Chapter 4

The Ginzburg-Landau Theory

Recall Chapter 3:

— Extensive discussion of the Ising model as one of the simplest ”micro-
scopic” models with a phase transition

— Introduction of several methods than can also be applied to other systems
(e.g., transfer matrix method, series expansions, mean-field approxima-
tion, Monte Carlo simulations, others like renormalization will follow).

— Still, the Ising model is rather very special. It is not clear, to which extent
our findings can be generalized to phase transitions in general.

In this chapter: General approach, based on symmetry considerations, which
highlights the relation between phase transitions ”of same type”. The
derivation is based on a mean-field point of view, but this can be relieved
later on.

Ginzburg-Landau theories are popular starting point for developing field theories
in statistical physics.

4.1 Landau expansion for scalar order parameter

4.1.1 Ising symmetry

Recall: Bragg-Williams approximation for Ising model
Close to T'=T., m = M/N is small = expand in powers of m.
= % = _Lm2 + %[1+2m ln(lzm) + 15m ln(lam)]

Be 2 1,4

The same form can already be inferred from general symmetry considerations

Requirement: % = f(m) symmetric with respect to m < (—m).

1 1 1
= —=a(T)+§b(T)m2+Zc(T)m4+6d(T)m6+-'-

~» Landau expansion: Generally valid for systems with this symmetry!
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Remark and Caveat: Strictly speaking, the expansion in powers of m is only
allowed if F'//N is analytic as a function of m. At phase transition points,
this is not valid in the thermodynamic limit. Therefore, the Landau
Ansatz represents an approximation and cannot be exact.

(Way out: Corresponding expansion for small subsystems
~» Ginzburg-Landau theory)

b=0
4.1.1.1 Case ¢(T) >0 F1 bso

In that case, neglect d(T")
~+» Graphical representation - see figure:

~» Continuous phase transition at b<0

In the vicinity of T,, one approximates ’ b(T) =by (T —1T) ‘

m

Order parameter: g—i = bm +cm3 = 0
= m=t+/bp/c\NI.—T (T <T.)

= m ~ (T. — T)? with critical exponent | 3 = 1/2 |as in Section 3.5

Specific heat cp:
S = L2 = (1)~ WD) m?— L (T)md — H(T) (m2) — e(T) (Y

N — N oT
ey =553 For T —T.: b=0, b = by, m> = 22(T, = T) — 0 or m? =
(m?) = 7%0 or 0, (m*)" =0, (m*)” 2(%0)2 or 0
o b
= ¢y = —Tad" — TV (m2)/ —T¢ (m4)// _ Ta” +T52 T<1T,
Ta T > T,

~» Finite jump!
= "cg ~ |T — T,|*” with Critical exponent as in Section 3.5

Other exponents also the same as in Section 3.5

Reason: Results from the analytic expansion of F//N in powers of m. =
characteristic for mean-field exponents!

4.1.1.2 Case ¢(T) <0

In that case, d(T") cannot be neglected. Assume d(T") > 0
~+» Graphical representation - see figure:
b = %: External minima form
bo = %: First order phase transition
(with m3 = 3|c|/4d)
b = 0: Middle minimum at m = 0 disappears

Spinodals:
At be[0: bg]: metastable disordered states, "undercooling” is possible.

b € [bg : b1]: metastable ordered states, ”overheating” is possible.
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The spinodals b = by, b = b; mark the points where metastable states
become unstable.
Example: M,,0O, antiferromagnet

Before b changes sign, one already has a first order phase transition

4.1.1.3 Special case b=c=10

~» Tricritical point

2
”Phase diagram” in the vicinity 3% 1ed b
Practical relevance , "'z Disordered phase
First order 'o,', c
If one has two intensive quantities Yteay,
that do not directly couple to the Tricritical poipt  Continuous
order parameter, a tricritical point Ordered phase
may occur.
Example: Uniaxial antiferromagnet T
in a magnetic field
Tricritical point

b=b(T,H), c=c(T,H)

Possible phase diagram:

4.1.2 No Ising symmetry
Example: Liquid-gas transition, liquid crystals,
Consider cases, where free energy F does not have to be symmetric with
respect to an exchange m < —m

Known: % — oo for large |m| = At least one turning point m in between.

