
Chapter 4

The Ginzburg-Landau Theory

Recall Chapter 3:

– Extensive discussion of the Ising model as one of the simplest ”micro-
scopic” models with a phase transition

– Introduction of several methods than can also be applied to other systems
(e.g., transfer matrix method, series expansions, mean-field approxima-
tion, Monte Carlo simulations, others like renormalization will follow).

– Still, the Ising model is rather very special. It is not clear, to which extent
our findings can be generalized to phase transitions in general.

In this chapter: General approach, based on symmetry considerations, which
highlights the relation between phase transitions ”of same type”. The
derivation is based on a mean-field point of view, but this can be relieved
later on.

Ginzburg-Landau theories are popular starting point for developing field theories
in statistical physics.

4.1 Landau expansion for scalar order parameter

4.1.1 Ising symmetry

Recall: Bragg-Williams approximation for Ising model

Close to T “ Tc, m “M{N is small ñ expand in powers of m.

ñ F
N “ ´

1
βc
m2 ` 1

β

”

1`m
2 lnp1`m

2 q ` 1´m
2 lnp1´m

2 q

ı

« ´ 1
β ln 2` 1

2βc

“

βc
β ´ 1

‰

m2 ` 1
12βm

4 ` ¨ ¨ ¨

The same form can already be inferred from general symmetry considerations

Requirement: F
N “ fpmq symmetric with respect to mØ p´mq.

ñ
F

N
“ apT q `

1

2
bpT qm2 `

1

4
cpT qm4 `

1

6
dpT qm6 ` ¨ ¨ ¨

; Landau expansion: Generally valid for systems with this symmetry!
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Remark and Caveat: Strictly speaking, the expansion in powers of m is only
allowed if F {N is analytic as a function of m. At phase transition points,
this is not valid in the thermodynamic limit. Therefore, the Landau
Ansatz represents an approximation and cannot be exact.

(Way out: Corresponding expansion for small subsystems
; Ginzburg-Landau theory)

4.1.1.1 Case cpT q ą 0

In that case, neglect dpT q
; Graphical representation - see figure:

F
b>0

b=0

b<0

m

; Continuous phase transition at b “ 0

In the vicinity of Tc, one approximates bpT q “ b0 pT ´ Tcq

Order parameter: BF
Bm “ bm` cm3 !

“ 0

ñ m “ ˘
a

b0{c
?
Tc ´ T pT ă Tcq

ñ m „ pTc ´ T q
β with critical exponent β “ 1{2 as in Section 3.5

Specific heat cH :

S
N “ ´

1
N
BF
BT “ ´a

1pT q´ 1
2b
1pT qm2´ 1

4c
1pT qm4´ 1

2bpT qpm
2q1´ 1

4cpT qpm
4q1

cH “
T
N
BS
BT For T Ñ Tc : b “ 0, b1 “ b0, m

2
“

b0
c
pTc ´ T q Ñ 0 or m2

” 0

pm2
q
1
“ ´

b0
c

or 0, pm4
q
1
“ 0, pm4

q
2
“ 2p b0

c
q
2 or 0

ñ cH “ ´Ta
2 ´ Tb1 pm2q1 ´ T c

4 pm
4q2 “

#

´Ta2 ` T
b20
2c : T ă Tc

´Ta2 : T ą Tc

; Finite jump!

ñ ”cH „ |T ´ Tc|
α ” with Critical exponent α “ 0 as in Section 3.5

Other exponents also the same as in Section 3.5

Reason: Results from the analytic expansion of F {N in powers of m. ñ

characteristic for mean-field exponents!

4.1.1.2 Case cpT q ă 0

In that case, dpT q cannot be neglected. Assume dpT q ą 0
; Graphical representation - see figure:

b1 “
c2

4d : External minima form

b0 “
3c2

16d : First order phase transition
(with m2

0 “ 3|c|{4d)
b “ 0: Middle minimum at m “ 0 disappears

F

b>b
1b=b

1

b=0

b=b
0

m

Spinodals:

At b P r0 : b0s: metastable disordered states, ”undercooling” is possible.

b P rb0 : b1s: metastable ordered states, ”overheating” is possible.
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The spinodals b “ b0, b “ b1 mark the points where metastable states
become unstable.

Example: MnO, antiferromagnet
Before b changes sign, one already has a first order phase transition

4.1.1.3 Special case b “ c “ 0

; Tricritical point

”Phase diagram” in the vicinity

Practical relevance

If one has two intensive quantities
that do not directly couple to the
order parameter, a tricritical point
may occur.

3 c  /16 d2

Disordered phase

Tricritical point

First order

Continuous

b

c

Ordered phase

Example: Uniaxial antiferromagnet
in a magnetic field

b “ bpT,Hq, c “ cpT,Hq

Possible phase diagram:

Tricritical point

H

T

4.1.2 No Ising symmetry

Example: Liquid-gas transition, liquid crystals,

Consider cases, where free energy F does not have to be symmetric with
respect to an exchange mØ ´m

Known: F
N Ñ 8 for large |m| ñ At least one turning point m̄ in between.

Choose m axis such that m̄ “ 0, hence F 1pm̄q “ 0.

