
Universo Primitivo
2024-2025 (1º Semestre)

Mestrado em Física - Astronomia

3. Thermodynamics in an expanding universe

• Natural Units; 

• Classification and properties of elementary particles;

• Thermal evolution at equilibrium:
• Density of states and macroscopic properties
• Number density, energy density and pressure 

• Ultra-relativistic limit
• Non-relativistic limit

• Effective number of degrees of freedom
• Internal degrees of freedom of particles according to the 

standard model of particle physics
• Evolution of relativistic degrees of freedom

• Entropy at equilibrium
• Effective number of degrees of freedom in entropy;
• Entropy conservation and its consequences;
• Entropy and Temperature – time scaling  for relativistic particles

• Key events in the thermal history of the Universe 2
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In Particle Physics and Cosmology, the expression “natural units” usually 
refers to setting the following fundamental constants equal to unity: 

These are the speed of light, the Boltzmann constant and the Planck 
constant (ℏ = ℎ/2&). Note that setting ℏ = 1, means that ℎ = 2&.

8.6

2

As a consequence, the following fundamental properties (time; length, 
temperature and mass)  can be written in units of energy (usually 
expressed in GeV, MeV, keV):

where



Natural Units
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To prove these, use the definitions of the following constants in the IS system 
and the definition of electron volt in Jules.

Example: of the mass of known particles in MeV: 

Classification of elementary particles
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The Standard Model of Particle Physics (SMPF) predicts various families of 
particles some of them are fundamental and other “composite” particles.

Fundamental particles are not known to have internal structure. Composite 
particles have internal structure (i.e. are made of other particles).

All particles of the SMPF can be classified in the following way: 



Gauge Fields (exchange Bosons): 
Are fundamental particles that mediate interactions: 

• Photon γ – electromagnetic;
• 8 gluons " – strong interaction
• # and $± − weak interaction
• Graviton? (ℎ"#) – gravitational interaction 

(quantum gravity)

Leptons:
Are fundamental particles that interact via the 
electromagnetic and weak forces.

• Come in doublets with respect to the weak 
force

• Only distinguishable by the mass
• Stable doublet: is the electron/electron 

neutrino

Hadrons:
Have internal structure and interact via all types of forces.

• are made of quarks, confined in sets of 2 (Mesons) or 
3 (Baryons) particles: up, down; charm, strange; top; bottom (', ), *, +, ,, -)

Scalar Higgs Boson 
• Higgs Field: The Higgs mechanism is a process describing the Electroweak symmetry 

breaking and the generation of the mass of all fermions and massive bosons. 

Classification of elementary particles
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Fundamental assumptions  about the primordial universe:
• All fluid species are assumed to behave as ideal fluids.

• Thermal equilibrium of a fluid species may be established 
whenever the particles’ interaction rate, Γ(#), (expressed as the 
number of interaction events per unit of time) is larger than the 
expansion rate of the Universe, % # = (̇/(:

Γ # ≫ %(#)
• The way to describe a fluid component is through its distribution 

function +(,, ., /, #). It gives the mean number density of particle 
states in the position, , ± 1,, with momentum, . ± 1..

• In classical mechanics + is defined as the number of particles per 
phase space volume: 23 = + ,, ., /, # 2!4 2!5

• If space is homogeneous, the distribution function must be 
independent of ,. Moreover, assuming isotropy, + must be a 
function of 5 = |.|, so + = + 5, /, # .

Thermal evolution at equilibrium
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" is called the “internal degrees of 
freedom” of each momentum state

Thermal evolution at equilibrium
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From quantum states to microscopic properties:
Under the assumptions of homogeneity and isotropy, the number of particles 
() = * +, -, ., / ("0 ("1 does not depend on x and is only a function of 1 = |-|. 

The number density of particle states is defined as:

Likewise, one can obtain the energy density of particles 
in real space by weighting each momentum eigen-
state by its energy, ! = #! + %!, and therefore:                              

The computation of the pressure of particles results in a similar way (This can be derived 
using statistical mechanics assuming a gas of weakly interacting particles, see slides 14-15). 

Thermal evolution at equilibrium
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The phase-space of “free” particles in Quantum physics:

This can be seen as setting fundamental 
uncertainty “confinement” regions in 
the {#, %!} plane of the phase space. 
Each region, representing a possible 
{&, '"} – state, has a minimum area set 
by the (1-Dim) U.P. 

