Lecture Notes

in Physics

Edited by H. Araki, Kyoto, J. Ehlers, Minchen, K. Hepp, Zirich
R. Kippenhahn, Miinchen, H. A. Weidenmiller, Heidelberg
and J. Zittartz, Kin

186

Critical Phenomena
Proceedings, Stellenbosch, South Africa 1982

Edited by F. J. W. Hahne

o

Springer-Verlag
Berlin Heidelberg GmbH



Lecture Notes in Physics

For information about Vols. 1-99, please contact your bookseller or Springer-Verlag.

Vol. 100: Einstein Symposion Berlin. Proceedings 1979.
Edited by H. Nelkowski et al. VIll, 550 pages. 1979.

Vol. 101: A. Martin-Lof, Statistical Mechanics and the Foun-
dations of Thermodynamics. V, 120 pages. 1979.

Vol. 102: H. Hora, Nonlinear Plasma Dynamics at Laser
Irradiation. VIII, 242 pages. 1979.

Vol. 103: P. A. Martin, Modéles en Mécanigue Statistique
des Processus Irréversibles. IV, 134 pages. 1979.

Vol.104: Dynamical Critical Phenomena and Related Topics.
Proceedings, 1979. Edited by Ch. P. Enz. XIl, 390 pages.
1979.

Vol. 105: Dynamics and Instability ot Fluid Interfaces. Pro-
ceedings, 1978. Edited by T. 8. Serensen. V, 315 pages.
1979.

Vol.106: Feynman Path Integrals, Proceedings, 1978. Edited
by S. Albeverio et al. XI, 451 pages. 1979.

Vol. 107: J. Kijowski, W. M. Tulczyjew, A Symplectic Frame-
work for Field Theories. iV, 257 pages. 1979.

Vol. 108: Nuclear Physics with Electromagnetic Interactions.
Proceedings, 1979. Edited by H. Arenhéve! and D. Drechsel.
IX, 509 pages. 1979.

Vol. 109: Physics of the Expanding Jniverse. Proceedings,
1978. Edited by M. Demianski. V, 210 pages. 1979.

Vol. 110: D. A. Park, Classical Dynamics and Its Quantum
Analogues. VIili, 339 pages. 1979.

Vol. 111: H.-J. Schmidt, Axiomatic Characterization of Physi-
cal Geometry. V, 163 pages. 1979.

Vol. 112: Imaging Processes and Coherence in Physics.
Proceedings, 1979. Edited by M. Schlenker et al. XIX, 577
pages. 1980.

Vol. 113: Recent Advances in the Quantum Theory of Poly-
mers. Proceedings 1979. Edited by J.-M. André et al. V, 306
pages. 1980.

Vol. 114: Stellar Turbulence. Proceedings, 1979. Edited by
D. F. Gray and J. L. Linsky. X, 308 pages. 1980.

Vol. 1156: Modern Trends in the Theory of Condensed Matter.
Proceedings, 1979. Edited by A. Pekalskiand J. A. Przystawa.
1X, 597 pages. 1980.

Vol. 116: Mathematical Problems in Theoretical Physics.
Proceedings, 1979. Edited by K. Osterwalder. VI, 412
pages. 1980.

Vol. 1#7: Deep-lnelastic and Fusion Reactions with Heavy
lons. Proceedings, 1978. Edited by W. von Oertzen. Xill,
394 pages. 1980.

Vol. 118: Quantum Chromodynamics. Proceedings, 1979.
Edited by J. L. Alonso and R. Tarrach. IX, 424 pages. 1980.

Vol. 119: Nuclear Spectroscopy. Proceedings, 1979. Edited
by G. F. Bertsch and D. Kurath. VII, 250 pages. 1980.

Vol. 120: Nonlinear Evolution Equations and Dynamical
Systems. Proceedings, 1979. Edited by M. Boiti, F. Pempi-
nelli and G. Soliani. VI, 368 pages. 1980.

Vol. 121: F. W. Wiegel, Fluid Flow Through Porous Macro-
molecular Systems. V, 102 pages. 1980.

Vol. 122: New Developments in Semiconductor Physics.
Proceedings, 1979. Edited by F. Beleznay et al.V, 276 pages.
1980.