;
F

N
“ apT q `

1

2
bpT qm2 ´

1

3
cpT qm3 `

1

4
dpT qm4 ` ¨ ¨ ¨

b “ b1 “
c2

4d : Second minimum forms

b “ b0 “
2c2

9d : First order phase transition
(with m0 “ 2c{3d)

b “ 0: First minimum disappears

F b>b
1

b=b
1

b=0

b=b
0

m

; Similar scenario as in Ising symmetric case 4.1.1.2
– First order phase transition,
– Spinodals at b “ 0 and b “ b1,
– Metastable states in between

Conclusion: If Landau expansion contains a third order cubic term due to lack
of symmetry, then the transition is first order!
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NB: Consider as an example liquid-gas transition.
Line of first order transitions Ñ consistent with argument!
Critical point: b “ c “ 0: In the presence of two control parameters (T
and P ), a point pPc, Tcq with cpTc, Pcq “ bpTc, Pcq “ 0 may exist.
In that case, the phase transition is second order and Ising like!

4.2 Landau theory in systems with multicomponent
order parameter

In this section, some examples are given how to construct Landau expansions
from symmetry arguments for more complex systems with multicomponent or-
der parameter.

4.2.1 Heisenberg model

System: Three dimensional spins on a lattice,
Interact with ”Hamiltonian” H “ ´J

ř

xijy
~Si ¨ ~Sj

Ñ Invariant under rotation of ~Si

Ñ Invariants: ~m2, p~m2q2, ¨ ¨ ¨
where ~m “ x~Sy: Order parameter per site

ñ Landau expansion: F
N “ a` 1

2b ~m
2 ` 1

4cp~m
2q2

4.2.2 Heisenberg model with cubic anisotropy

Example: A real magnetic system on a cubic lattice.
Spins preferably orient along the main lattice directions.

Symmetry: mα Ø ´mβ for all pairs pα, βq

Ñ Invariants: ~m2, p~m2q2, pm4
x `m

4
x `m

4
yq

ñ Landau expansion: F
N “ a` 1

2b ~m
2 ` 1

4cp~m
2q2 ` 1

4d pm
4
x `m

4
y `m

4
zq

4.2.3 Three component order parameter with uniaxial anisotropy

Symmetries: mz Ø ´mz pmx,myq invariant under (2D) rotation

Ñ Invariants: m2
z, m

2
x `m

2
y, m

4
z, pm

2
x `m

2
yq

2, m2
zpm

2
x `m

2
yq

ñ F
N “ a` 1

2bm
2
z`

1
2c pm

2
x`m

2
yq`

1
4dm

4
z`

1
4e pm

2
x`m

2
yq

2` 1
4f m

2
zpm

2
x`m

2
yq

Discussion:

b “ 0, c ą 0 : Ising-type transition
c “ 0, b ą 0 : ”XY”-symmetry

pmx,myq order
b “ c “ 0: Ising- and XY-lines meet:

Bicritical point
b ă c ă 0: Different types of order compete

; First order phase transition
in m  z

in (m  ,m  )x y

OrderedFirst order

b

XY−type

Disordered phase

Ising−type c

Ordered
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Example: Antiferromagnet with weak
uniaxial anisotropy in a homogeneous
external magnetic field H

T

H

Bicritical point

Flip−flop phase

4.2.4 Two component order parameter with trigonal symmetry

Symmetry: Invariance under a rotation of 2π{3

Examples: Some adsorbate systems
Three-state Potts model:
H “ ´J

ř

xijy δqi,qj with qi “ 1, 2, 3.

Possible way to determine invariants:

Rotation by 2π{3 fl rotation matrix D “

ˆ

´1{2
?

32

´
?

3{2 ´1{2

˙

For any fp~mq, the function gp~mq “ fp~mq`fpD ~mq`fpD2 ~mq is invariant.

Apply this to polynomials fp~mq to get invariants of ...

2nd order: fp~mq “ m2
x, m

2
y Ñ gp~mq 9m2

x `m
2
y

fp~mq “ mx my Ñ gp~mq “ 0 (trivial)

3d order: fp~mq “ m3
x, mx m

2
y Ñ gp~mq 9myp3m

2
x ´m

2
yq

fp~mq “ m3
y, my m

2
x Ñ gp~mq 9mxp3m

2
y ´m

2
xq

4th order: fp~mq “ m4
x, m

4
y, m

2
x m

2
y Ñ gp~mq 9 pm2

x `m
2
yq

2

fp~mq “ mx m
2
y, my m

2
x Ñ gp~mq “ 0

ñ F
N “ a` 1

2bpm
2
x`m

2
yq`

1
3cmxpm

2
x´3m2

yq`
1
3dmypm

2
y´3m2

xq`
1
4epm

2
x`m

2
yq

2

Remarks:

• Cubic term ; phase transition is first order!

• Six-fold symmetry: Trigonal symmetry and mirror symmetry
; Cubic term disappears, phase transition may be continuous

• Exception: 3-State Potts model in two dimensions: Trigonal sym-
metry, but nevertheless continuous transition due to fluctuations !