Δ# Δ% = 2+ℏ
Taking the U.P. in all 3-Dim of space and 
momentum {&,'}, the confinement 
regions will extend over a 6-dim volume 
given by (-&-' ≡ /#/0/1/%!/%#/%$):

-& 2' = 2+ℏ %

So, the total number of confinement 
regions (states) in the phase space can 
be estimated as (the 2nd equality sets 
ℏ=1):

3
4&4'
2+ℏ % =

5
2+ %34&4'

x

The Uncertainty Principle (U.P.) introduces a fundamental uncertainty in the #⃗, %⃗ phase space. For 
example, taking the U.P. in its form of 1927, and considering only the # and %! components of position and 
momentum of the phase space one has:

Δ/ Δ0$ ≳ ℎ ⟺ Δ/ Δ0$ ≳ 24ℏ

Phase space density

Δ$ Δ%!
= 9(2) ℏ)
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The phase-space of “free” particles in Quantum physics:
In quantum mechanics the momentum operator (%̂ = 'ℏ∇) eigenstates  of a free particle inside 
a box of volume, V = +!, has a discrete spectrum of momentum / energy eigenstates, 
described by the (time-independent) Schrödinger equation:

where, 3, = 24./ℏ, and 1 = ℏ3.
The 1D solution for the boundary  condition , 0 = , + = 0

is of the form , . = / sin(4".), where:

The energy of each mode n is:

In 3D, the possible energy and momentum states are (6 = (7#, 7$, 7%)): 

kn = n⇡/L, withn > 0
<latexit sha1_base64="bFzom8uK8XAeyZQyACx0i8rmeM8="></latexit>
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The phase-space of a species in Quantum physics:
Therefore, the allowed momentum eigenstates in one octant of the  6 = (7#, 7$, 7%) space is:

So, the volume elements <!6 ≡ <6 and <!% ≡ <%⃗&, in both
6 and %⃗ spaces are related by:

)%6 = 8
4ℏ

%
)%0

One must keep in mind that all possible 6 are in the “positive”
octant.  To compute the total number of possible states one
can either integrate over the “positive” octant of %⃗ or the 
whole momentum space and divide by 8: 

where we have set ℏ = > in the last equality. So, the number density of possible states is: 

8
9 =

1
2+ %3;

%%

Note that the integral is done over the whole %⃗ space. Note also that <% = 9 = ∫ ;%#.

Thermal evolution at equilibrium
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Phase space density
in natural units

6 = 1
8;

8
4ℏ

%
)%0 = ; <

24ℏ % )%0 =
<
24 %;)%0

0⃗& =
4ℏ
8 6 ⟺ 6 = 8

4ℏ 0⃗&



The phase-space of a species in Quantum physics:
So, the number density of momentum states for a particle species with a state occupation 
distribution function ?(@, !,A) (either Fermi-Dirac or Bose-Einstein) with g internal degrees of 
freedom is:

7 =
6

B
=

C

2: !D?(@, !,A) <!%

From this, one can obtain the energy density of that particle 
species just  by weighting each momentum eigen-state 
by its energy, ! = #' + %':

E =
C

2: !D?(@, !,A) !(%) <!%

Note that m is the particle’s rest mass.
For the pressure one obtains (see the following 2 slides) a similar expression:

F =
C

2: !D?(@, !,A)
%'

3! %
<!%

The internal degrees of freedom, C,  accounts for (quantum) particle properties that do not 
impact on their momentum eigen-states.  

Thermal evolution at equilibrium
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Thermal evolution at equilibrium
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Derivation of (done in class), 

Let's assume a gas of weakly interacting particles in statistical mechanics. 

Consider the area element </, in the figure on the left. Particles move with ! H .

The number of particles in the shaded volume <B = H <A </( = H <A <ΩK'

is: 

Not all particles in dV will hit dA.
Only a fraction of this particles, with LH. MN = OPQ R , 
i.e. with the direction, S, will hit </. So, assuming 
isotropy, the number of particles arriving on </
is: 

(from Baumann lectures Chap. 3.2)



Thermal evolution at equilibrium
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(Derivation continuation…) 

If these <6) particles collide elastically at </, each particle transfers a momentum 2|@. L7| (because 
the particle is assumed to collide elastically and is reflected with the same angle of impact).

