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Abstract. Lifshitz points are multicritical points at which a disordered phase, a ho-
mogeneous ordered phase, and a modulated ordered phase meet. Their bulk universality
classes are described by natural generalizations of the standard φ4 model. Analyzing
these models systematically via modern field-theoretic renormalization group methods
has been a long-standing challenge ever since their introduction in the middle of 1970s.
We survey the recent progress made in this direction, discussing results obtained via
dimensionality expansions, how they compare with Monte Carlo results, and open prob-
lems. These advances opened the way towards systematic studies of boundary critical
behavior at m-axial Lifshitz points. The possible boundary critical behavior depends on
whether the surface plane is perpendicular to one of the m modulation axes or parallel
to all of them. We show that the semi-infinite field theories representing the correspond-
ing surface universality classes in these two cases of perpendicular and parallel surface
orientation differ crucially in their Hamiltonian’s boundary terms and the implied bound-
ary conditions, and explain recent results along with our current understanding of this
matter.
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1. Introduction

Lifshitz points (LP) are a particular kind of multicritical points at which a disor-
dered phase meets both a spatially homogeneous ordered phase as well as a mod-
ulated ordered one [1–4]. They were introduced in 1975 by Hornreich et al [5],
though apparently discovered independently by two other groups [6] (cf. ref. [3],
p. 59). Their discovery triggered considerable theoretical [7–24] and experimental
interest [25,26], which has continued over the years, and after a phase of somewhat
reduced intensity, has regained a lot of momentum recently [27–33] – in particular,
on the theory side [34–51].

The physics of LP is interesting for a variety of reasons. Let me mention a
few.
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(i) A wealth of physically distinct systems exist that are either known to have
LP or for which LP have been discussed; this includes such diverse systems as
magnets [25], ferroelectrics [31], polymer mixtures [28,38,52], liquid crystals
[53], systems undergoing structural phase transitions or domain wall instabil-
ities [54], organic crystals [8,55], and even superconductors [56].

(ii) The physics of LP embodies many crucial concepts of the modern theory
of phase transitions and critical phenomena, and yet has been explored to
a much lesser degree than critical behavior at conventional critical points.
The best-studied universality classes of bulk critical behavior are the ones
for d-dimensional systems with short-range interactions and an n-component
order parameter field φ, represented by the O(n) φ4 models. For them, very
detailed – and in part impressively accurate—results have been worked out by
means of sophisticated renormalization group (RG) approaches [57,58], series
expansions [59], and computer simulations [60]; and many of these theoretical
predictions have been checked by careful experiments.

By contrast, the application of modern field-theoretic RG approaches to the
study of critical behavior at LP is a fairly recent development [41,43,46,51].
The two-loop RG analysis of critical behavior at m-axial LP in d = 4+ m

2 − ε
dimensional systems Shpot and myself [43,46] managed to perform for general
values 0 ≤ m ≤ d has finally yielded the ε expansions of all critical exponents
to second order. The estimates obtained by means of these series expansions
for the values of the critical exponents for the scalar uniaxial case n = m = 1
in d = 3 dimensions agree quite well with up-to-date Monte Carlo results [61].
Unfortunately, we are aware of only a few high-temperature series estimates
[10,23,24], none of which is very recent. On the experimental side, renewed
activity is noticeable. Aside from the recent work on polymer mixtures [27,28],
new experiments on magnetic systems have been reported [29,30]. However,
so far the latter have not produced results for the critical and cross-over
exponents of the m = n = 1 LP point of significantly greater accuracy than
achieved in previous studies [25,42].

(iii) Compared with critical points, LP provide additional challenges. Since they
are multicritical points, a further thermodynamic variable besides tempera-
ture T must be fine-tuned to reach them. Furthermore, precise experimental
investigations of their critical behavior should include the verification of the
expected cross-over scaling forms and is expected to involve the choice of
proper nonlinear scaling fields [51,62].

