syringe for 15NH4Cl injection) containing sterilized substrate were buried to a 685 

depth of 5-15 cm in soil and 5 cm away from the plants. The bottle mouth was covered 686 

by 30 μm mesh (allowing the hyphae to pass through, but not roots). We put the in-687 

growth bottles with inclining at 45° to prevent leakage of 15NH4Cl labeling solution. The 688 

13CO2 pulse-labeling chamber (30 cm high, 12 cm diameter) with a 5 mm pinhole at 689 

the top covered the target plant for labeling 13CO2. b Photo of experimental instrument 690 

and plant. c-d The result of mixed-effect models showed that c the concentration of 691 

13C detected in AM fungal hyphae was significantly lower in non-degraded meadow as 692 

compared to the moderately and severely degraded meadows, whereas d the 693 

concentration of 15N detected in plants was not significantly affected by meadow 694 

degradation. e The resource exchange currency as depicted by the ratio of 13C: 15N was 695 

significantly higher in the moderately and severely degraded meadows, as compared 696 

to that in the non-degraded meadow. The P value above the horizontal lines marked 697 

treatments in comparison, and the significance of difference was tested by linear 698 

mixed-effect models with the degradation as a fixed factor and plant identity as a 699 

random factor.  700 
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Fig. 3 Meadow degradation increased the co-occurrence network complexity of the 701 

arbuscular mycorrhizal (AM) fungal community. a-c The co-occurrence network of 702 

AM fungal community in a non-degraded, b moderately degraded, and c severely 703 

degraded meadows showed an increase in complexity with the increase of 704 

degradation severity. Node colors in the co-occurrence network indicated the genera 705 

of AM fungal taxa, and the edge colors represent positive (pink) and negative (blue) 706 

associations. d The increase in the dominance of Glomus taxa to network complexity 707 

with increasing meadow degradation level, as evidenced by the more than doubled 708 

degree of Glomus taxa in the network of severely degraded meadow as compared to 709 

that in the non-degraded meadow. e-h An increase in network complexity by meadow 710 

degradation is evidenced by the doubling of e edge number, f connectance, g average 711 

degree and h average clustering coefficient. 712 
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Fig. 4 Meadow degradation increased arbuscular mycorrhizal (AM) fungal biomass 714 

allocation to hyphae at the expense of spore. a-c Analysis of variance (ANOVA) 715 

showed that meadow degradation significantly a decreased AM fungal spore density 716 

(SD, per gram of dry soil), b increased extraradical hyphal density (ERHD, per gram of 717 

dry soil), and c increased intraradical colonization rate (IRCR, per 100 root fragments). 718 

d-f Meadow degradation significantly d decreased the SD: ERHD ratio, e decreased the 719 

SD: IRCR ratio, but f did not significantly influence the ERHD: IRCR ratio. Different 720 

letters above the boxes indicated significant differences at P < 0.05 among the non-, 721 

moderately and severely degraded meadows according to Tukey’s honestly significant 722 

difference or Kruskal–Wallis test. g A schematic diagram of the response of AM fungal 723 

SD, ERHD and IRCR to meadow degradation. Note our findings suggest that meadow 724 

degradation increased AM fungal biomass allocation to both the intra- and extra- 725 

radical hyphae at the expense of spore. 726 

  727 
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Fig. S1 Photographs of non-degraded, moderately degraded, and severely degraded 32 

meadows in a Tibetan meadow. 33 
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 35 

Fig. S2 The characteristics of plant community for non-degraded, moderately 36 

degraded and severely degraded meadows in the field (mean ± SD, n = 6). The result 37 

of analysis of variance (ANOVA) and Kruskal–Wallis test showed that meadow 38 

degradation significantly decreased plant aboveground biomass, belowground 39 

biomass, species richness and community coverage, thereby increased bareland area. 40 

Different letters above the boxes indicated significant differences at P < 0.05 among 41 

the non-, moderately and severely degraded meadows according to Tukey’s honestly 42 

significant difference or Kruskal–Wallis test.  43 
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 45 