So, the pressure <F (defined as force / area = momentum / time / area) by these particles at </ is:

where                           and the integration is made 
over the hemisphere of particles moving towards  
</ (i.e. with                                       )  

Thermal evolution at equilibrium
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Local Kinetic equilibrium
If particles exchange momentum and energy in an efficient way, the system is said 
to be in kinetic equilibrium. If the system achieves a maximum entropy state, then 
particles are distributed according to the Fermi-Dirac or Bose-Einstein distribution 
functions: 

Where 5 is the temperature of the system and 6 is the chemical potential defined 
as the change of energy with respect of the number of particles, at constant 
entropy, volume, and number other particle species.

or

At low temperature 5 ≪ . − 6 both distributions reduce to the “Maxwell-
Boltzmann” distribution: 

+ Fermions
− Bosons

-
, !&'(



Local Chemical equilibrium
• If a particle species, 8, is in chemical equilibrium, then 9> is related to the 

other species chemical potential. For example, if one has the following 
interaction (reaction) among species:  

then

• Photons have chemical potential equal to zero, i.e. 9? = :, because the 
number of photons is not conserved. For example, in a double scattering 
interaction one has  

• This implies that a particle, :, and its antiparticle, ;:, (< + =< ↔ ? + ?) have        
symmetric chemical potentials @. = −@/..

Local Thermal equilibrium
• Thermal equilibrium is achieved for species which are both in kinetic and 

chemical equilibrium. These species then share the same temperature, 50 = 5.

Thermal evolution at equilibrium
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Thermal evolution at equilibrium
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Particle distribution functions

Undistinguishable particles 
obeying to the Pauli’s Principle: 

only one particle per state 

semi-integer spins integer spins

Undistinguishable particles not subject 
to the Pauli’s Principle: many 

particles can occupy one state

Examples: electron, proton, neutron… Examples: photon, gluon, mesons… 



Thermal evolution at equilibrium:
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Assuming homogeneity and isotropy the integrals in the expression of 7, E, and F (expressions 
in slides 9 or 13) can be easily computed using spherical coordinates in the momentum space. 
The integrations of the angular part of the momentum space give 4:, so  (note that ! =
#' + %' and ?(%, !, A) = ? %, A ):

7 =
C

2: !D?(%,!,A) <!% ⟺ 7 =
C

2:'
D
*

+
?(%, A) %' <%

E =
C

2: !D?(%,!,A) !(%) <!% ⟺ E =
C

2:'
D
*

+
?(%,A) %'! % <%

F =
C

2: !D?(%,!,A)
%'

3!(%)
<!% ⟺ F =

C

2:'
D
*

+
?(%,A)

%,

3!(%)
<%

• In general, these expressions need to be solved numerically.

• However, for some cases of interest it is possible to derive analytical solutions.

• These are the cases of ultra-relativistic particles (W ≪ Y) and non-relativistic (W ≫ Y)

with vanishing chemical potential ([ = 0)

Thermal evolution at equilibrium:
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Whenever the chemical potential is zero (photons) or negligible the number and energy 
densities are (! = #' + %'):

Defining \ ≡ W/Y and ξ ≡ @/Y these integrals can be written as

Which in some cases can be evaluated analytically using the Riemann-Zeta, ^, and Gama, Γ,  
functions. The following integral equalities involving, ^ and Γ, are particularly useful: 
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Ultra-relativistic limit: ! → 0 ($ ≪ & and ' = 0)
Let us start with the `±(. → 0) for ultra-relativistic particles. For Bosons one has: 

@) 0 = 3
*

+
;B

B,

exp B, + 0, − 1
= G 2 + 1 Γ 2 + 1 = 2G 3 ≃ 2.4

For Fermions, the integral `.(. → 0) is not directly related with the Riemann-Zeta and Gama 
integrals. However, one can use the mathematical equality,

and then apply the Riemann-Zeta and Gama integral forms: 

@- 0 = @) 0 − 23
*

+
;0

1
2

0/2 ,

exp(0) − 1 = @) 0 − 2
1
2

%
@) 0 = 1 −

1
4 2G 3

@- 0 = 3
*

+
;B

B,

exp B, + 0, + 1
= 3

*

+
;B

B,

exp B − 1 − 3
*

+
;B

2B,

exp 2B − 1

Making a variable change, b = 2c , in the last integral, one obtains: 

=
3
2 G 3 ≃ 3.6

Thermal evolution at equilibrium:
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Ultra-relativistic limit: ! → 0 ($ ≪ & and ' = 0 )
So, one obtains the following expressions for the number density: 