On the theoretical side, progress in analytical RG analyses has been ham-
pered by the substantial technical difficulties one encounters in computations
of Feynman diagrams beyond one-loop order. The origins of these prob-
lems are two-fold: the anisotropic nature of scale invariance that holds at
the LP, which implies that the free propagator does not reduce to a simple
power at the LP but involves a scaling function; and the fact that this scaling
function in position space turns out to have a rather complicated form in
general [43]. The progress made recently [43,46] in handling such field the-
ories could pave the way for systematic investigations of general aspects of
anisotropic scale invariance (ASI) in systems with short-range interactions.
One important question that has been raised long ago [63,64] but not yet
answered in a truly convincing fashion is the following. Scale invariance, in
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conjunction with translation and rotation invariance, and short range of in-
teractions, is known to normally imply invariance under a larger symmetry
group, namely under conformal transformations [65–67]. Does ASI likewise
entail the invariance under additional nontrivial continuous transformations?
Henkel has played with this idea for years [64,68]; making concrete proposi-
tions for transformations under which two-point correlation functions should
be invariant, he has come up with definite predictions for the form of the
associated scaling functions, which appear to be consistent with Monte Carlo
results [61] for the three-dimensional ANNNI model, yet remain to be care-
fully checked by analytical calculations [69,70]. The field theories representing
the universality classes of critical behavior at m-axial LP are particularly
well-suited for such scrutiny, not least because the parameter m can be
varied.

(iv) Since LP involve both modulated ordered phases as well as ASI, rich and
interesting boundary critical phenomena [71–73] may be expected to occur
near them. The systematic investigation of such phenomena, in particular,
via field-theoretic RG tools, is still in its infancy [62,74–78].

In this contribution, I will briefly survey the progress made recently in the appli-
cation of field-theoretic RG methods to bulk and boundary critical phenomena at
LP, compare its results with those from other sources such as Monte Carlo simu-
lations, highlight some of the central issues and difficulties, and indicate directions
for further research. We begin in the next section by specifying the models, then
deal with their bulk critical behavior, before we turn in §3 to the issue of boundary
critical behavior.

2. Continuum models and bulk critical behavior

2.1 Continuum models

Having in mind systems whose microscopic interactions are either short ranged or of
a long-range kind that is irrelevant in the RG sense, we consider continuum models
with a Hamiltonian of the form

H =
∫

V

Lb(xxx) dV +
∫

B

L1(xxx) dA, (1)

where Lb(xxx) and L1(xxx) are functions of the n-component order parameter φ(xxx) =
(φa(xxx)) and its derivatives with respect to the coordinates (xα, xβ) ≡ xxx. We index
the first m Cartesian coordinates by α; they refer to the m-dimensional subspace
to which the modulation of order is confined. The remaining m̄ ≡ d − m are
labeled by β. When we deal with boundary critical behavior, the volume and
surface integrals

∫
V

dV and
∫

B
dA extend over the half-space Rd

+ = {xxx = (rrr, z)|rrr ∈
Rd−1, 0 ≤ z < ∞} and the z = 0 hyperplane B, respectively. To investigate bulk
critical behavior, we may as well take V = Rd and forget about the boundary piece
in eq. (1), choosing appropriate (periodic) boundary conditions.
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Unless stated otherwise, the bulk density is

Lb(xxx) =
σ̊

2

( m∑
α=1

∂2
αφ

)2

+
1
2

d∑

β=m+1

(∂βφ)2 +
ρ̊

2

m∑
α=1

(∂αφ)2

+
τ̊

2
φ2 +

ů

4!
|φ|4 (2)

in the sequel. Here ∂α ≡ ∂/∂xα and ∂β ≡ ∂/∂xβ , and σ̊ > 0 as well as ů > 0
is assumed. For the time being we focus on bulk critical behavior. Let us there-
fore postpone the choice of the boundary density L1 to §3. Our selection (2) of
Lb reflects two tacitly assumed properties: O(n) invariance, and isotropy in the
m-dimensional α-subspace of coordinates. An investigation of the effects of spin
anisotropies breaking the O(n) invariance of Lb may be found in ref. [18]; they
will not be considered here. However, the role of ‘space anisotropies’ reducing the
Euclidean invariance in the α-subspace [51] will be briefly discussed at the end of
this section.