Choose m axis such that m = 0, hence F'(m) = 0.

1 1 1
~ | —==a(T)+ §b(T) m? — §C(T) m? + Zd(T) mt

b=10b = Z—Z: Second minimum forms
b=by = 29%12: First order phase transition
(with mg = 2¢/3d)
i

b = 0: First minimum disappears

~» Similar scenario as in Ising symmetric case 4.1.1.2
— First order phase transition,
— Spinodals at b = 0 and b = by,
— Metastable states in between

Conclusion: If Landau expansion contains a third order cubic term due to lack
of symmetry, then the transition is first order!
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NB: Consider as an example liquid-gas transition.
Line of first order transitions — consistent with argument!
Critical point: b = ¢ = 0: In the presence of two control parameters (T
and P), a point (P, T;) with ¢(T¢, P.) = b(T¢, P.) = 0 may exist.
In that case, the phase transition is second order and Ising like!

4.2 Landau theory in systems with multicomponent
order parameter

In this section, some examples are given how to construct Landau expansions
from symmetry arguments for more complex systems with multicomponent or-
der parameter.

4.2.1 Heisenberg model

System: Three dimensional spins on a lattice,
Interact with ”Hamiltonian” " = —J 3,5 S; - S;

— Invariant under rotation of S_"Z
— Invariants: m?2, (m?)?
where m = (S): Order parameter per site

)

. F _ 1p .22 1 .0252\2
= Landau expansion: § = a + 5bm° + 7c(m?)

4.2.2 Heisenberg model with cubic anisotropy

Example: A real magnetic system on a cubic lattice.
Spins preferably orient along the main lattice directions.

Symmetry: mq < —mg for all pairs («, )
— Invariants: m?, (m%)?, (mg +mj + mj)

= Landau expansion: & = a + $bm? + 1c(m?)? + 1d (md + mg +m?)

4.2.3 Three component order parameter with uniaxial anisotropy

Symmetries: m, < —m, (mgy, m,) invariant under (2D) rotation

— Invariants: m2, m2 +m2, m?, (m2 +m2)%, mZ(m2 +m2)

= £ _ a+%bm§+%c(m?ﬂtmg)+idmi‘+ie(mi+mg)2—I—%fmg(m§+mz)

N
Discussion:
b=0,c>0: Ising-type transition b
c=0,b>0:"XY’-symmetry XY-type

Ordered

(Mg, my) order in (m,,m ) |  Disordered phase

b = c = 0: Ising- and XY-lines meet:
Bicritical point .

b < ¢ < 0: Different types of order compete < First order
~» First order phase transition

Ising—type ¢
Ordered
inm,
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T

. . Bicritical poi
Example: Antiferromagnet with weak icritical point

uniaxial anisotropy in a homogeneous
external magnetic field H

Flipgflop phase
- =} H

"i

4.2.4 Two component order parameter with trigonal symmetry
Symmetry: Invariance under a rotation of 27/3
Examples: Some adsorbate systems /L\
Three-state Potts model:
H = _J2<U> 5(11’7(1]' with q; = 1,2,3.
Possible way to determine invariants:

Rotation by 27/3 2 rotation matrix 2 = <

—1/2 /32
N

For any f(m), the function g(1n) = f(1m) + f(2m) + f(2*m) is invariant.

Apply this to polynomials f(771) to get invariants of ...

2nd order:  f(m) = m2, mz — g(m)ocm?2 + mz
f(m) = mgymy — g(m) = 0 (trivial)
3d order: fom) =m3, m, m§ — g(m) oc my(3m2 — mé)
FO) = my, my m — g(1i) o mg (3m, — m3)
4th order: f(n;"z) = m3, n;f,, m2 77;3 — g(njL) o (m2 + m§)2
f(m):mwmya My My, - g(m)zo
=L = a+5b(m2+m2)+5emy(m2—3m2)+ dmy(m2—3m2)+ je(m2+m2)?
Remarks:

e Cubic term ~» phase transition is first order!