Doing a similar computation for the  )± 0 , it is possible to derive (exercise) 
the following expression for the energy density:

To compute the pressure for ultra-relativistic particles, 4 → 0, with ; = 0, it is  
straightforward to show (exercise) that: 



Non-relativistic limit: ! ≫ 1 ($ ≫ & and ' = 0)
For 4 ≫ 1 (4 ≫ 5 ) the number density integral gives the same expression 
for Fermions and Bosons: 

Most of the contribution to this integral comes from ξ ≪ + . Expanding the square 
root, 0 1 + C,/0, 1/,, in a Taylor expansion to the lowest order in ξ one obtains:

The last integral is obtained after a change of variable D, = C,/20. It is related with 
the Gamma Function integral with E = 2 in slide 20. So, one gets:

Which leads to (see next slide)

Thermal evolution at equilibrium:
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= 2# "/,$34%
5

6
&' ',$37.

`± . ≈ 2. !/' e0#
1

2
Γ
3

2
= 2. !/' e0#

1

2

:

2
= : 2

!
' 0' .!/' e0# =

:

2
.!/' e0#

Thermal evolution at equilibrium:
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Non-relativistic limit: ! ≫ 1 ($ ≫ & and ' = 0)
The number density (E = F/ 2&, 5"G±(0)) of non-relativistic particles 

This translates to a Maxwell-Boltzmann like distribution. It tell us that massive 
particles (in the plasma) are exponentially rare at low temperatures. 

For the energy density, at low temperature (5 ≪ 4) one has:

The energy density integral can be obtained using this previous approximation, giving 
(exercise):

The pressure can be also easily computed (exercise), giving



Thermal evolution at equilibrium:
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Non-relativistic limit: ! ≫ 1 ($ ≫ & and ' = 0)
From these expressions one concludes that:

• The densities and pressure of non-relativistic particles are strongly suppressed, by 
the exponential term J39/: , as temperature, 5, drops below the particles mass, 
4. This is known as Boltzmann suppression is loosely referred to particle
‘annihilations’.

• These “annihilations” occur due to changes in the interaction's cross sections (that 
depend on temperature) involving the particle species. For example, for  < + =< ↔
? + ? (particle-antiparticle pair annihilation/production) at low temperature 
(typically below ~4), the thermal particle energies are not sufficient for pair 
production. So, with the expansion < and 
=< will be supressed from the fluid.

• Particle species suppressions also occur 
due to other effects, such as phase 
transitions (as it happens to the less 
massive quarks in the QCD phase 
transition), particle decays,...

Non-relativistic limit: ! ≫ 1 ($ ≫ & and ' = 0)
From the previous expressions one can concludes that (continuation):
• The transition from relativistic to non-relativistic behaviour is not instantaneous (in fact, 

about 80% of the “annihilations” take place in the temperature range Y ∈ [W/i,W]).

• The suppression of particles from the fluid does not mean that all massive particles vanish 
from the universe. At the present temperature, all particle species with mass in the Universe 
are non-relativistic. The suppression means that these particle species (e.g. protons, 
electrons, atoms, dark matter) are no longer “coupled” to (or interacting with) the primordial 
fluid (that today is only made of CMB photons).

• For # ≫ k the energy density and pressure of non-relativistic particles (exercise)

• L = E 4 + "
,
5 ≃ E4

• N = E5 < "
,
E5 ≪ E4 ≃ L

This means that non-relativistic particles have, in general, negligible pressure. They behave 
as a “pressureless dust”, (i.e. as F = 0 ‘colissionless matter’) 

• Note also that N = E5 ⇔ NQ = )3;5 (in SI units) is the ideal gas law.

In a nutshell: decoupled non-relativistic particles behave as a gas of pressureless
matter.