Fig. S3 The properties of soil for non-degraded, moderately degraded and severely 46 

degraded meadows in the field (mean ± SD, n = 6). The result of analysis of variance 47 

(ANOVA) and Kruskal–Wallis test showed that meadow degradation significantly 48 

affected soil available phosphorus (AP), ammonium nitrogen (NH4
+-N), nitrate 49 

nitrogen (NO3
--N), soil organic carbon (SOC), total nitrogen (TN), pH, easily-extractable 50 

glomalin-related soil protein (EE-GRSP) and total-extractable glomalin related soil 51 

protein (T-GRSP), but not total phosphorus (TP). Different letters above the boxes 52 

indicated significant differences at P < 0.05 among non-, moderately and severely 53 

degraded meadows according to Tukey’s honestly significant difference or Kruskal–54 

Wallis test.  55 
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 57 

Fig. S4 Rarefaction curve of arbuscular mycorrhizal (AM) fungal operational taxonomic 58 

units (OTUs) in a root, b soil along a degradation gradient. The number of observed 59 

OTUs was compared across samples when samples were rarefied at 11,329 sequences. 60 
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Fig. S5 Phylogenetic tree of representative sequences of arbuscular mycorrhizal (AM) 63 

fungal operational taxonomic units (OTUs) obtained in this study with referenced 64 

sequences from the National Center for Biotechnology Information (NCBI) and 65 

MarrjAM database (http://maarjam.botany.ut.ee). 66 

  67 
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 68 

Fig. S6 The pie graphs showed that the relative abundance of detected arbuscular 69 

mycorrhizal (AM) fungal genera a operational taxonomic units (OTUs) and b 70 

sequencing reads dominated by Glomus, Claroideoglomus and Rhizophagus. 71 
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  73 

Fig. S7 Ternary plot demonstrating the distribution of c root and d soil AM fungal 74 

indicator taxa detected from the non-, moderately and severely degraded meadows. 75 

a Note we detected biases for seven taxa of Acaulospora (1), Claroideoglomus (5), and 76 

Rhizophagus (1) toward non-degraded meadow, and four taxa of Glomus toward 77 

moderately or severely degraded meadows in root. b Five Glomus taxa exhibited 78 

significant bias toward non-, moderately, or severely degraded meadows in soil. Note 79 

ternary plots showed the distribution of both significant and non-significant (NS) AM 80 

fungal taxa detected from the non-, moderately and severely degraded meadows.  81 
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 82 

Fig. S8 Frequency distributions of all correlations between arbuscular mycorrhizal (AM) 83 

fungal taxa as assessed by Spearman’s Rho. Meadow degradation increased the 84 

proportion of correlations between AM fungal taxa. 85 
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 87 

Fig. S9 Correlations between arbuscular mycorrhizal (AM) fungal taxa in non-degraded, 88 

moderately degraded and severely degraded meadows. a-c The result of Kruskal–89 

Wallis test showed that meadow degradation significantly affected the all- correlation, 90 

positive correlation and negative correlation. c The positive correlation was 91 

significantly higher in the severely and moderately degraded meadows, as compared 92 

to the non-degraded meadow. 93 
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Table S1 List of studies investigating the currency in exchanging carbon (C) for 95 

nutrients (nitrogen, N; phosphorus, P) between plant and arbuscular mycorrhizal (AM) 96 

fungi by isotope labeling technology. 97 

Study Ecosystem Treatment Exchange 
type 

Change in 
currency 

Conclusion 

(Arguello 
et al., 
2016) 

split-root 
system, 
greenhouse 

AM fungal 
species 
identity and 
combination 

Plant 14C ~ 
AM fungal 
33P 

*/* Plants received more 33P 
from less cooperative AM 
fungi in the presence of 
another AM fungal species 

(Ji & 
Bever, 
2016) 