e Six-fold symmetry: Trigonal symmetry and mirror symmetry
~» Cubic term disappears, phase transition may be continuous

e Exception: 3-State Potts model in two dimensions: Trigonal sym-
metry, but nevertheless continuous transition due to fluctuations !
(So this may occasionally happen, but as a rule, phase transitions in
systems with trigonal symmetry should be first order! For example,
the phase transition in the 3-state Potts model in higher dimensions
is first order)

4.2.5 Liquid crystals
Example of a more ' \ , —> . . .

complex order parameter \ - . . .
Orientational order, , 0’, . . .
but no positional order Isotropic phase Nematic phase
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Order parameter:

e Assume, there exists one preferred orientation _\

¢
~» Suitable order parameter is S = 1(3cos?6 — 1):
Disordered fluid: (cos?6) =1/3 — S =0
Ordered fluid: {cos?6) = 1 - S=1
e No preferred orientation ~» Natural generalization
Tensor: Qup = 5(0a08 — Sup)
where &; points along the main axis of molecule i
Note: @ is symmetric with Tr(Q) = 0.

Landau expansion

e With preferred orientation: ”Maier-Saupé model”
F=a+ b5 + 353 + 1dS* +
Due to the cubic term, the phase transition is first order.

e Without preferred orientation:

Invariants under rotation: Tr(Q?), Tr(Q3), Tr(Q*) = %(Tr(QQ))Q.
(Last identity holds because @ is symmetric and traceless)

= L at1b TH(Q) + be TH(@QP) + 1d Tx(QY)
~+» Again first order transition due to cubic term!

4.3 Ginzburg-Landau theory

Extension of Landau theory for inhomogeneous systems
Here: Discuss only systems with one-component order parameter

4.3.1 Ansatz

Homogeneous system ~» Landau expansion
Different from previous section: Normalize with 1/V instead of 1/N,
ie, m=M/V, f:=F/V etc. Expansion still has the same form.

= F/V=a+ %bmz—l—%cmA‘—hm
Inhomogeneous system ~» Search for generalization

Naive Ansatz: F = {d% f(m(7)) with f(m) =a+ 3bm? + zcm? —hm
Problematic, since the order parameter profile has no ”stiffness”,
i.e., it adjusts instantaneously to h(7)

~» Spatial variations of m(7) should be penalized

New Ansatz: m(7] = Jdd )+ g(Vm) %)

Corresponds to lowest order expansion in m and Vm, taking into
account the symmetry m <> (—m) and cubic symmetry in space!
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4.3.2 Interpretation

Question: What is the meaning of .7 [m(7)]? What does it describe?

(a) Not the free energy

e Not necessarily convex

e The free energy is a thermodynamic potential. It cannot depend
on a microscopic order parameter field m(7): Microscopic degrees of
freedom must be integrated out!

Instead: A functional (a function from function space to R), where the
partition function has been partially evaluated (but not fully)!

(b) ”Derivation” of the Ginzburg-Landau functional

(Not a rigorous derivation, rather a description of the object that .Z [m(7)]
is supposed to represent)
Starting point, e.g., Ising model
Discrete spins 5;
”Coarse-graining”: Averaging over blocks of size [y, where
lp has roughly the size of the correlation length far from T
(but: chosen fixed, independent of T, not singular)
Slowly varying order parameter m(7)
No longer fluctuates on the scale of the lattice constant.
Fourier components with k > 1/ly have been integrated out.

Important: Block size [y must be chosen with care
Too large ~» uncorrelated blocks, can be equilibrated independent
of each other, nothing gained!
Too small ~» correlations too strong and nonlocal, defining a ”local”

quantity m(7) does not make sense!

Formal description: partial trace

Define m(7): Average over block vz m(7) = i > Si

Now assume that m(7) be given, then we have
exp (~ BZ[m(M)]) £ T e 71 [L6 (L B8 —m(r)
{S:} " ur

~» Calculate trace over all configurations which would yield the
order parameter landscape m(7) upon coarse-graining.

= Z[m(7)] has both energetic and entropic contributions!