(So this may occasionally happen, but as a rule, phase transitions in
systems with trigonal symmetry should be first order! For example,
the phase transition in the 3-state Potts model in higher dimensions
is first order)

4.2.5 Liquid crystals

Example of a more
complex order parameter

Orientational order,
but no positional order Isotropic phase

ÐÑ

Nematic phase
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Order parameter:

‚ Assume, there exists one preferred orientation

; Suitable order parameter is S “ 1
2x3 cos2 θ ´ 1y:

Disordered fluid: xcos2 θy “ 1{3 Ñ S “ 0
Ordered fluid: xcos2 θy “ 1 Ñ S “ 1

θ

σ

‚ No preferred orientation ; Natural generalization

Tensor: Qαβ “
1
2xσασβ ´ δαβy

where ~σi points along the main axis of molecule i
Note: Q is symmetric with TrpQq “ 0.

Landau expansion

‚ With preferred orientation: ”Maier-Saupé model”
F
N “ a` 1

2bS
2 ` 1

3cS
3 ` 1

4dS
4 ` ¨ ¨ ¨

Due to the cubic term, the phase transition is first order.

‚ Without preferred orientation:

Invariants under rotation: TrpQ2q, TrpQ3q, TrpQ4q “ 1
2pTrpQ2qq2.

(Last identity holds because Q is symmetric and traceless)

ñ F
N “ a` 1

2b TrpQ2q ` 1
3c TrpQ3q ` 1

4d TrpQ4q

; Again first order transition due to cubic term!

4.3 Ginzburg-Landau theory

Extension of Landau theory for inhomogeneous systems
Here: Discuss only systems with one-component order parameter

4.3.1 Ansatz

Homogeneous system ; Landau expansion
Different from previous section: Normalize with 1{V instead of 1{N ,
i.e., m “M{V, f :“ F {V etc. Expansion still has the same form.

ñ F {V “ a` 1
2b m

2 ` 1
4c m

4 ´ h m

Inhomogeneous system ; Search for generalization

Näıve Ansatz: F “
ş

ddr fpmp~rqq with fpmq “ a` 1
2b m

2 ` 1
4c m

4 ´ hm
Problematic, since the order parameter profile has no ”stiffness”,

i.e., it adjusts instantaneously to hp~rq

; Spatial variations of mp~rq should be penalized

New Ansatz: F rmp~rs “

ż

ddr
`

fpmq `
1

2
g p∇mq2

˘

Corresponds to lowest order expansion in m and ∇m, taking into
account the symmetry mØ p´mq and cubic symmetry in space!
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4.3.2 Interpretation

Question: What is the meaning of F rmp~rqs? What does it describe?

(a) Not the free energy

• Not necessarily convex

• The free energy is a thermodynamic potential. It cannot depend
on a microscopic order parameter field mp~rq: Microscopic degrees of
freedom must be integrated out!

Instead: A functional (a function from function space to R), where the
partition function has been partially evaluated (but not fully)!

(b) ”Derivation” of the Ginzburg-Landau functional

(Not a rigorous derivation, rather a description of the object that F rmp~rqs
is supposed to represent)

Starting point, e.g., Ising model

Discrete spins Si

”Coarse-graining”: Averaging over blocks of size l0, where
l0 has roughly the size of the correlation length far from Tc
(but: chosen fixed, independent of T , not singular)

Slowly varying order parameter mp~rq
No longer fluctuates on the scale of the lattice constant.
Fourier components with k ą 1{l0 have been integrated out.

Important: Block size l0 must be chosen with care

Too large ; uncorrelated blocks, can be equilibrated independent
of each other, nothing gained!

Too small ; correlations too strong and nonlocal, defining a ”local”
quantity mp~rq does not make sense!

Formal description: partial trace

Define mp~rq: Average over block v~r: mp~rq “ 1
v~r

ř

~r Si

Now assume that mp~rq be given, then we have

exp
´

´ βF rmp~rqs
¯

!
“

ř

tSiu

e´βH tSiu
ś

~r δ
´

1
v~r

ř

v~r

Si ´mp~rq
¯

; Calculate trace over all configurations which would yield the
order parameter landscape mp~rq upon coarse-graining.

ñ F rmp~rqs has both energetic and entropic contributions!

Full Partition function:

Z “
ş

Drmp~rqs e´βF rmp~rqs “ e´βF

; Functional integral over all smoothly varying functions!
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(c) Comparison with density functional (for the experts)

Construction of density functional F̃ rmp~rqs

‚ Definition of a microscopic order parameter field mp~rq,
e.g. as in (b): mp~rq “ 1

v~r

ř

~r Si

‚ Introduction of a conjugate field hp~rq that couples to mp~rq
ñ Modified ”Hamiltonian” H̃ rhs “H ´

ş

ddr mp~rq hp~rq

; Thermodynamic potential: G̃rhp~rqs “ ´kBT ln
´

ř

tSiu
e´βH̃ rhs

¯

mp~rq :“ xmp~rqy “ 1
β

δG̃
δhp~rq is almost always a unique function of hp~rq

‚ Legendre transform: F̃ rmp~rs “ G̃rhp~rqs ´
ş

ddr mp~rq hp~rq

Then we have (exactly): F |h”0 “ min
tmp~rqu

F̃ rmp~rqs (since BF̃
Bm
“ h “ 0)

But: F̃ rmp~rqs and F rmp~rqs are not the same functional!
In particular, F̃ rmp~rqs is generally nonlocal!