From eq. (2) it is easy to understand how a LP can occur. The interaction
constants σ̊, . . . , ů all depend on T and a second thermodynamic variable, a non-
ordering field g [4] such as pressure (charge-transfer salts [8,55]), a ratio of next-
nearest neighbor (NNN) antiferromagnetic and nearest-neighbor (NN) ferromag-
netic interactions along an axis (ANNNI model [2]), or a magnetic field component
in the subspace orthogonal to the order parameter (the orthorhombic magnetic
crystal MnP [22,25,29,42]). Assuming that the coefficient of the (∂βφ)2 term does
not change sign, we have absorbed it in the amplitude of φ so that it becomes 1/2.
Landau theory gives a disordered phase for τ̊ > 0 provided ρ̊ > 0, separated from a
homogeneous ordered one by the critical line τ̊c(ρ̊ ≥ 0) = 0. For negative ρ̊, a contin-
uous transition from the disordered to a modulated ordered phase occurs across the
so-called ‘helicoidal section’ τ = τ̊c(ρ̊ < 0) of the critical line, which joins the ‘ferro-
magnetic section’ at the LP τ̊ = ρ̊ = 0 (see, e.g. figure 1 of ref. [4]). The other phase
boundary emerging from the LP separates the homogeneous ordered from the mod-
ulated ordered phase. The transitions across it can be of first or second order; for
cases with a scalar order parameter they are generically discontinuous, whereas for
specific models with a vector order parameter they turn out to be continuous [79].

2.2 Critical exponents, anisotropic scale invariance

In Landau theory, the helicoidal section τ̊hc ≡ τ̊c(ρ̊ < 0) varies as τ̊hc ∼ ρ̊2 near
the LP. Beyond Landau theory, the LP and the phase boundaries – supposing they
still exist – get shifted as a result of fluctuations, and the helicoidal section of the
critical line is expected to behave near the LP as

τ̊hc (δρ̊)− τ̊LP ≡ δτ̊hc ∼ |δρ̊|1/ϕ ∼ |δg|1/ϕ. (3)

Here δρ̊ and δg denote deviations of ρ̊ and g from their values ρ̊LP and gLP at
the LP. We have introduced the cross-over exponent ϕ, whose mean-field value
ϕMF = 1/2, and utilized the fact that δρ̊ ∼ δg near the LP.
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In the modulated ordered phase, the order is modulated with a wave vector
qqqmod(T, g) depending on T and g. Since homogeneous order corresponds to qqqmod =
0, qqqmod must also vanish at the LP. Its limiting behavior as the LP is approached
along the critical line’s helicoidal section T = Thc(g) is governed by the wave-vector
exponent βq, defined via

qmod(Thc, g) ∼ |δρ̊|βq ∼ |δg|βq . (4)

Other important critical exponents characterize the scale invariance at the LP.
Let us set τ̊ = ρ̊ = ů = 0 in eq. (2) and transform to momentum (qqq) space to obtain
the two-point bulk vertex function Γ(2)

b (qqq) in the Ornstein–Zernicke approximation.
Its qqq-dependence reads σ̊ (qαqα)2 + qβqβ , where repeated indices α and β are to
be summed over 1, . . . ,m and m + 1, . . . , d, respectively. Beyond this classical
approximation one anticipates nontrivial power laws again. Hence one introduces
analogs of the usual correlation exponent η by

Γ(2)
b (qqq) ∼

qqq→0

{
q2−ηL2 for qα = 0,

q4−ηL4 for qβ = 0.
(5)

These relations mean that qα scales as qα ∼ (qβ)θ, with the ‘anisotropy exponent’

θ = (2− ηL2)/(4− ηL4); (6)

in Landau theory it takes the value θMF = 1/2. Likewise xα ∼ (xβ)θ.
To formulate ASI in position space, let us consider a perturbation gO