Vol. 123: D. H. Mayer, The Ruelle-Araki Transfer Operator
in Classical Statistical Mechanics. VIIl, 154 pages. 1980.

Vol. 124: Gravitational Radiation, Coilapsed Objects and
Exact Solutions. Proceedings, 1979. Edited by C. Edwards.
VI, 487 pages. 1980.

Vol. 125: Nonradial and Nonlinear Stellar Pulsation. Pro-
ceedings, 1980. Edited by H. A. Hill and W. A. Dziembowski.
VIIl, 497 pages. 1980.

Vol. 126: Complex Analysis, Microtocal Calcuius and Rel-
ativistic Quantum Theory. Proceedings, 1979. Edited by D.
lagolnitzer. VIli, 502 pages. 1980.

Vol. 127: E. Sanchez-Palencia, Non-Homogeneous Media
and Vibration Theory. IX, 398 pages. 1980.

Vol. 128: Neutron Spin Echo. Proceedings, 1979. Edited by
F. Mezei. VI, 253 pages. 1980.

Vol. 129: Geometrical and Topological Methods in Gauge
Theories. Proceedings, 1979. Edited by J. Harnad and
S. Shnider. VIIl, 155 pages. 1980.

Vol. 130: Mathematical Methods and Applications of Scat-
tering Theory. Proceedings, 1979. Edited by J. A. DeSanto,
A. W. Séenz and W. W. Zachary. Xlil, 331 pages. 1980.

Vol. 131: H. C. Fogedby, Theoretical Aspects of Mainly Low
Dimensional Magnetic Systems. XI, 163 pages. 1980.

Vol. 132: Systems Far from Equilibrium. Proceedings, 1980.
Edited by L. Garrido. XV, 403 pages. 1980.

Vol. 133: Narrow Gap Semiconductors Physics and Applica-
tions. Proceedings, 1979. Edited by W. Zawadzki. X, 572
pages. 1980.

Vol. 134: yy Collisions. Proceedings, 1980. Edited by G.
Cochard and P. Kessler. XIll, 400 pages. 1980.

Vol. 135: Group Theoretical Methods in Physics. Proceed-
ings, 1980. Edited by K. B. Wolf. XXVI, 629 pages. 1980.

Vol. 136: The Role of Coherent Structures in Modelling
Turbulence and Mixing. Proceedings 1980. Edited by
J. Jimenez. XIll, 393 pages. 1981.

Vol. 137: From Collective States to Quarks in Nuclei. Edited
by H. Arenhével and A. M. Saruis. VIl, 414 pages. 1981.

Vol. 138: The Many-Body Problem. Proceedings 1980.
Edited by R. Guardiola and J. Ros. V, 374 pages. 1981.

Vol. 139: H. D. Doebner, Differential Geometric Methods in
Mathematical Physics. Proceedings 1981. Vil, 329 pages.
1981,

Vol. 140: P. Kramer, M. Saraceno, Geometry of the Time-
Dependent Variational Principle in Quantum Mechanics.
IV, 98 pages. 1981.

Vol. 141: Seventh International Conference on Numerical
Methods in Fluid Dynamics. Proceedings. Edited by W. C.
Reynolds and R. W. MacCormack. Vlil, 485 pages. 1981.

Vol. 142: Recent Progress in Many-Body Theories. Pro-
ceedings. Edited by J. G. Zabolitzky, M. de Liano, M. Fortes
and J. W. Clark. Viil, 479 pages. 1981.

Vol. 143; Present Status and Aims of Quantum Electro-
dynamics. Proceedings, 1980. Edited by G. Griff, E. Klempt
and G. Werth. Vi, 302 pages. 1981.




ecture Notes
in Physics

Edited by H. Araki, Kyoto, J. Ehlers, Miinchen, K. Hepp, Ziirich
R. Kippenhahn, Miinchen, H. A. Weidenmiiller, Heidelberg
and J. Zittartz, Koin

186

Critical Phenomena

Proceedings of the Summer School
Held at the University of Stellenbosch, South Africa
January 18-29, 1982

Edited by F J.W. Hahne

2

L %P |
Springer-Verlag
Berlin Heidelberg GmbH 1983



Editor

FJW. Hahne

University of Stellenbosch

The Merensky Institute for Physics
Stellenbosch, 7600 South Africa

ISBN 978-3-540-12675-1 ISBN 978-3-540-38667-4 (eBook)
DOI 10.1007/978-3-540-38667-4

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1983
Originally published by Springer-Verlag Berlin Heidelberg New York in 1983

2153/3140-543210



Table of Contents

M.E. Fisher
Scaling, Universality and Renormalization Group Theory ........ e s ..
Introduction ......ieciiinenanaennn te ettt eeet ettt

Critical Phenomena in Magnets and Fluids: Universality and Exponents .......