Moreover, mp~rq (average local order parameter) does not refer to the
same field as mp~rq (actual microscopic local order parameter)!

4.3.3 Brief digression: Dealing with functionals

I) Functional integral

ż

Drmp~rqs ¨ ¨ ¨ “ lim
aÑ0

lattice constant

”

ź

~r

8
ż

´8

dm~r

ı

¨ ¨ ¨

e.g., in one dimension:
ş

Drmpxqs ¨ ¨ ¨ “
ş

dm0 dma dm2a ¨ ¨ ¨

Ñ Path integral
a 3a 4a2a

x

m(x)

II) Functional derivatives

Definition:
δF rmp~rqs

δmp~r1q
“ lim

εÑ0`

1

ε

”

F rmp~rq ` ε δp~r ´ ~r1qs ´F rmp~rqs
ı

Examples:

‚ F rmpxqs “

ż

dx fpmpxqq

ñ
δF

δmpyq
“ lim

εÑ0

1

ε

“ ş

dx
`

fpmpxq ` ε δpx´ yqq ´ fpmpxqq
˘‰

Taylor
“ lim

εÑ0

1

ε

“ ş

dx
`

fpmpxqq ` ε δpx´ yq f 1pmpxqq ´ fpmpxqq
˘‰

“
ş

dx δpx´ yq f 1pmpxqq “ f 1pmpyqq

‚ F rmpxqs “

ż

dx
` d

dx
mpxq

˘2

ñ
δF

δmpyq
“ lim

εÑ0

1

ε

“ ş

dx
`

´

d
dx

`

mpxq`εδpx´yq
˘

¯2
´
`

d
dxmpxq

˘2˘‰

“ 2
ş

dx
`

d
dxmpxq

˘`

d
dxδpx´ yq

˘

partial
integration
“ ´2

ş

dx δpx´ yq d2

dx2mpxq “ ´2 d2

dx2mpxq
ˇ

ˇ

ˇ

x“y
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Rules:
δ

δmp~r1q

ż

ddr mp~rq “ 1

δ

δmp~r1q
mp~rq “ δp~r ´ ~r1q

δ

δmp~r1q

1

2

ż

ddr p∇mp~rqq2 “ ´∆m

Product rule, chain rule, etc.

III) Functional derivatives in the Ginzburg-Landau theory

Construct ”Generating functional”

Z rhp~rqs “

ż

Drmp~rqs e´β
“

F0rmp~rs´
ş

ddr hp~rqmp~rq
‰

“: e´βF rhp~rqs

ñ Order parameter: xmp~rqy “
`

´ δF
δhp~rq

˘

hp~rqÑ0`

”Local” susceptibility: (meaning will become clear later)

χp~r, ~r1q “
“ δxmp~rqy
δhp~r1q

‰

hÑ0`
“ ´ δ2F

δhp~rqδhp~r1q

ˇ

ˇ

ˇ

hÑ0`

“ ¨ ¨ ¨ “ β
`

xmp~rqmp~r1qy ´ xmp~rqyxmp~r1qy
˘

hÑ0`

Same in Fourier space with mp~kq “
ş

ddr ei
~k¨~rmp~rq

Z rhp~kqs “

ż

Drmp~kqs e
´β

“

F0rmp~ks´
1

p2πqd

ş

ddk hp´~kqmp~kq
‰

” e´βF rhp
~kqs

ñ Order parameter: xmp~kqy “ ´ 1
p2πqd

δF

δhp ~́kq

ˇ

ˇ

hÑ0`

Susceptibility:

χp~k,~k1q “
“ δxmp~kqy

δhp~k1q

‰

hÑ0`

“
β

p2πqd

`

xmp~kqmp´~k1qy ´ xmp~kqyxmp´~k1qy
˘

hÑ0`

“ 1
p2πqd

ş

ddr ddr1 ei
~k¨~r´~k1¨~r1χp~r, ~r1q

Specifically, if χp~r, ~r1q “ χp~r ´ ~r1q (homogeneous system):

ñ χp~k,~k1q “ χ̃p~kq δp~k ´ ~k1q p2πq
d

V (NB: δp0q “ V
p2πqd

)

with χ̃p~kq “ χp~k,~kq “ V
p2πqd

ş

ddrei
~k¨~rχp~rq

NB: Relation to global susceptibility χ “ Bm̄
BH :

Choose hp~rq ” H “ const., m̄ “ 1
V

ş

ddr mp~rq

ñ χ “ 1
V

ş

ddr
ş

ddr1 δmp~rqδhp~r1q
loomoon

χp~r,~r1

Bhp~r1

BH
loomoon

1

“:
ş

ddr χ̃p~rq “ χ̃p ~k “ 0q p2πq
d

V

“ ¨ ¨ ¨ “
β
V

`

xM2y ´ xMy2
˘

with M “
ş

ddr mp~rq.
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4.3.4 Mean-field approximation and transition to the Landau
theory

Preliminary remark: If the functional F rmp~rqs were known, the expression for
the partition function would be exact: Z “