∫
V
O(xxx) dV

of the fixed-point Hamiltonian associated with the LP, where O(xxx) is a scaling op-
erator with scaling dimension ∆[O]. Let yO be the RG eigenexponent of the asso-
ciated scaling field gO, so that gO → ḡO(`) = `−yO gO under scale transformations
xβ → xβ `. Since the scaling dimension ∆[O] and the eigenexponent yO must add
up to the scaling dimension of the volume V =

∫
V

dV , which is m̄ + m θ, we have

yO = m̄ + mθ −∆[O]. (7)

The operators O(xxx) satisfy

O(`θxα, ` xβ) = `−∆[O]O(xα, xβ) (8)

(ASI) in the long-scale limit ` → 0.

2.3 Field theory and ε expansion

For a conventional critical point it is known that below the upper critical dimension
d∗ = 4, where hyperscaling is valid, two independent critical exponents exist in
terms of which all critical indices characterizing the leading infra-red singularities
can be expressed. They derive from the scaling dimensions of φ and the energy
density φ2, or equivalently, the RG eigenexponents yh and yτ . Furthermore, there
are just two metric factors, one associated with each of the corresponding scaling

Pramana – J. Phys., Vol. 64, No. 5, May 2005 807



H W Diehl

fields h and τ (‘two-scale factor universality’ [80]). In the case of m-axial LP, the
upper critical dimension is [5]

d∗(m) = 4 +
m

2
. (9)

The easiest way to see this is to determine the dimension d = d∗(m) below which
the Gaussian scaling dimension of ů becomes positive; the Ginzburg criterion yields
the same result.

In view of the different scaling of xα and xβ , and the need to fine-tune an addi-
tional variable – ρ̊ or g – , it is natural to expect that four critical exponents will be
required to express the bulk critical exponents of the LP for d < d∗(m). Of course,
some of these might turn out to be trivial, taking on values independent of d and m.
For example, one might anticipate the anisotropy exponent θ to retain its mean-field
value for d < d∗(m). However, the ε-expansion results of Shpot and myself [43,46]
have revealed that nontrivial m-dependent contributions to θ appear at order ε2.
The bulk operators O(xxx) from whose scaling dimensions the four independent bulk
exponents derive are given in table 1, along with the associated scaling fields and
their RG eigenexponents. Each of these four scaling fields involves a nonuniversal
metric factor. Hence a four-scale-factor universality applies.

Given a line of upper critical dimensions d∗(m), one should be able to expand
about any point on it. Although this goal was identified at a very early stage [5], its
implementation turned out to be very demanding and took a long time. In [43,46]
a two-loop RG analysis was performed in d∗(m) − ε dimensions for general values
of m. This gave the ε expansions of the four independent bulk critical exponents
ηL2, θ, νL2, and ϕ, as well as the correction-to-scaling exponent ωu, to O(ε2).

Technically, a massless minimal-subtraction renormalization scheme was em-
ployed. To define the ultraviolet (UV) finite renormalized theory, the reparametri-
zations

φ = Z
1/2
φ φren, σ̊ = Zσ σ, ů σ̊−m/4 Fm,ε = µε Zu u,

τ̊ − τ̊LP = µ2 Zτ

[
τ + Aτ ρ2

]
, (ρ̊− ρ̊LP) σ̊−1/2 = µZρ ρ (10)

were made, where µ is a momentum scale, while Fm,ε is a convenient (UV finite)
normalization factor whose precise choice need not worry us here. All renormaliza-
tion factors Zφ, Zσ, Zτ , Zρ, and Zu were computed to O(u2). From the result

Table 1. Bulk scaling operators O(xxx), associated scaling dimensions ∆[O],
bulk scaling fields gO, and their RG eigenexponents yO, giving the four inde-
pendent bulk critical exponents of the LP.