SCalinNg tiviinieeeernnnnncanaeannas F PP ettt ee it
Microscopic Models ..ivievvnneceoccnennnna Cetesersaa et R,
Renormalization Group TheOory ......ceiieiineinnanncnnenns teeesesas et ananans
Dimensionality EXpansSions .......ceeeveacenans feii et eireaecee et
Acknowledgments ......c.cieicicicnnananan feteeneieea e e edeereeiaeaaan
Appendix A The Kac-Hubbard-Stratonovich Transformation ....... Ceeteeasaaes
Appendix B Details of the e-Expansion Calculation .......ceveieenecenneans
Appendix C Dimensionality as a Continuous Variable .......... teesenenesaen
Appendix D Hyperscaling and Dangerous Irrelevant Variables ...............
Bibliography evenenceeaesesesventonsecasonancsasoacannses Ce et ra s
REfEreNCeS ..iiiiiiiieiennnnnereeonneneanseonnanaansns et eieeseaeteaaea e .o

H. Thomas

Phase Transitions and Instabilities ....... et aieeea et Ceheeete et e
Historical Introduction ........ [ et Cese e e N
Classical TheOrY .uiiuieiveeeerenerieronasoesaasanessoesoannnsees Ce et
Symmetry Aspects .....icciiieaann St aee et aseases e saseas et eattas e e nan
Mean-Field Approximation ........... f et e it reaes ettt Ceeeer e
Introduction to Driven Systems ........... Ceebeesaee e B eeaieeeraae e
Description of Driven SyStemS ....vuiueiineiineeiersancacsoacnonsnn Sreeseea..
Bifurcation from the Steady State ...... ittt ieeeonneracennnans
Onset of Turbulence ............. Cetaeeenaann Ceteteceeeaas ettt eaaa

A. Aharony

Multicritical Points .....eeeierniannnnnnnnn e eee e iaa et et
General Review: Tricritical Points ............ e e e earar e
General Review: Lifshitz and Bicritical Points .......... ... ... et
Landau Theory: Tricritical Scaling ..........ccv... S teei ettt e
Landau Theory: Other CasSesS ..uicieierteneceensseneccaerosnanns feeteae e
Renormalization Group and Scaling ....eieiiieiinriaeeeneronenns e

Continuous Spins, Wilson's Renormalization Group and the Gaussian Model ....

Landau and Lifshitz Point Theories ......cciiiiiiiiiiinnnnnnnnn e et
The E~EXPaNSioN ... eiuiesuieecaeessesoessoascsasonsanes et eaae e .
Results for Multicritical Points ...ttt iiinienennnnennns ceeeaan e

The Cubic Problem .....cicceeee. et teeait ettt e ceeeaene

100
116
117
121
128
132
136
137

141
142
143
159
165
173
177
185
200

209
210
216
222
228
232
236
242
247
252
255



M.J. Stephen

Lectures on Disordered Systems .........
Percolation ...veiieieneniennnnnans
Random Magnets .....eeieeeesccannns
Random Conductors .....c.ceeveeeeesa
Spin GlaSSeS .seeivceseecncotnnssanns

Localization ....eoeesececoncnsaces

A.L. Fetter

Lectures on Correlation Functions ......
X-Ray Scattering .......ceeevueennn
Two-Body Correlations .............
Neutron Scattering .......cceeveeess

Linear-Response Theory .....ceeeens

s e

B N I I I I AP

Dynamic Compressibility ....veieeiniiiiinnrnnenennnnns

Model Calculations for Density Correlation Functions .