Full Partition function:
% = { Z[m(7)] e AT = o=BF

~» Functional integral over all smoothly varying functions!
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(¢) Comparison with density functional (for the experts)

Construction of density functional F[mi()]

e Definition of a microscopic order parameter field m(7),
e.g. as in (b): m(7) = &Z S;

e Introduction of a conjugate field h(7) that couples to m(F)
= Modified ”Hamiltonian” JZ[h] = S — {d% m(7) h(F)

~» Thermodynamic potential: G[h(7)] = —kzT In (Z{Si} e ﬁ%;’[h]>
m(r) = (m(F)) = é 6254 is almost always a unique function of h(7)
o Legendre transform: EF[m(7] = G[h(7)] — {d% m F) h(F)

Then we have (exactly): F|p=p = {m(m F[ (7)] F — p=0)

But: F[m(7)] and F[m(r)] are not the same functional!
In particular, F[m(7)] is generally nonlocal!

Moreover, m(7) (average local order parameter) does not refer to the
same field as m(7) (actual microscopic local order parameter)!

4.3.3 Brief digression: Dealing with functionals

I) Functional integral

[ 2@ = [Hidmf]...

lattice constant

e.g., in one dimension:
§2[m(z)] - = §dmo dmg dmgg - -
—  Path integral

IT) Functional derivatives

Definition: W = EliI(I)1+ %[ﬂ[m(f') +ed(F—7)] - ﬁ[m(f')]]
Examples:
o Flm(z)] = fdx f(m(=))
S05F .1
= ity = 1807 (000 6o =) = )
" i <[z (f(m(@) + €8~ y) fm(@) - fon())]
= {dzdé(z —y) f'(m(x)) = f'(m(y))
o Fm(z)] = jdx (dim(ac))2
05F :
= ) = lgn f[Sd:r(<%(m($)+65(x—y))) - (%m(x))Q)]
= ZSdz(%m(x)) (%5@ — y))

partial

intcgr:ation _2Sd$ (5($ — y) dTQQm( ) 2d Qm( )
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N e m(F) =
Rules: 5m<mfd (") =1
75m5(77’) T(T) =0(r—171)
— 1 d% (Vm(7)? = —Am
dm(r) ZJd (Vim(r) A

Product rule, chain rule, etc.

IIT) Functional derivatives in the Ginzburg-Landau theory

Construct ”Generating functional”

Z[h(F)] = f@[m(f*)] e—ﬁ[v@’o[m(ﬂ—gd% h(7) m(F)] —: o BF[N(M]

= Order parameter: (m(r)) = ( — %)

h(7)—0T

"Local” susceptibility: (meaning will become clear later)

— o{m(7 52
X7 7) = 5], . =~ |

== B ((m(Fym(i)) - <m<f>><m< »)

Same in Fourier space with m( ) der el m(f’)
h(k)] = f@[m(l_%)] e’ [ Zolm(E)- 3y Jak h(=F) m®) | _ — o—BFA(F)]

h—0t

— Order parameter: (m(k)) = _ﬁ%h—»w
Susceptibility:
o 5<m(E)>
(k) = on) I o+
~ g (O —nEon(RY),_,

= A(Qﬂ)d de déyr /eiE'F_E/'F/X(F, F/)
Specifically, if x(7,7) = x (¥ — ) (homogeneous system):
= x(E, k) = x(F) 8(k — k)& (NB: 8(0) = %7

—

with (k) = x(F, k) = (Qﬂdgddre“x(f)

NB: Relation to global susceptibility x = a—H:
Choose h(7) = H = const., m = % §ddr m(7)
= x = % §adr {ddy’ gm(gg ah(r =: {d¥r x(7) = x(k 0) (2‘7;)
—— %/—/

1

x(7 7
= ... = B((M>» —(M)?)  with M = {d% m(7).
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4.3.4 Mean-field approximation and transition to the Landau
theory

Preliminary remark: If the functional .%[m(7)] were known, the expression for
the partition function would be exact: 2 = { Z[m(r)]e —BF [m(m

(a) Mean-field approximation

Ansatz: Main contribution to the integral 2 = { 2[m(7)]e #7"] = ¢=AF
comes from the minimum of .# = F = min .%#[m(7)]