O(xxx) ∆[O] gO yO

φ (m̄ + mθ − 2 + ηL2)/2 hhh (m̄ + mθ + 2− ηL2)/2
(∂α∂αφ)2 m̄ + m θ − 4θ + 2 σ 4θ − 2
φ2 m̄ + mθ − 1/νL2 = (1− αL)/νL2 τ 1/νL2

(∂αφ)∂αφ m̄ + mθ − ϕ/νL2 ρ ϕ/νL2
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for Zu the RG β function βu(u, ε) follows to order u3; the other Z-factors yield
RG functions whose values at the nontrivial root u∗(m, ε) of βu give the critical
exponents. The main consequence of the renormalization function Aτ is that the
scaling field with the RG eigenexponent 1/νL2 becomes a linear combination of τ
and ρ2 [51,62].

What makes calculations beyond one-loop order complicated is that the scaling
function Φm,d(υ) of the free bulk propagator at the LP,

Gb(|xxx|) =
∫

ddq

(2π)d

exp(iqqq · xxx)
qβqβ + σ̊(qαqα)2

= σ̊−m/4 (xβxβ)−1+ε/2 Φm,d(υ), υ ≡ (̊
σxβxβ

)−1/4√
xαxα,

(11)

is a difference of generalized hypergeometric functions. While, in general, these
increase exponentially as υ →∞, their difference has an asymptotic expansion in
inverse powers of υ that does not terminate except for special choices of (m, d), such
as (2, 5) and (6, 7), where it reduces to elementary functions [43,46]. Therefore, the
two-loop series coefficients of the renormalization factors could not be computed
analytically for general m. However, they – as well as the implied ε-expansion
coefficients of the critical exponents – could be written in terms of four single
integrals jφ(m), jσ(m), jρ(m), and ju(m) of the form

∫∞
0

dυ f(υ;m), where f(υ;m)
involves Φm,d∗(m)(υ), analogous (related) scaling functions, and powers of υ [46].
For m = 0, 2, 6, 8, these integrals could be computed analytically; for other values
of m they had to be determined by numerical means.

The resulting ε expansions of the critical exponents λ = νL2, . . . , ϕ and the
correction-to-scaling exponent ωu take the form

λ(n,m, d) = λMF + λ1(n) ε + λ2(n,m) ε2 + O(ε3). (12)

Note that λ1(n) is independent of m, so that the m-dependence starts at order
ε2. This means that the coefficients λ1(n) coincide with their m = 0 counterparts
for the standard φ4 model for all exponents that remain meaningful when m = 0.
(Recall that exponents such as ηL4, ϕ, and θ are not needed in the isotropic case
m = 0.)

The result (12) allows several interesting checks. First, if we substitute the
analytically known m = 0 values of the integrals jι(m) into it, choosing λ = ηL2,
νL2, and ωu, then the familiar expansions to O(ε2) of the standard exponents η, ν,
and ωu of the φ4 model are recovered. A second check concerns the special cases
m = 2 and m = 6. Owing to enormous simplifications, the two-loop RG analysis
can be performed fully analytically. The results one obtains in this fashion are fully
consistent with what one gets upon insertion of the analytically known values of
jι(2) and jι(6) into the two-loop expressions for general m. Third, considering the
case of the isotropic LP [5,48], one can set d = m = 8− ε8 in eq. (12) and expand
to second order in ε8 = 2ε. The limiting values jι(8−) are again known analytically
[46,48]. Considering exponents that remain meaningful in the isotropic case m = d,
such as ηL4 or νL4 = θ νL2, we can derive their expansions in ε8 to O(ε82) from
eq. (12). The results agree with those obtained via a direct analysis of the isotropic
model with m = d in 8− ε8 dimensions [5,48].
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A cautionary remark is appropriate here. As a candidate for an experimental
system with an isotropic Lifshitz point, ternary mixtures of A and B homopoly-
mers and AB diblock copolymers have been studied both experimentally [28] and
theoretically [52]. In their case, modulated order occurs in the lamellar phase.
While self-consistent field theory predicts the transition from the disordered to the
lamellar phase to be continuous [52], theoretical arguments in favor of a first-order
transition have been presented [81]. This would mean that there is actually no
isotropic LP. According to some experiments (see the discussion in §7 of [52]), the
Lifshitz point found in mean-field (MF) theories gets apparently destroyed. Un-
fortunately, recent Monte Carlo simulations [52] were not able to decide whether
the transition between the disordered and lamellar phases is of first order or con-
tinuous. However, they yielded modifications of the MF phase diagram similar to
those seen in experiments – in particular, no LP. If fluctuations indeed preclude
the appearance of an isotropic LP, then the ε expansions of the critical exponents
for that case are mainly of academic interest. Nevertheless, their consistency with
the results for general m is very gratifying from a mathematical point of view.