ş

Drmp~rqse´βF rmp~rqs

(a) Mean-field approximation

Ansatz: Main contribution to the integral Z “
ş

Drmp~rqse´βF rms “: e´βF

comes from the minimum of F ñ F “ min
tmp~rqu

F rmp~rqs

Specifically: Consider F rmp~rqs “
ş

ddr
“

1
2gp∇mq

2 ` fpmq ´ hp~rqmp~rq
‰

Minimum δF
δm ” 0 ñ ´g∆m` f 1pmq ´ h “ 0

Homogeneous system in the bulk (hp~rq ” 0, free boundaries)
; mp~rq ” m̄ “ const., f 1pm̄q “ 0, F “ V fpm̄q
; Effectively a Landau theory

(Specifically: fpmq “ 1
2bm

2` c
4m

4 ñ m̄ “

"

0 : b ą 0

˘
a

|b|{c “: ˘m0 : b ă 0
)

But: Ginzburg-Landau theory also allows to calculate mean-field profiles
mp~rq in inhomogeneous systems! (see Sec. 4.3.6)

(b) Next step: Gaussian approximation

”Saddle point integration”:

Main contribution to the integral Z “
ş

Drmp~rqse´βF rms “ e´βF

stems from the minimum of F and small fluctuations around the
minimum

Given F rmp~rqs “ min. for mp~rq “ m̄p~rq
; Consider mp~rq “ m̄p~rq ` ηp~rq, assume η is small,

expand F rm̄` ηs up to second order in η

ñ F rmp~rqs “ F rm̄p~rqs`
ş

ddr δF
δmp~rq

ˇ

ˇ

ˇ

m̄
loomoon

0:m̄ minimizes F

ηp~rq`1
2

ş

ddrddr1 δ2F
δmp~rqδmp~r1q

ˇ

ˇ

ˇ

m̄

ηp~rqηp~r1q

ñ Z “ e´βFmin
ş

Drηp~rqs e
´
β
2

ş

ddr ddr1 δ2F
δmp~rq δmp~r1q

ˇ

ˇ

ˇ

m̄

ηp~rq ηp~r1q

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Gaussian integral

“: e´βF

Gaussian integral can be solved analytically.

; p2πq
V
2

Mb

detpβ δ2F
δmp~rq δmp~r1q

Use 1
detA

“
ś

i λ
´1
i “ e´

ř

i lnλi “ e´TrplnAq (with λi: Eigenvalues)

ñ F “ Fmin `
1

2β Tr
´

ln δ2F
δmp~rqδmp~r1q

ˇ

ˇ

ˇ

m̄

¯

` const

Furthermore: xηp~rqy 9
ş

Drηp~rqs ηp~rq e
´
β
2

ş

ddr1 ddr2 δ2F
δmp~r1q δmp~r2q

ˇ

ˇ

ˇ

m̄

ηp~rq ηp~r1q
” 0

ñ xmp~rqy “ m̄p~rq, Bxmp~rqy
Bhp~r1q “

Bm̄p~rq
Bhp~r1q

; Basically same results than in mean-field theory.
Non-mean field behavior only appears if fluctuations are large!
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(c) Application: Correlation functions in mean-field approximation

Consider homogeneous system with m̄p~rq ” m̄ “ const.

Trick: Exploit χ̃p~kq “ δxmp~kqy

δhp~kq

ˇ

ˇ

ˇ

h“0
“

β
p2πqd

xmp~kqmp´~kqy
ˇ

ˇ

ˇ

h“0
; Response of the system to a periodic perturbation with

amplitude hp~kq gives correlation functions in Fourier space
Cp~rq “ xmp~rqmp~r1qy ´ m̄2 Ñ Cp~kq „ xmp~kqmp´~kqy

Specifically: Consider again expansion mp~rq “ m̄` ηp~rq
Euler-Lagrange equation: bm´ g∆m “ h ñ bη ` 3cm̄2η ´ g∆η ` Opη2

q “ h
ˇ

ˇ

ˇ

ˇ

ˇ

T ą Tc pm̄ “ 0q : bη ´ g∆η
!
“ hp~rq

T ă Tc pm̄ “

b

´b
c
q : ´2bη ´ g∆η

!
“ hp~rq

+

` Opη2
q

In Fourier space
ˇ

ˇ

ˇ

ˇ

ˇ

T ą Tc : b η ` g k2η “ hp~kq ñ ηp~kq “ hp~kq{pb` gk2
q

T ă Tc : ´2b η ` g k2η “ hp~kq ñ ηp~kq “ hp~kq{p2|b| ` gk2
q

ñ Lorentz curve: Cp~kq „ χp~kq „ δxmp~kqy

δhp~kqy
„

δxηp~kqy

δhp~kqy
ñ Cp~kq „

1

k2 ` ξ´2

with ξ “

"
a

g{b : T ą Tc
a

g{p2|b|q : T ă Tc

Back transformation in real space ( for calculation see below or 3.5.3.4)

ñ Cp~rq „

ż

ddkei
~k¨~rCp~kq „

"

e´r{ξ : r{ξ " 1
r2´d : r{ξ ! 1

Interpretation:

ξ is the correlation length, diverges at the critical point (b “ 0).
At the critical point with ξ Ñ8, Cp~rq decays algebraically!
Critical behavior: Exponents ν and η (Recall b “ b0pT ´ Tcq)