{m(M}
Specifically: Consider .Z[m(7)] = {d% [$9(Vm)? + f(m) — h(F) m(7)]
Minimum £ =0 = _gAm—i-f’( )—h=0
Homogeneous system in the bulk (h(7) = 0, free boundaries)
~ m(r) =m = const., f'(m) =0, F =Vf(m)
~» Effectively a Landau theory
0 :b>0
|bl/c =:+mp :b<0 )
But: Ginzburg-Landau theory also allows to calculate mean-field profiles
m(7) in inhomogeneous systems! (see Sec. 4.3.6)

Specifically: f(m) = 2bm2+<m* = m =
( y 2 1

(b) Next step: Gaussian approximation

”Saddle point integration”:
Main contribution to the integral 2 = § Z[m(7)]e #7ml = ¢=FF
stems from the minimum of .# and small fluctuations around the
minimum
Given .Z[m(7)] = min. for m(7) = m(7)
~» Consider m(7) = m(7) + n(7 ) assume 7) is small,

expand .7 [m + 77] up to second order in 7
F[m(#)] = Z[m()]+{d%r 57‘;"{

—.

2 g —5
+3 derddr’iém(%gfn(m 7 n(F)n(r)

—\/——/

0:77 minimizes %

P -8 §ddr ddr’ %

= 2 =e PP (Gn(M)]e o em @ |,
-

WO _ g

g
Gaussian integral

Gaussian integral can be solved analytically.
¥ 27
2m) ¥ [\ et (B 5 s
Use —detA =11 )\i_l =e ZilnAi = g~ Tr(lnA) (with A;: Eigenvalues)

= F =%+ ﬁTr( ln% 7) + const
m
_B ddy! gy 32? _ —
Furthermore: {(n(r)) oc § 2[n(F)] n(7) e 2 A4 AT S s RO =0

— _ Km(7 om/(7
iy =, i 243

~» Basically same results than in mean-field theory.
Non-mean field behavior only appears if fluctuations are large!
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(c¢) Application: Correlation functions in mean-field approximation

Consider homogeneous system with m () = m = const.

e oy m(k) __B i i
Trick: Exploit x(k) = ) oo = (%‘)d@'n(k)m(—k)%‘hzo .
~» Response of the system to a periodic perturbation with
amplitude h(k) gives correlation functions in Fourier space

C() = (m(F)m (7)) = m* — C(k) ~ (m(k)ym(=k))

Specifically: Consider again expansion m(7) = m + n(7)
Euler-Lagrange equation: bm — gAm = h = by + 3cin*n — gAn+ 0(n*) = h
T>T. (m=0) : bn — gAn = h(F)
_ —b ! + ﬁ(UQ)
T<T. (m=4/7) : —2bnp—gAn = h(F)

In Fourier space

T>T. :bn+gk®n=h(k) = n(k) = h(E)/(b+ gk?)
T<T. : —=2bn+gk’n=nh(k) = n(k)=nh(k)/(2]b + gk?)
(T o (D) KmEY SR oo L
= Lorentz curve: C'(k) ~ x(k) Sh(E)) Sh(R) C(k) K2 4 £2
) g/b T > 1T,
with =
¢=\ Vw121

Back transformation in real space ( for calculation see below or 3.5.3.4)

. o e r/E» 1
= | C@ ~Jddkek C(k) ~{ 2 ;E ol

Interpretation:

¢ is the correlation length, diverges at the critical point (b = 0).
At the critical point with & — oo, C(7) decays algebraically!
Critical behavior: Exponents v and 7 (Recall b = b (T — T.))

e Correlation length: | £ ~ [T —=T.|7" ||| v =1/2 (€ ~ 1/4/]0])
e ”Anomalous dimension”: | C(r) ~ >~ | [ n =0 |at T =T,
(exact: 2D Ising: v =1,n=1/4 3D Ising: v = 0.63, n = 0.04)

(Addendum: Back transformation C/(k) — C(7) (similar to Sec. 3.5.3.4)
C(K) = griemes O ~ [dlh e T ilmy,
Use: (*) Sioao dp e™"P¥ p211~u.2 = gef‘xl/a (derived, e.g., via theorem of residues)

d=1: Sdkﬁ L pgelal/e

d dimensions

. PR k=kr o_d¢ 1di —iken

d>2 C(’r’)f\»d ke ﬁ = T2 Sd ke m

| Choose z axis along €7, Set k=: (p, Q)