The series-expansion results for general m can be, and were, used in particular to
obtain approximate values for the critical exponents of the uniaxial LP with n = 1
at d = 3 [46]. Both experiments on MnP [25] as well as Monte Carlo calculations
for the ANNNI [20,61] model provide clear evidence for the existence of such a
LP. Recent field-theoretic estimates are νL2 ' 0.75, βL ≡ νL2 ∆[φ] ' 0.22, θ =
νL4/νL2 ' 0.47, ϕ ' 0.68, αL ' 0.16, and γL ' 1.4 [46]. The agreement with
current Monte Carlo results, which gave αL = 0.18± 0.03, βL = 0.235± 0.005, and
γL = 1.36± 0.03, is fairly good. For more detailed comparisons covering also other
cases, experimental work, and further theoretical estimates, the reader is referred
to refs [46,61,73].

2.4 Space anisotropies

A natural generalization of the ANNNI model is the biaxial NNN Ising (BNNNI)
model, which has competing NN and NNN interactions along two cubic axes rather
than along a single one. In d dimensions, even m-axial variants of the latter,
‘mNNNI models’ with m ≤ d, can be considered. The continuum models onto
which they map upon coarse graining generically have fourth-order derivative terms
breaking isotropy in the α-subspace. Their symmetry may be cubic or – if we
consider similar microscopic systems involving other crystal lattices – even weaker.
Hence, whenever m > 1, the bulk density (2) should be supplemented by anisotropic
contributions of the form

L(w)
b =

σ̊

2
ẘi T (i)

α1α2α3α4
(∂α1∂α2φ) ∂α3∂α4φ =

σ̊

2
ẘ

m∑
α=1

(∂2
αφ)2 + · · · , (13)

where all tensors T
(i)
α1α2α3α4 permitted by symmetry must be included. The ẘi are

dimensionless interaction constants. For cubic symmetry, only the first term on the
far right remains.

The effects of such space anisotropies were investigated in ref. [51]. A new renor-
malization factor Zwi is required for each independent anisotropy, and these as
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well as the previously introduced renormalization functions [eq. (10)] now depend
on u and the renormalized anisotropies wi. Specifically, the cross-over exponent
ϕ2 associated with the cubic anisotropy ẘ was computed to O(ε2). For m = 2
and m = 6, the O(ε2) coefficient could be determined analytically, for other values
of m expressed in terms of another (numerically computable) single integral. It
turned out to be small, but positive. For example, for m = 2 and n = 1 its eval-
uation at ε = 2 yielded the d = 3 estimate ϕ2 = 1/81 ' 0.012. Thus the isotropic
fixed point wi = 0 is unstable, at least for small ε. Whenever such anisotropy
is present, the previously found universality classes should not apply. Unfortu-
nately, no new stable fixed point could be found. A detailed clarification of the
behavior for wi 6= 0 remains a challenge. It would be interesting to investigate
the role of such anisotropies in Monte Carlo simulations of suitably designed three-
dimensional models (e.g., the BNNNI model), albeit deviations from the wi = 0
universality classes may be difficult to measure because of the smallness of ϕ2.

3. Boundary critical behavior at LP

The study of boundary critical behavior at LP started with Gumbs’ work based on
Landau theory [74], in which z was taken to be an α-direction. Later, considerably
more detailed MF analyses [75,76] and Monte Carlo calculations [77] of semi-infinite
ANNNI models with perpendicular (z = α-direction) and parallel (z = β-direction)
surface orientations were performed. So far, detailed field-theoretic RG studies were
made only for the case of parallel surface orientation [62,78].