• Correlation length: ξ „ |T ´ Tc|
´ν , ν “ 1{2 (ξ „ 1{

a

|b|)

• ”Anomalous dimension”: Cprq „ r2´d`η , η “ 0 at T “ Tc

(exact: 2D Ising: ν “ 1, η “ 1{4 3D Ising: ν “ 0.63, η “ 0.04)

(Addendum: Back transformation Cp~kq Ñ Cp~rq (similar to Sec. 3.5.3.4)

Cp~kq “ 1
k2`ξ´2 ; Cp~rq „

ş

ddk e´i
~k¨~r 1

k2`ξ´2 , d dimensions

Use: (‹)
ş8

´8
dp e´ipx 1

p2`a2
“ π

a
e´|x|{a (derived, e.g., via theorem of residues)

d “ 1:
ş

dk 1
k2`ξ´2

‹
“ πξe´|x|{ξ

d ě 2: Cp~rq „ ddk e´i
~k¨~r 1

k2`ξ´2

~̂
k“~kr
“ r2´d

ş

ddk̂e´i
~̂
k¨~e~r 1

k̂2`pr{ξq2

ˇ

ˇ Choose x axis along ~e~r, Set
~̂
k “: pp, ~qq

“ r2´d
ş8

´8
dp e´ip

ş

dd´1q 1
p2`q2`p r

ξ
q2

‹
„ r2´d

ş8

0
dq qd´2 e

´
b

q2`p r
ξ
q2 1

b

q2`p r
ξ
q2

loooooooooooooooooooomoooooooooooooooooooon

“:Ipr{ξq
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Consider asymptotic behavior of Ipxq:
xÑ8 :

a

x2 ` q2 « xp1` 1
2
p
q
x
q
2
“ x` 1

2x
q2; 1?

q2`x2« 1
x
p1´ q2

2x2

ñ Ipxq « e´x 1
x

ş8

0
dq qd´2e´

1
2x
q2

loooooooooomoooooooooon

Γp 1´d
2
qxpd´1q{2

p1` Op 1
x
qq „ e´xxpd´3q{2

xÑ 0, d ą 2: Ipxq «
ş8

0
dq qd´3e´q “ Γpd´ 2q.

d “ 2: Exact solution
ş8

0
dqe´

?
q2`x2 1?

q2`x2
“ K0pxq

xÑ0
Ñ ´ lnpxq

Apply this to Cp~rq „ r2´dIpr{ξq

ñ r{ξ " 1 : Cprq „ r2´d`pd´3q{2e´r{ξ “ rp1´dq{2e´r{ξ

r{ξ ! 1 : Cprq „

"

r2´d for d ą 2
´ lnpr{aq for d “ 2

)

4.3.5 Validity region of the mean-field approximation

Mean-field approximation neglects fluctuations.

Question: When is this acceptable?

Estimate: Ginzburg criterion (see also Section 3.5.4.2)

Fluctuations of the order parameter in the range of the correlation length
must be small compared to the order parameter!

Specifically: Compare M “
ş

ξd ddr mp~r at t9 pT ´ Tcq

Request: xM2y ´ xMy2 ! xMy2

|| ||

χξd xmy2ξ2d

ñ χξ´dxmy´2 ! 1 ñ R|t|´γ`νd´2β ! 1

Specifically for |t| Ñ 0 : p´γ ` νd´ 2βq ą 0

ñ Mean-field approximation describes critical behavior correctly for

d ą dc “
2βMF ` γMF

νMF

dc : ”Upper critical dimension”
pβMF , γMF , νMF : Mean-field exponents)

For d ă dc: Fluctuations dominate, mean-field approximation fails
For d “ dc: Logarithmic corrections
For d ą dc: Mean-field approximation captures critical behavior

Ising-type transitions: γMF “ 1, βMF “ νMF “ 1{2 ñ dc “ 4

Significance of prefactor R

Mean-field approximation may oK even for d ă dc,

if 1 " t " R1{pγ`2β´dνq “ R1
L

νpdc´dq: mean-field range

if t ! R1{pγ`2β´dνq “ R1
L

νpdc´dq: critical range

(Example: Superconductivity - Critical range „ 10´14K
One practically always sees mean-field behavior.

Remark: Argument applies only if the direct interactions decay fast enough
(faster than 1{rd)!
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4.3.6 Conclusion: Relevance of Ginzburg-Landau theory

‹ Ginzburg-Landau functional

• In principle ”exact” starting point for perturbation expansions, field
theoretic renormalization etc.
Contruction from symmetry considerations Ñ Universality

• Allows assessment of validity of mean-field approximation (previous
section)

‹ Treatment of inhomogeneous systems

e.g., surfaces, thin films, interfaces

Interface m
0

-m
0

Problem: Minimize F rmp~rqs with bound-
ary condition lim

xÑ˘8
“ ˘m0

(with m0: Bulk order parameter)

F rmp~rqs “
ş

ddr
”

1
2gp∇mq

2 ` 1
2bm

2 ` 1
4cm

4
ı

ñ Equation: bm` cm3 ´ g∆m “ 0, m0 “
a

|b|{c, ξ “
b

g
2|b|

ñ Solution: m “ m0 tanhpx{2ξq (Check by insertion)