Split-root 
system, 
greenhouse 

Phosphorus/ 
AM fungal 
species 
 

Plant 14C ~ 
AM fungal 
32P, and 33P 

NS/* Host plant preferentially 
allocated more C to the 
roots associated with the 
fungus delivering higher P 
per unit plant C 

(Zheng et 
al., 2015) 

split-root 
system 

light/ 
AM fungal 
species 

Plant 14C ~ 
AM fungal 
33P 

ND/ 
ND 

Plant preferential allocation 
towards the most beneficial 
mycorrhizal mutualist 
depends upon aboveground 
resources 

(Williams 
et al., 
2017) 

compartme
nted pot 
system 

Nitrogen/ 
phosphorus 

Plant 13C ~ 
AM fungal 
33P 

+/- An alteration in the terms 
of P–C exchange under N 
fertilization regardless of 
soil P status 

(Tome et 
al., 2015) 

compartme
nted pot 
system 

Harvest time Plant 13C ~ 
AM fungal 
15N 

+ The N uptake was linearly 
correlated with the 13C fixed 
by the plants 

(Gavito et 
al., 2005) 

Two 
compartme
nt Petri 
dishes 

Temperature
/ AM fungal 
species 

root 
compartme
nt D-
glucose 13C 
~ hyphal 33P 

ND/ 
ND 

Root C uptake and 
translocation in the fungus 
were reduced by low 
temperatures. Uptake and 
translocation of 33P by 
fungal hyphae were similar 
between 10 and 25°C. 

(Hodge & 
Fitter, 
2010) 

compartme
nted pot 
system 

Microcosm 
units/ AM 
fungal 
species/time 

15N / 13C -
labeled 
organic 
patch 

ND/ 
ND/ 
ND 

Substantial N acquisition by 
AM fungi from organic 
material 

(Kiers et 
al., 2011) 

Triple-plate 
experiment
s 

Phosphate 
supply/Sucro
se supply/ 
AM fungal 
species 

Root 14C ~ 
hyphae 33P 

ND/ 
ND/ 
Glomus 
intraradices > 
Glomus 
aggregatum 

Host allocated more C (13C) 
to more cooperative AM 
fungi than less cooperative 
AM fungal species 
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(Walder et 
al., 2012) 

compartme
nted pot 
system 

Plant culture 
system/ AM 
fungal 
species 

Root 13C ~ 
hyphae 15N 
/ 33P 

Sorghum (C4) > 
Flax (C3)/ 
Sorghum: 
Glomus 
intraradices < 
Glomus 
mosseae 
Flax: Glomus 
intraradices > 
Glomus 
mosseae 

Sorghum (C4) invested 
more C in the AM fungi 
than flax (C3), but received 
less N and P from the AM 
fungi than did flax. 

(Liu et al., 
2021b) 

compartme
nted pot 
system 

Plant culture 
system/ 
Nitrogen 

hyphae 15N 
/ 13C 

ND  

(Liu et al., 
2021a) 

compartme
nted pot 
system 

Plant culture 
system/ 
phosphorus 

hyphae 15N 
/ 13C 

ND  

(Charters 
et al., 
2020) 

compartme
nted pot 
system 

elevated 
CO2/ aphid 
herbivory 

Plant 14C ~ 
AM fungal 
33P 

ND Insect herbivory drove 
asymmetry in C for nutrient 
exchange between 
symbionts 

(Nuccio et 
al., 2013) 

compartme
nted pot 
system 

AM fungus 
was 
permitted or 
excluded 

13C- and 15N  
labeled root 
litter 

ND AM fungus significantly 
modifies the soil bacterial 
community and N cycling 
during litter decomposition 

(Grabmaie
r et al., 
2014) 

Greenhouse 
pots 

Earthworms/ 
AM fungi 

earthworms 
were dual-
labeled 
with 15N 
and 13C 

ND/ND  

(Xu et al., 
2018) 

compartme
nted pot 
system 

Phosphorus/ 
without or 
with AM 
fungi 

Maize 
leaves dual-
labeled 
with 15N:13C 

ND/ND The host can acquire more 
nutrients through the AM 
from organic matter when 
soil P availability was low 