Let me emphasize that the two primary types of surface orientations (‖ or ⊥)
correspond to substantially distinct cases. This can be seen from the following
observations: First, z scales differently, namely, as `−1 and `−θ, respectively. This
has an immediate consequence. Consider a perturbation gOB

∫
B
OB(rrr) dA, where

OB(rrr) is a boundary operator with scaling dimension ∆[OB] and hence has the
ASI property (8). The analogs of eq. (7) for the RG eigenexponent yOB of gOB

differ depending on the surface orientation:

yOB = m̄ + mθ −∆‖,⊥[z]−∆[OB], ∆‖[z] = 1 , ∆⊥ = θ. (14)

Second, owing to the different engineering dimensions [z] = µ−1 and [z] =
σ̊1/4µ−1/2, power counting considerations to estimate the relevance or irrelevance
of contributions to the surface density L1 differ. Third, since Ginzburg–Landau
theory yields differential equations for the order parameter of second (‖) or fourth
(⊥) order in ∂z, either a single or else two boundary conditions are needed at z = 0
and z = ∞.

To bring the problem into focus, let me recall that in the m = 0 case of the
standard semi-infinite φ4 model it is sufficient to choose L1 = 1

2 c̊ φ2, unless terms
breaking the O(n) symmetry are permitted [72] (which will be avoided here). On
the basis of power counting alone, one might think that the symmetry-allowed
monomial φ∂nφ (where ∂n means derivative along the inner normal), should be
included as well. But this is redundant because of the boundary condition ∂nφ =
c̊ φ, which as usual follows from the boundary part of the classical equation δH = 0
and holds beyond Landau theory inside of averages.
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The surface enhancement variable c̊ determines the type of surface transition
that occurs at bulk criticality: Depending on whether its deviation δc̊ = c̊− c̊sp

from a special value c̊sp satisfies δc̊ > 0, δc̊ = 0 or δc̊ < 0 an ordinary, special or
extraordinary transition occurs [71,72], provided the dimension of the surface, d− 1,
exceeds the value below which a long-range ordered surface phase in the presence
of a disordered bulk is not possible (i.e., if d > 2 and d > 3 in the Ising and n > 1
cases, respectively).

What modifications occur in the m > 0 LP case? They are easy to understand if
the surface orientation is parallel: An additional derivative term must be included
in L1, which thus becomes [62]

L‖1(xxx) =
c̊

2
φ2 +

λ̊

2

m∑
α=1

(∂αφ)2. (15)

Since [̊c] = [̊σ1/2∂2
α] = µ, the variable λ̊σ−1/2 is dimensionless. The implied bound-

ary condition reads (∂n − λ̊∂α∂α)φ = c̊ φ; it can be employed to conclude that
contributions to L‖1 of the form φ∂nφ and (∂αφ)∂n∂αφ are redundant. By con-
trast, the inclusion of the term ∝ λ̊ is necessary: Not only is it required to absorb
UV singularities of the theory, but it would be generated under the RG if originally
absent. This can be seen as follows: In order to renormalize the model defined by
eqs (1), (2), and (15), we must complement the reparametrizations (10) by

φB = (ZφZ1)1/2 φB
ren,

λ̊ σ̊−1/2 = λ + Pλ(u, λ, ε),

c̊− c̊sp = µZc

[
c + Ac(u, λ, ε) ρ

]
. (16)

Here the surface renormalization factors Z1 and Zc depend on u and λ, just as
Pλ and Ac. At O(u2), Pλ does not vanish for λ = 0, so a nonzero λ̊ gets indeed
generated. Furthermore, there are no RG fixed points at λ = 0 on the hyperplane
u = u∗ (see figure 2 of ref. [62]). The fixed points associated with the ordinary,
special, and extraordinary transitions turn out to be located at a nontrivial λ-
value λ∗+ = λ0(m) + O(ε) and c = c∗ord ≡ ∞, c∗sp ≡ 0, and c∗ex ≡ −∞, respect-
ively.