Fluctuation-Dissipation TheOXem .......eeeeuvesencaccnss

Magnetic Phenomena; Perturbation Calculations ....ceeeseeenennes

Magnetic Phenomena; Hydrodynamics Description ....... (SR

Light Scattering in Fluids ........

259
260
271
275
280
289

301
302
307
313
318
322
327
332
336
341
347



A. Bharony, Tel Aviv University
A.L. Fetter, Stanford University
M.E. Fisher, Cornell University
M.J. Stephen, Rutgers University
H. Thamas, University of Basel

ORGANIZING COMMITTEE

C.A. Engelbrecht, University of Stellenbosch

F.J.W. Hahne (Chairman), University of Stellenbosch

W.D. Heiss, NRIMS, CSIR, Pretoria (now at University of the Witwatersrand)
R.H. Lemrer, University of the Witwatersrand

W.S. Verwoerd, University of South Africa, Pretoria

P, du T. Van der Merwe, AEB, Pelindaba

0.A. van der Westhuysen, CSP, CSIR, Pretoria

Mrs. E. Blum (Secretary), CSIR, Pretoria

PARTTCIPANTS

D. Bedford, University of Natal, Durban

M.W.H. Braun, University of Pretoria

J.H. Brink, AEB, Pelindaba

J.D. Comins, University of the Witwatersrand, Johannesburg
E.D. Davis, University of Cape Town

P.R. de Kock, University of Stellenbosch

0.L. de Lange, University of Natal, Pietermaritzburg

S.J. Donovan, University of the Witwatersrand, Johannesburg
C.A. Engelbrecht, University of Stellenbosch

E.A. Evangelidis, AEB, Pelindaba

A.G. Every, University of the Witwatersrand, Johamnesburg
D. Eyre, NRIMS, CSIR, Pretoria

G.M. Field, University of Cape Town

G.C.K. F8lscher, University of the Witwatersrand, Johannesburg
P.J. Ford, University of the Witwatersrand, Johannesburg
W.E. Frahn, University of Cape Town

W.L. Gadinabokao, University of Bophuthatswana, Mafikeng
M. Gering, University of the Witwatersrand, Jochannesburg
F.J.W. Hahne, University of Stellenbosch

S. Hart, NPRL, CSIR, Pretoria

W.D. Heiss, NRIMS, CSIR, Pretoria



A

J.J. Henning, AEB, Pelindaba

J.D. Hey, University of Cape Town

M.J.R. Hoch, University of the Witwatersrand, Johannesburg
D.P. Joubert, University of Stellenbosch

S. Klevansky, University of the Witwatersrand, Johannesburg
F.J. Kok, University of Pretoria

R.H. Lemmer, University of the Witwatersrand, Johannesburg
P.E. Lourens, AEB, Pelindaba

L. Matthews, University of Pretoria

R.E. Nettleton, University of the Witwatersrand, Johannesburg
P.E. Ngoepe, University of the Witwatersrand, Johannesburg
G.N. v/d H Robertson, University of Cape Town

F.G. Scholtz, University of Stellenbosch

G.J. Shepherd, rhodes University, Grahamstown

L.C.A. Stoop, University of South Africa, Pretoria

J.H. van der Merwe, University of Pretoria

P. du T. van der Merwe, AEB, Pelindaba

E. van der Spuy, AEB, Pelindaba

C. van Niekerk, AEB, Pelindaba

W.S. Verwoerd, University of South Africa, Pretoria

J. du P. Viljoen, AEB, Pelindaba

D.H. Wiid, Rand Afrikaans University, Johannesburg



PREFACE

The study of critical phenomena and phase transitions has received considerable
attention during the past ten years, and many new achievements have been made.
Due to the smallness of our physics community, we in South Africa have not been

able to participate in this endeavour in any significant way.

It thus became apparent that in order to acquaint physicists in general with this
field an advanced course on these subjects within our programme of summer schools
was very opportune. The second school, which had as its topic "critical phenomena,"
was held at the University of Stellenbosch from January 18 to 29, 1982 and was both

well attended and enthusiastically received by students and practising physicists alike.

We consider ourselves very fortunate in having had five outstanding experts in the
field present the material in very clear terms. The enthusiasm and clarity of the
lectures was surely a unique experience for many of the students, and such exposure
to excellent physics is most likely to be the best counter to the waning interest in
pure science resulting from competition from financially more rewarding disciplines.
On behalf of all the participants, I wish to thank all the lecturers for performing
their task admirably.