‹ Allows description of modulated phases

(”incommensurable phases”, magnetic screw structures, lamellar phases
in microemulsions or block copolymers)

Special case g ă 0 . In this case, F rmp~rqs must include a stabilizing
term of higher order

e.g., F “
ş

ddr
”

fpmq ` 1
2gp∇mq

2 ` 1
2kp∆mq

4
ı

(or 1
4k
1p∇mq4)

If g is sufficiently small, F is minimized by a
modulated order parameter.

m

4.4 Multicritical phenomena

4.4.1 Examples

(a) Tricritical point

Example: Strongly anisotropic uniaxial antiferromagnet in a homoge-
neous external field (discussed earlier in Sec. 4.1.1.3)

Tricritical point

H

T

Disordered
Blue solid: First order transition
Red dashed: Second order transition
Black point: Tricritical point
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Why is this point called ”tricritical”?

In an extended phase space, three
critical lines meet there.

E.g., antiferromagnet: Choose as
additional intensive variable the
field h that couples to the order
parameter (a staggered field)

h

H

T Tricritical point

Critical lines

Areas of first order 
  phase transitions Triple point line

Additional characteristics:

– In mean-field approximation different critical exponents than in
the Ising model (see Sec. 4.4.2).
One obtains: α “ 1{2, β “ 1{4, γ “ 1, but still ν “ 1{2, η “ 0.

ñ Different upper critical dimension according to the Ginzburg
criterion: dc “ pγ ` 2βq{ν “ 3!

(b) Bicritical point

Two critical lines meet each other

Example: Weakly anisotropic uniaxial antifer-
romagnet in a homogeneous external field
(discussed earlier in Sec. 4.2.3)

T

H

Bicritical point

Flip−flop phase

(c) Critical end point

Critical line ends at a line of first order phase
transitions

Example: Uniaxial antiferromagnet with inter-
mediate anisotropy in a homogeneous ex-
ternal field

T

Flip−flop phase

Tricritical point 

H

Critical end point

(d) Multicritical points of higher order

Example: Tetracritical point - four critical lines meet.

(e) Lifshitz point

Modulated phases compete with regular phases

(f) and many others ...

We will now illustrate the treatment of multicritical phenomena with the Ginzburg-
Landau theory at two examples: The tricritical point and the Lifshitz point.
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4.4.2 Tricritical point

(a) Landau expansion (already discussed in Sec. 4.1.1.3)

F
V “ a` 1

2bm
2 ` 1

4cm
4 ` 1

6dm
6 ´ hm

Tricritical point corresponds to b “ c “ 0

In order for this to happen, b and c should depend on two intensive
parameters ∆, T .
; b “ c “ 0 defines a point p∆t, Ttq in the p∆, T q-plane

We already showed:

At c ă 0, one has a first order phase
transition at b “ 3c2{16d.
Now we discuss the critical behavior
directly at the critical point.

3c /16d
2

Disordered phase

Tricritical point

First order

Continuous

b

c

Ordered phase

(b) Critical behavior in the Landau theory

Preliminary remark: From BF
Bm “ 0, one concludes at h “ 0:

bm` cm3 ` dm5 “ 0
pcă0q
ñ m2 “

|c|
2d

`

1`
b

1´ 4bd
c2

˘

; Behavior different for the cases |4bd{c2| ! 1 and |4bd{c2| " 1
”critical” and ”tricritical” regime!

Graphical illustration:

I: ”Tricritical regime”
II: ”Critical regime”

Approaches to the tricritical point:
in I: b9 pT ´ Ttq, c9 pT ´ Ttq
in II: b ! pT ´ Ttq

2, c9 pT ´ Ttq

3c /16d
2

 c /4d
2

Regime II

b

c

Regime I

Regime I

‚ Order parameter

(I) Approach tricritical point with a finite angle to the phase tran-
sition line Ñ in the tricritical region
ñ 4bd

c2
" 1 (since b, c approach zero linearly)

ñ m « p´bd q
1{4 ñ βt “ 1{4

(II) Approach tricritical point in the critical regime such that 1 ! 4bd
c2

ñ m « p
|c|
2dq

1{2 ñ βu “ 1{2

‚ Specific heat cH : F
V “ a` 1

2bm
2 ` 1

4cm
4 and cH “ ´T

B2F
BT 2

(I) In the tricritical regime: m 9 pTt ´ T q
1{4 and b 9 pT ´ Ttq

ñ cH „
B2

BT 2 pTt ´ T q
3{2 „ pTt ´ T q

´1{2 ñ αt “ 1{2

(II) In the critical regime: m 9 pTt ´ T q
1{2, b ! |T ´ Tt|

2, c 9 pT ´ Ttq

ñ cH „
B2

BT 2 pTt ´ T q
3 „ pTt ´ T q

1 ñ αu “ ´1
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‚ Susceptibility

From bm` cm3 ` dm5 ´ h “ 0, one gets Bm
Bh

ˇ

ˇ

h“0
“ 1

b`3cm2

ˇ

ˇ

h“0
.