(Zhang et 
al., 2015) 

glass 
growth 
chambers 

ambient and 
low 
atmospheric 
CO2 /AM 
fungi 

Plant 13C ~ 
hyphae 15N 

ND/ND Plant C limitation does not 
reduce N transfer from AM 
fungi to Plantago 
lanceolata 

(Thirkell, 
Tom J. et 
al., 2020) 

compartme
nted pot 
system 

ambient and 
elevated 
atmospheric 
CO2/ two 
barley 
cultivars 

Plant 14C ~ 
hyphae 
15N+33P  

ND/ND  
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(Thirkell, 
T. J. et al., 
2020) 

compartme
nted pot 
system 

ambient and 
elevated 
atmospheric 
CO2/three 
wheat 
cultivars 

Plant 14C ~ 
hyphae 
15N+33P 

ND/ND C for nutrient exchange 
between AM fungi and 
wheat varies according to 
cultivar and changes in 
atmospheric C dioxide 
concentration 

(Hoysted 
et al., 
2023) 

in vitro 
monoxenic 
experiment
al system 

intact fungi, 
trenched 
fungi and 
with no fungi 
present 

Plant 14C ~ 
hyphae 
15N+33P 

ND Clover gained both 15N and 
33P tracers directly from 
fungus in exchange for 
plant-fixed C in the absence 
of other micro-organisms 

(Bever et 
al., 2009) 

split-root 
system, 

AM fungal 
species 
identity and 
combination 

Plant 14C ND Host plants allocated more 
C toward the fungus that 
better promoted plant 
growth 

(Hodge et 
al., 2001) 

compartme
nted pot 
system 

without or 
with AM 
fungi 

organic 
material 
with 13C and 
15N 

ND AM fungus accelerates 
decomposition and acquires 
N directly from organic 
material 

*, significant affect; +, significant increase; −, significantly decrease; NS, not significant; 98 

ND, not done. 99 

  100 
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Table S2 List of studies investigating the changes of arbuscular mycorrhizal (AM) fungal 101 

biomass allocation. 102 

Study Ecosystem Treatment SD: ERH ERH: IRCR  SD: IRCR  Note  

(Babalola 
et al., 
2022) 

wheat field Nitrogen / 
Water / 
Time 

ND / ND 
/ ND 

* / * / * ND / ND / 
ND 

 

(Johnson et 
al., 2003) 

Grassland Nitrogen/s
ite/season 

ND / ND 
/ ND 

ND / ND / 
ND 

ND / ND / 
ND 

N enrichment impacts 
mycorrhizal allocation across 
a wide range of grassland 
ecosystems 

(Weber et 
al., 2019) 

multi-
factorial 
field 
experiment 

global 
change 
drivers 

ND ND ND Glomeraceae, 
Claroideoglomeraceae and 
Paraglomeraceae as a 
rhizophilic guild that 
allocates more AM biomass 
to roots than soil, and the 
Gigasporaceae and 
Diversisporaceae as an 
edaphophilic guild that 
allocates more AM biomass 
to soil than roots 

(Hart & 
Reader, 
2002) 

Conetainers 
culture 

21 AM 
fungi 
isolates/ 
harvest 
dates/ 
four host 
plants 

ND / ND 
/ ND 

ND / ND / 
ND 

ND / ND / 
ND 

The colonizing strategies of 
AM fungi differ considerably 
and that this variation is 
taxonomically based at the 
family level 

(Mao et al., 
2019) 

the 
Qinghai-
Tibet 
highway 
from 
Xidatan to 
Amdo 

Distance 
from 
highway 

ND ND ND The root length AM 
colonization in disturbed 
habitat was about twice that 
in undisturbed habitat, while 
inverse patterns were 
observed for the extraradical 
hyphal length density and 
spore density in soils 

*, significant affect; NS, not significant; ND, not done. 103 
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