Thermal evolution at equilibrium:
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Effective number of degrees of freedom of relativistic species
For a plasma of relativistic species, with bosons (labelled by i) and fermions (labelled 
by j) we have that:

The total energy density of relativistic species can therefore be written as:

where 5 = 5< is the photons temperature and F∗is the energy density effective 
number of degrees of freedom (in energy) of the fluid at temperature 5:

<latexit sha1_base64="aZpUFMFkTPscgSldI3Zwl3tuGcY=">AAADRXicjVFdS9xAFL1JP7R+1LWlvvRlcCkUlCVRYX0RlvbFxy24rrDRkGRn12GTTJiZCEsI+O/6E4p/QNqHvomv9s44C+pS2wlJzpx7z5m598ZFyqTyvCvHffHy1euFxTdLyyurb9ca6++OJS9FQnsJT7k4iSNJU5bTnmIqpSeFoFEWp7QfT77qeP+CCsl4fqSmBT3NonHORiyJFFJh4zIQ55yE4iCQZRZWLNiuApGRmEtOZV2TqgoKdrZTBxxdql0PqXHIyFHIzvbIFnmsGlGRsZmubTX7df2cSdhoei3PLDIPfAuaYFeXN35AAEPgkEAJGVDIQSFOIQKJzwB88KBA7hQq5AQiZuIUalhCbYlZFDMiZCf4HeNuYNkc99pTGnWCp6T4ClQS+IQajnkCsT6NmHhpnDX7N+/KeOq7TfEfW68MWQXnyP5LN8v8X52uRcEI9k0NDGsqDKOrS6xLabqib04eVKXQoUBO4yHGBeLEKGd9JkYjTe26t5GJ/zSZmtX7xOaW8EvfEgfsPx3nPDjeafley/+21+x8saNehI+wCZ9xnm3owCF0oYfe186K88HZcL+7v90b9/Y+1XWs5j08Wu7dH0AIwSM=</latexit>

Thermal evolution at equilibrium:

28

Effective number of degrees of freedom of relativistic species
This expression allows that different species may not be in thermal equilibrium with 
the photon component. In fact, we can distinguish two situations:

• For relativistic particles in thermal equilibrium with the photons we have:

when a species become non-relativistic, it is removed from the sums in F ∗>? .
So, when 5 is away from the “mass thresholds” of particles F ∗>? is independent of 
temperature

• For relativistic particles that are not in thermal equilibrium (or decoupling) from 
the photon fluid, F∗ varies with temperature: 
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Inventory of internal degrees of freedom of fundamental particles

Internal degrees of freedom of fundamental particles in the 
Standard Model of Particle Physics:

• Massless spin-1 (photons and gluons): 2 polarizations

• Massive spin-1 (@±, B#): 3 “polarizations”

• Massive spin-1/2 leptons (C±, D±, E±): 2 spins

• Massive spin-1/2 quarks: 2 spin and 3 colour states

• Neutrinos/anti-neutrinos: 1 helicity state

So, the internal degrees of freedom for relativistic bosons 
and fermions in equilibrium are:

This gives:  

Thermal evolution at equilibrium:
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Evolution of relativistic degrees of freedom (SMPP)

T~150 MeV:
Quarks combine into 
baryons and mesons.
Below  ~30 MeV all 

Hadrons except the Pions
become non-relativistic

T>100 GeV:
All particles are 

relativistic.
By ~100 GeV the Higgs 

mechanism “gives mass” 
to  the electro-week 

(EW) mediators causing 
the “EW phase 

transition”



Entropy at equilibrium
From to the 1st law of thermodynamics for a particle species (and setting [ = 0) one has:

and

Thermal evolution at equilibrium:
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<l =
1

k
<m +

F

k
<Bdm = k<l − F<B

Since m = E B one has:

<l =
1

k
< EB +

F

k
<B

=
B

k
<E +

E

k
<B +

F

k
<B =

So, one concludes that:

and 
ol

oB 1
=
E + F

k

ol

oE 2
=
B

k

The entropy differential <l can also be written as:

<l =
1

k
< EB + F<B =

=
1

k
< EB + <(FB) − B<F =

=
1

k
B<E + E<B +

F

k
<B =

B

k
<E +

E + F

k
<B

1

k
< EB + F<B + B<F − B<F =

1

k
(< E + F B − B<F)

Entropy at equilibrium
If one uses the Schawrtz theorem for the free Energy <p = −l<k − F<B one has:   

Thermal evolution at equilibrium:
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@P

@T
=

@S

@V
=

⇢+ P

T
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o'p
oBok

=
o'p
okoB

So, one concludes that  

Where the last equality was established in the 
previous slide. This allows to go back to <l (and  
using <F = oF/ok <k ) conclude that:

Max Born – Tisza diagram
of thermodynamic functions

⟺
o

oB
−l =

o

ok
(−F)
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Entropy at equilibrium
This expression allows defining entropy and entropy density (or specific entropy), up 
to a constant, as:

The specific entropy of a relativistic boson species i can then be computed as (using 
the expressions of L-, N- = L-/3, obtained earlier): 

A similar result holds for relativistic fermion species, S: 

<latexit sha1_base64="cNgL/kcjL/ImQxetD7X4KlNPxsI="></latexit>

Relativistic Bosons

Relativistic Fermions
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Entropy at equilibrium
For a plasma of relativistic species, with bosons (labelled by i) and fermions (labelled 
by j) we have that:

The total specific entropy of relativistic species can therefore be written as:

where 5 = 5γ is the photons temperature and F∗G is the effective number of degrees 
of freedom in entropy of the fluid at temperature 5:

<latexit sha1_base64="FL19ZtTA6v/Wgs4PjEeNVgEVmpQ="></latexit>

<latexit sha1_base64="y8P5MOGKaDw9g7ldUzwDEXjho5Q="></latexit>

<latexit sha1_base64="D3257TnIg0k8isfMKVcQb+2AOTk="></latexit>
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Entropy at equilibrium
One should note that F∗G is a function of (5-/5)3 whereas F∗, varies as (5-/5)4
This means that:

• Relativistic species in thermal equilibrium (5- = 5): F∗G = F∗

• Non-relativistic decoupling species (5- ≠ 5): F∗G ≠ F∗

In other words, if one writes

One has F∗JKℎ / = F∗Kℎ(5) for relativistic species in thermal equilibrium, and F∗JMCN 5 ≠
F∗MCN(5) for non-relativistic species in the process of decoupling from fluid.

Slide 30 shows both F∗G (dotted line) and F∗ (solid line).  

At high values of the degrees of freedom (i.e. higher temperatures) the curves appear 
on top of each other because the differences are small and only more visible at low 5. 

Conservation of Entropy
A most important result about the evolution of the fluid in thermal equilibrium is 
that its entropy remains constant with the expansion of the Universe (as opposed to 
its energy density that decreases with time). 
This can be proved by taking the time derivative of U:

= 0

• The first term vanishes, because

(FLRW continuity equation) and Q = V3W3.

• The second term also vanishes, because
XN
X5

=
XU
XQ

=
(L + N)

5

Thermal evolution at equilibrium:
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Conservation of Entropy: two important implications
Entropy conservation has two important consequences:

1. It allows to identify a way to define Number of particles, !3, of a give species. 
Let " be the total entropy and # the specific entropy of relativistic particles in equilibrium. 
One has (see Quiz):

S = #& = '()#*. ⇒ # ∝ .0!

One also expects that in equilibrium and away from mass thresholds the (net) number of 
particles of a given species, /, should remain constant so the number density )3 is:

)3 = !3/& ∝ .0!

Combining these expressions, one concludes that the ratio )3 / # ∝ .* does not change 
with time away from mass thresholds or as long as equilibrium persists: 

)3
#
=
!3/&
"/&

=
!3
"
= '()#*.

This expression allows us to define the Number of particles of the particle species /. Since 
" = '()#*. (and its value is only determined up to an arbitrary constant) " is usually reset 
to 1. In that case it is common to define the number of particles 14 simply as: 

⇒ !3 =
)3
#
"
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Conservation of Entropy: Two important implications
Entropy conservation has two important consequences:

2. It allows to establish a Temperature – time ( 2 − .(*) ) relation.

where 45 = 25 5∗7
1/3(25) .5. So, away from mass thresholds (5∗: = '()#*.) the temperature 

of the relativistic fluid scales as:

Considering two temperature epochs 2 and 25 (where “/” stands for “initial”) the entropy  
conservation  " = # & = '()#*. can be expressed as:

# 2 & = # 23 &3 ⟺ # 2 9 . ! = # 23 9 .3 !

where 9 is a comoving scale (& = 9!.(*)! = &; .(*)!). Using the total specific entropy 
expression,  # = 2;' 5∗<2!/45, one has:

2;
45
5∗< 2 2!.! =

2;
45
5∗< 23 2!.3

! ⟺ 5∗< 2 2! .! = 5∗< 23 23
!.3

!

So:

2 = 23
5∗< 23
5∗< 2

=/!
.3
.