2_d (0 —q d—1 1
= e dp e §AT gy
[02 (T2

x  9_d o0 d—2 /P +(F) 1
X d VY s

ri g dag e A7

=:1(r/€)



60 CHAPTER 4. THE GINZBURG-LANDAU THEORY

Consider asymptotic behavior of I(z):

o0 /2@ (1434 =2+ £¢° —— e

J2ra2al_ 2
rairs (oo

1

= I(z) ~ e 1 dg qd—2e—ﬁq2(1 L O(1)) ~ e gldD)2
—_—
r(i5%)z(d-1)/2

x—0,d>2 I(z)~ {dgq" e =T(d - 2).

d = 2: Exact solution {” dge™V q2+””2\/% = Ko(z) 3% —In(x)
g%tz

Apply this to C(7) ~ r2*d1(r/§)
= r/E»1: Cr) ~ r27dH@=3)/2g=r/6 _ ((1=d)/2—r/8

p2—d ford > 2
r/E<1l: C(r) ~ { —In(r/a) ford=2 )

4.3.5 Validity region of the mean-field approximation

Mean-field approximation neglects fluctuations.
Question: When is this acceptable?

Estimate: Ginzburg criterion (see also Section 3.5.4.2)

Fluctuations of the order parameter in the range of the correlation length
must be small compared to the order parameter!
Specifically: Compare M = Sgd d%r m(7 at t oc (T — Tp)
Request: (M?2) — (M) « (M)>?
| I
X! (m)*€¢>

= & Hmy 2«1 = | Rt «1

Specifically for [t| > 0: (—y+wvd—28)>0

= Mean-field approximation describes critical behavior correctly for

2B0e T Ve d. : ”Upper critical dimension”

Visr (Bares Yarrs Vasr: Mean-field exponents)

d>d, =

For d < d.: Fluctuations dominate, mean-field approximation fails
For d = d.: Logarithmic corrections
For d > d.: Mean-field approximation captures critical behavior

Ising-type transitions: vyp = 1, Syp = vyr = 1/2 =

Significance of prefactor R

Mean-field approximation may oK even for d < d.,
i1 » RYO+28-d) _ RI/vide=d). 1o feld range

if t « RV(y+28-dv) _ Rl/”(dc_d): critical range

(Example: Superconductivity - Critical range ~ 10714 K
One practically always sees mean-field behavior.

Remark: Argument applies only if the direct interactions decay fast enough
(faster than 1/r?)!
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4.3.6 Conclusion: Relevance of Ginzburg-Landau theory

* Ginzburg-Landau functional

e In principle ”exact” starting point for perturbation expansions, field
theoretic renormalization etc.
Contruction from symmetry considerations — Universality

e Allows assessment of validity of mean-field approximation (previous
section)

* Treatment of inhomogeneous systems

e.g., surfaces, thin films, interfaces

Interface Mol i """ Problem: Minimize .% [m(7)] with bound-
ary condition lim = +myg
r— 100
. : ,,,,,,,,, My (with mg: Bulk order parameter)

Fm(r)] = der[%g(Vm)Q + 1bm? + %cm‘l]
= Equation: bm + cm?® — gAm = 0, mg = \/|b|/c, & = ﬁ
= Solution: m = mg tanh(z/2¢) (Check by insertion)

* Allows description of modulated phases

(”incommensurable phases”, magnetic screw structures, lamellar phases
in microemulsions or block copolymers)

Special case . In this case, .Z[m(7)] must include a stabilizing
term of higher order

e.g., F = §alr | f(m) + 39(Ym)? + Jk(Am)!]
(or 2K/ (Vm)*)

If ¢ is sufficiently small, .% is minimized by a
modulated order parameter.

4.4 Multicritical phenomena

4.4.1 Examples

(a) Tricritical point

Example: Strongly anisotropic uniaxial antiferromagnet in a homoge-
neous external field (discussed earlier in Sec. 4.1.1.3)

Disordered Blue solid: First order transition
Isoraere . .
"%, Tricritical point Red dashed: Second order transition
Black point: Tricritical point

H
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Why is this point called ”tricritical”?