(I) In the tricritical regime:
Bm
Bh „

1
b „ pTt ´ T q

´1 ñ γt “ 1

(II) In the critical regime: b ! |T ´ Tt|
2, c 9 pT ´ Ttq

Bm
Bh „

1
b`3cm2

cm2„pT´Ttq2
„ pT ´ Ttq

´2 ñ γu “ 2

‚ Correlation functions

The exponents ν, η do not change at the tricritical point, since the
mean-field correlations do not depend on c (e.g., ξ „

a

|g{b|)

ñ νt “ 1{2, ηt “ 0

Summary: Mean-field exponents in the tricritical regime:

βt “ 1{4, γt “ 1, αt “ 1{2, νt “ 1{2, ηt “ 0

(c) Application: Ginzburg criterion

Recall Sec. 4.3.5: The Landau theory is good, if dν ´ 2β ´ γ ą 0 for the
mean-field exponents ν, β, γ. Inserting the values for the critical exponents
at the tricritical point, one obtains d ą dt with dt ą 3

Thus the upper critical dimension at the tricritical point is only 3!
In three dimensions, critical fluctuations only lead to logarithmic correc-
tions to the behavior predicted by the Landau theory.

4.4.3 Lifshitz point

(a) Ginzburg-Landau theory for modulated phases

Practical relevance: Often used to describe materials that spontaneously
form modulated nanostructures, e.g.,
– Modulated magnetic superstructures in crystals

(Hornreich et al 1975 – lattice spin model: ANNNI model)
– Amphiphilic systems and microemulsions
– Block copolymer nanostructures
– Domains in lipid membranes

Also postulated to exist in the QCD phase diagram by some models

Ginzburg Landau theory

Modulated phases are possible, if the coefficient g of the square gra-
dient term in the Ginzburg-Landau functional becomes negative. In
this case, a stabilizing term of higher order must be included, e.g.,
1
2vp∆mq

2

; F “
ş

ddr
“

1
2bm

2 ` 1
4cm

4 ´ hm` 1
2gp∇mq

2 ` 1
2vp∆mq

2
‰

Phase behavior: To find the transition to a modulated phase, we calcu-
late the structure factor Sp~kq 9 χp~kq (~k-dependent susceptibility)

Minimize F Ñ Euler-Lagrange equations
ñ b m` c m3 ´ g∆m` v ∆2m “ h
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Fourier transform ~r Ñ ~k and linearization in m
ñ b mp~kq ` g ~k2mp~kq ` v k4 mp~kq “ hp~kq

ñ χp~kq 9 Bmp~kq

Bhp~kq
“ 1

b`gk2`vk4

Analysis

If g ă 0, then χp~kq has a maximum at k˚ “
a

´g{2v,
ñ χpk˚q “ 1

b´g2{4v

In that case, χpk˚q diverges at b “ g2{4v
; Homogeneous phase is unstable, transition to a modu-
lated structure with characteristic wave vector k˚

Phase diagram

 g /4v
2

Continuous, Ising−type

b

gLifshitz point

Disordered phase

First order

Brazovskii type

Homogeneous, two phase region

Modulated phase

Discussion

– In mean-field approximation: Two types of continuous transitions
meet at the multicritical Lifshitz point: A regular Ising-type
transition at g ą 0, b “ 0 and and a ”Brazovskii”-type transi-
tion at g ă 0, b “

a

g2{4v between a disordered phase and a
modulated structure.

– At the Lifshitz point, the wave vector k˚ of the modulated struc-
ture becomes zero - i.e., the wave length diverges.

(c) Critical behavior at Lifshitz points

‚ Exponents α, β, γ, δ are the same as in the Ising model, as they do not
depend on g.

αL “ 0, βL “ 1{2, γL “ q, δL “ 3

‚ At the Lifshitz point pg “ 0q, we have χp~kq „ 1
b`vk4 „

1
bp1`k4ξ4q

; Not a Lorentz curve, but ξ “ pv{bq1{4 is clearly the characteristic
length scale in the system! Diverges as b 9 pT ´ TLq Ñ 0.

ξ 9 b´1{4 ñ νL “ 1{4

At b “ 0, we have χp~kq 9 k´4 “: k´p2´ηLq ñ ηL “ ´2

‚ Upper critical dimension: dcνL ´ 2βL ´ γL ą 0 ñ dc “ 8
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(d) Fluctuation effects

– Upper critical dimension is very large ; Fluctuation effects are strong!

– In fact, the lower critical dimension (the minimum dimension where a
Lifshitz exists), is believed to be dl “ 4.

– In three dimensions or less, the Lifshitz point becomes unstable and
probably turns into a regular tricritical point
(Numerical evidence for the case of a block copolymer melt: Vorse-
laars, Spencer, Matsen, PRL 2020).

– Also, the Brazovskii transition becomes first order due to fluctuations
by a mechanism called ”Brazovskii mechanism” (ordered modulated
domains break up).

 g /4v
2

Continuous, Ising−type

b

gLifshitz point

Disordered phase

First order

Brazovskii type

Homogeneous, two phase region

Modulated phase

Mean-field phase behavior

b

g

Homogeneous, two phase region

Modulated phase

First order

Weakly first order

Continuous, Ising−type

Tricritical point

Disordered phase

Real phase behavior in 3D
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