Before continuing our account of the available results for this parallel case, let
us briefly discuss how to choose L1 when the surface orientation is perpendicular.
Clearly, the two monomials included in eq. (15) should be expected here as well,
although different couplings ought to be associated with (∂αφ)2 for α = 1 (z-
direction) and α ≥ 2. As long as terms breaking the O(n) symmetry can be ruled
out, the choice

L⊥1 =
c̊⊥
2

φ2 +
λ̊‖
2

m∑
α=2

(∂αφ)2 + b̊φ∂nφ +
λ̊⊥
2

(∂nφ)2 (17)

should be sufficient. From the vanishing of the contributions
∫

B
. . . δ∂nφ and∫

B
. . . δφ to δH two boundary conditions on B are found, namely
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[
σ̊∂3

n + (̊b− ρ̊)∂n + c̊⊥ − λ̊‖
m∑

α=2

∂2
α

]
φ = 0,

[
−σ̊ ∂2

n + λ̊⊥ + b̊
]
φ = 0.

(18)

They tell us that the monomials φ∂2
nφ, (∂nφ)∂2

nφ, and φ∂3
nφ (which are potentially

dangerous for ε ≥ 0 according to power counting) are redundant. A detailed RG
analysis of the model with the bulk and surface densities (2) and (17) remains to
be done.

In the case of parallel surface orientation, it is possible to investigate the ordinary
transition without retaining the dependence on λ and c [62]: In the limit c → c∗ord =
∞ a Dirichlet boundary condition applies and the dependence on λ drops out
(resides only in metric factors). Hence one can set c̊ = ∞ and λ̊ = 0, choosing from
the outset Dirichlet boundary conditions for the bare theory. The critical exponent
β1 of the surface order parameter φB(rrr) = φ(rrr, 0) follows via the boundary operator
expansion

φ(rrr, z) ≈
z→0

C(z) ∂nφ(rrr), C(z) ∼ z∆[∂nφ]−∆[φ], (19)

giving βord
1 /νL2 = ∆[∂nφ]. Hence one must study multi-point cumulants involv-

ing arbitrary number of fields φ and boundary operators ∂nφ. This strategy was
followed in ref. [62] and utilized to determine the critical index βord

1 to O(ε2) for
general 0 ≤ m ≤ 6. The ε2 term involves a further single integral j1(m), which
again could be computed analytically for m = 0, 2, 6, though only numerically for
other values. All other surface exponents of the ordinary transition can be ex-
pressed in terms of a single one, e.g. βord

1 and four independent bulk indices. The
form (12) of the ε expansion, with m-independent O(ε) terms, also applies to these
surface exponents. Furthermore, for m → 0 their expansions to O(ε2) turn into the
known ones [72,82] of the standard semi-infinite φ4 model. The d = 3 estimates
one obtains from these ε expansions in the uniaxial scalar case m = n = 1 (e.g.,
βord

1 ' 0.68 . . . 0.7) agree reasonably well with recent Monte Carlo results for the
ANNNI model [77], which gave βord

1 = 0.687(5).
The special transition is harder to analyze because the λ-dependence must be

retained, though c can be set to its fixed-point value c∗sp = 0. A recent one-
loop analysis [78] showed that βsp

1 agrees with the bulk exponent βL to O(ε) and
that the cross-over exponent Φ associated with c becomes m-dependent already at
O(ε). According to recent Monte Carlo results [61,77], βsp

1 = 0.23(1) and βL =
0.238± 0.005. Thus the difference β1 − βL seems to be small indeed.

Returning briefly to the case of perpendicular surface orientation, let me conclude
with a – hopefully educated – guess concerning the ordinary transition. I expect
that the asymptotic behavior at this transition is described by a theory that obeys
the boundary conditions φB = ∂nφ = 0. The critical exponent β1 in this case
should follow from the boundary operator expansion

φ(rrr, z) ≈
z→0

C⊥(z) ∂2
nφ(rrr), C⊥(z) ∼ z(∆[∂2

nφ]−∆[φ])/θ, (20)

and be given by βord
1 /νL2 = ∆[∂2

nφ].
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