In an extended phase space, three

-
critical lines meet there.

Tricritical point

E.g., antiferromagnet: Choose as  aeas ot first grder s h,
additional intensive variable the  phase transi iopy KeFible point line
field h that couples to the order . H

parameter (a staggered field)
Additional characteristics:

— In mean-field approximation different critical exponents than in
the Ising model (see Sec. 4.4.2).
One obtains: a« =1/2, B =1/4, v =1, but still v = 1/2, n = 0.
= Different upper critical dimension according to the Ginzburg
criterion: d. = (y + 28)/v = 3!

(b) Bicritical point

Two critical lines meet each other Bicritical point

Example: Weakly anisotropic uniaxial antifer-
romagnet in a homogeneous external field
(discussed earlier in Sec. 4.2.3)

(c) Critical end point

Critical line ends at a line of first order phase T
Tricritical point

transitions \ Critical end point

Example: Uniaxial antiferromagnet with inter-
mediate anisotropy in a homogeneous ex-
ternal field

(d) Multicritical points of higher order

Example: Tetracritical point - four critical lines meet.

(e) Lifshitz point

Modulated phases compete with regular phases

(f) and many others ...

We will now illustrate the treatment of multicritical phenomena with the Ginzburg-
Landau theory at two examples: The tricritical point and the Lifshitz point.
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4.4.2 Tricritical point

(a) Landau expansion (already discussed in Sec. 4.1.1.3)

% =a+ %bm2 + fem?t + %de — hm

Tricritical point corresponds to b=c =0

In order for this to happen, b and ¢ should depend on two intensive
parameters A, T
~» b =c =0 defines a point (A, T}) in the (A, T)-plane

We already showed:

At ¢ < 0, one has a first order phase ‘—2302/16" b
transition at b = 3¢2 /16d. _ %, Disordered phase
. .. . First order “, c
Now we discuss the critical behavior g,
directly at the critical point. Tricritical poift Continuous
Ordered phase
(b) Critical behavior in the Landau theory
Preliminary remark: From g—f; = 0, one concludes at h = 0:
<0
bm + cm? 4+ dm® = 0 Ny m? = %(14—1/1— %d)
~+ Behavior different for the cases |4bd/c?| « 1 and |4bd/c?| » 1
7 critical” and ”tricritical” regime!
Graphical illustration: 3&16d
I: ”Tricritical regime” % roghe 7 clad
IT: ” Critical regime” ,
Approaches to the tricritical point: "":);;j. S
inl: boc (T'—1T3), coc (T —1T3) A Regime i

inIl: b « (T —Tp)?, coc (T —T)

Regime |

e Order parameter

(I) Approach tricritical point with a finite angle to the phase tran-
sition line — in the tricritical region

= %d » 1 (since b, ¢ approach zero linearly)
= m () -
(IT) Approach tricritical point in the critical regime such that 1 « %d
S i
e Specific heat cy: % =a+ %me + %cm4 and cg = —TSQTZ;
(I) In the tricritical regime: m oc (T — T)Y* and b oc (T — T})
= ey~ S (T — 1) ~ (T, — T)"1/? =
(II) In the critical regime: m oc (T; — T)Y2, b « |T — T3|?, ¢ oc (T — Tp)
= e~ Z5(T,—T) ~ (I; ~ T)" = [ay=-1
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e Susceptibility

3 5 — am = 1
From bm + ¢cm?® + dm” — h = 0, one gets G |h:0 = 5 3am2 |h:0’

n the tricritical regime:
(I) In the tricritical regi
b @) -
(IT) In the critical regime: b « |T' — T;|?, c oc (T — T})
1 cm2~(T—Tt)2

F~ e~ (D)7 =

e Correlation functions

The exponents v,n do not change at the tricritical point, since the
mean-field correlations do not depend on ¢ (e.g., & ~ +/|g/b|)

= ’Vt=1/2, 7],520‘

Summary: Mean-field exponents in the tricritical regime:
Br=1/4, v=1 a4 =1/2, 1y =1/2, 3 = 0

(c) Application: Ginzburg criterion

Recall Sec. 4.3.5: The Landau theory is good, if dv — 25 —~ > 0 for the
mean-field exponents v, 3, . Inserting the values for the critical exponents

at the tricritical point, one obtains d > d; with

Thus the upper critical dimension at the tricritical point is only 3!
In three dimensions, critical fluctuations only lead to logarithmic correc-
tions to the behavior predicted by the Landau theory.