= 43 5∗< 2 0=/! .0=

2 ∝ 5∗< 2 0=/! .0= ∝ . * 0= ∝ (> + 1)
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Conservation of Entropy: Temperature – time dependence
Combining this equation in the energy density equation of relativistic particles one obtains:

which is a well know result for radiation, if 5∗(2), 5∗7 (2) are constants. 
Plugging this result in the Friedman Equation (accounting only for relativistic particles) gives:

These results show that, whenever 5∗ 2 and 5∗:(2) are constants (i.e. away from particle mass 
thresholds or while equilibrium persists) one obtains:

• the well know scaling for radiation B> ∝ C−@

• the solution of the Friedman equation with B = B> ∝ C−@ is (Exer. Sheet 1): C ∝ DA/B

• the temperature scaling is therefore E ∝ F∗CC−A ∝ D−A/B

At particle mass thresholds 5∗ 2 and 5∗:(2) are a function of temperature. The solution of the 
Friedmann equation is numerical and generally leads to deviations to the C ∝ DA/B scaling.
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Conservation of Entropy: Temperature – time dependence
Doing the maths, one can obtain the exact time dependence of the temperature of the 
relativistic fluid. Typically, one obtains:

(which allows to write the rule of thumb: 5 ∼ 1 MeV at about 1 second after the Big-
Bang)

The temperature-time relation allows one to establish a direct correspondence 
between a given energy scale of the relativistic fluid and time until the end of the 
radiation domination period (see next slide). 

Beyond the radiation domination phase one needs to account for the other terms 
accounting for non-relativists matter, curvature and dark energy in the Friedmann 
equation to accurately compute the age of the universe (Exer. Sheet 3…).



Thermal evolution at equilibrium:

41

Key events in the thermal history of the universe

The previous sets of equations 
allows to compute all 
thermodynamic properties of the 
primordial relativistic fluid  and 
establish their dependence with 
time and redshifts.

All one needs to know is what 
matter/energy components exist 
in the universe and the physics of 
each of these components!

Baryogenesis (& Leptogenesis): 
Quantum field theory requires the existence of anti-particles. This poses a problem: particle-
antiparticle creation and annihilation (allowed by the Heisenberg principle) creates/destroys equal 
amounts of particle and anti-particles. However, we do observe an excess of matter (mostly baryons 
and leptons) over anti-matter (that can be produced, e.g., in accelerators)!  Models of baryogenesis
attempt to describe this observational evidence using some dynamical mechanism (instead of 
assuming this particle-anti-particle asymmetry ab initio).

Electroweak phase transition:
At ~100 AB< particles acquire mass through the Higgs mechanism. This leads to a drastic change of 
the weak interaction. The gauge bosons #', $± become massive and soon after decouple from 
thermal equilibrium.

QCD phase transition:
Above ~150 DB< quarks are asymptotically free (i.e. weakly interacting). Below this energy/mass 
threshold the strong force (mediated by the gluons) becomes more intense; the more massive  quarks 
start to decouple from the fluid. The less massive become confined (with the gluons) inside the 
baryons (3 quarks + gluons) and mesons (quarks + anti-quark + gluons).

Dark Matter freeze-out: 
Present observations indicates that dark matter is very-weakly or non-interacting. Depending on the 
mass of the dark matter candidates one should expect that they should decouple from the fluid early 
on. For example, if dark matter is made of WIMPs (weakly interactive massive particles), one should 
expect their abundance should freeze around 1 DB<.

Thermal evolution at equilibrium:

42

Key events in the thermal history of the universe
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Key events in the thermal history of the universe
Neutrino decoupling:
Neutrinos only interact with the rest of the plasma through the weak force. They are expected 
to decouple from the fluid at  ~0.8 JK&.

Electron-positron annihilation:
Electrons and positron annihilate soon after the neutrinos. Positrons vanish, because electron-
positron pair production is strongly suppressed below ~1JK&

Big Bang Nucleosynthesis:
At ~0.1JK& ( ~3 minutes after the Big-Bang) protons and neutrons combine to form the first 
light nuclear elements. 

Recombination: 
At ~0.3 K& (260 − 380 kyr) free electrons combine with nuclei to form atoms.  Predominantly 
Hydrogen: K0 + N. → P + Q. Below this range of energies, this chemical reaction can no longer 
occur in the reverse order. 

Photon CMB decoupling:
By ~0.23 K& (380 kyr) the primordial fluid is reduced to photons, that no longer interact with 
matter (free electrons). The Cosmic Microwave Background radiation propagates freely in the 
Universe.
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Brief history of the Universe