4.4.3 Lifshitz point
(a) Ginzburg-Landau theory for modulated phases

Practical relevance: Often used to describe materials that spontaneously
form modulated nanostructures, e.g.,
— Modulated magnetic superstructures in crystals
(Hornreich et al 1975 — lattice spin model: ANNNI model)
— Amphiphilic systems and microemulsions
— Block copolymer nanostructures
— Domains in lipid membranes

Also postulated to exist in the QCD phase diagram by some models
Ginzburg Landau theory

Modulated phases are possible, if the coefficient g of the square gra-

dient term in the Ginzburg-Landau functional becomes negative. In

this case, a stabilizing term of higher order must be included, e.g.,

tv(Am)?

~  F =§d% [1bm? + em? — hm + $9(Vm)? + Sv(Am)?]
Phase behavior: To find the transition to a modulated phase, we calcu-

-,

late the structure factor S(k) oc x(k) (k-dependent susceptibility)

Minimize .# — Euler-Lagrange equations
= bm4cm®—gAm+vA?m=nh
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Fourier transform 7 — k and linearization in m
= bm(k) + g k*m(k) + v k*m(k) = h(k)

= x(k) o 20 ;

oh(k) — b+gkZ+uk?

Analysis
If ¢ <0, then X(E) has a maximum at k* = \/T/%,
= X(k*) = 5=z,
In that case, x(k*) diverges at b = g2/4v

~» Homogeneous phase is unstable, transition to a modu-
lated structure with characteristic wave vector k*

Phase diagram

b

Disordered phase

Brazovi type
Lifshitz point g

o

Modulated phase
Fii

e,
%,

Continuous, Ising—type

T,

order
Homogeneous, two phase region

Ay,

Discussion

— In mean-field approximation: T'wo types of continuous transitions
meet at the multicritical Lifshitz point: A regular Ising-type
transition at g > 0, b = 0 and and a ”Brazovskii”-type transi-
tion at g < 0, b = 4/g%/4v between a disordered phase and a
modulated structure.

— At the Lifshitz point, the wave vector k* of the modulated struc-
ture becomes zero - i.e., the wave length diverges.

(c) Critical behavior at Lifshitz points

e Exponents «, 3,7, are the same as in the Ising model, as they do not
depend on g.

’aLZOa BrL=1/2, 71 = q, 5L:3‘

e At the Lifshitz point (¢ = 0), we have x(k) ~ bﬁj,& ~ b(1+}€4§4)

~» Not a Lorentz curve, but ¢ = (v/b)"/* is clearly the characteristic
length scale in the system! Diverges as b oc (T'— T1) — 0.

-

At b= 0, we have X(E) okt = k@) o np = —2

e Upper critical dimension: d.v;, — 26, — v, >0 =
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(d) Fluctuation effects
— Upper critical dimension is very large ~» Fluctuation effects are strong!

— In fact, the lower critical dimension (the minimum dimension where a

Lifshitz exists), is believed to be d; = 4.
— In three dimensions or less, the Lifshitz point becomes unstable and
probably turns into a regular tricritical point
(Numerical evidence for the case of a block copolymer melt: Vorse-
laars, Spencer, Matsen, PRL 2020).
— Also, the Brazovskii transition becomes first order due to fluctuations
by a mechanism called ”Brazovskii mechanism” (ordered modulated

b
Disordered phase
g

Rl

domains break up).
Weakly first der
"a,' Tricritical point
iy
T Continuous, Ising-type

s,
%
%,

b
Disordered phase
Modulated phase 2"

Lifshitz point g
Continuous, Ising-type R
First orderg:
5 Homogeneous, two phase region

Real phase behavior in 3D

Mean-field phase behavior
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