This venture was only possible as a result of financial and organisational support
from the Council for Scientific and Industrial Research (CSIR). The CSIR has sponsored
these schools since the initiative was taken by the Organization for Theoretical

Physicists (OTP) and the South African Institute of Physics (SAIP).

The venue in the university town of Stellenbosch was well suited for holding the
course, and the use of the facilities, as well as other support, is gratefully

acknowledged.

These lecture notes consist of manuscripts either supplied by the lecturers themselves
or, in two cases, compiled from notes by participants who had further lengthy contact
with the lecturer concerned. In all cases these notes provide a very readable account

of the courses presented.

We are grateful to the editors that these notes can appear in the Springer series

"Lecture Notes in Physics."

Stellenbosch, South Africa F.J.W. Hahne
May 1983
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1. Introduction

My aim in these lectures will be to describe some of the more interesting and
important aspects of critical phenomena. I will, in particular, be discussing the

ideas of scaling and critical exponents and emphasizing the idea of universality.

Following this I will be dealing with the microscopic formulation of statistical
mechanics and certain series expansion methods that have been extensively used in
the past. These are not only applicable to critical phenomena, but are useful in
other areas of physics and engineering as well. The main emphasis and focus of the
lectures will, however, be on the collection of rather subtle ideas which underlie

renormalization group theory and its applications to critical phenomena. I will be

approaching them in roughly two stages: from the microscopics will come some
introductory concepts; then I will be describing the general renormalization group
ideas which are essentially topological in nature. I will be aiming, in describing
these general concepts, at applications beyond critical phenomena. They have for
example been used to handle the Kondo problem and to study various aspects of field
theories. Finally, I will discuss some of the first practical successes of the
renormalization group, based on the so-called “epsilon expansions”. These
expansions are generated in terms of the parameter € = 4-d, where d is the spatial
dimensionality of the physical system. They were some of the first sweet fruits of

the renormalization group ideas!

What is the task of theory? It is worthwhile, when embarking on theory to have
some viewpoint as to what theory is. There are different opinions on this
subject. Some people feel the task of theory is to be able to calculate the results
of any experiment one can do: they judge a theory successful if it agrees with
experiment. That is not the way I look at a theory at all. Rather, I believe the

task of theory is to try and understand the universal aspects of the natural world;

first of all to identify the universals; then to clarify what they are about, and to
unify and inter-relate them; finally, to provide some insights into their origin and
nature. Often a major step consists in finding a way of looking at things, a
language for thinking about things -- which need not necessarily be a calculational
scheme. This aspect of renormalization group theory, which I view as very
important, is underplayed in a number of articles and books on the subject.
"Shapes” are aspects I often regard as important. To make an illustrative point
here, the geometrical properties of the circle have been known for a long time, and
we tend to take them for granted. The ratio of the circumference to the diameter is
called m, which is only the first of many Greek letters that will be introduced in
these lectures! Its value, which today we know as 3.14159265358... was, from very
early times, felt to be the same for all circles; i.e., that it was a universal
property. This 1is true if space 1s Euclidean; and, to a very high degree of
accuracy, the space we inhabit 1s, indeed, Euclidean. The value of this ratio is of

1

course of great interest. The Bible has an unambiguous statement that the value of



m is 3, although the people to whom that is attributed probably knew that it was not
exactly equal to 3. This "Biblical” theory is the analogue to the so-called
"classical” theory of critical exponents that will be referred to frequently in
these lectures. We know that the Ancient Greeks already had very good inequalities
for m. Of course, the numerical value of m is now known to very many decimal places

indeed, and there are numerous series expansions which converge to the exact value,

T = 6—2+6—2+6—2+..... (1.1)
1 3 5

Also, there are explicit formulae that relate 7 to the other transcendental numbers,

such as

the most famous being

e =-1. (1.2)

In a similar way, in the theory of critical phenomena there 1is a set of

important numbers, the critical exponents, and they are also believed to be

universal in character. In these lectures evidence will be presented to show that
this is so. In addition some formulae, in the form of series expansions, have been
derived for these critical exponents, but, so far, only the first few terms in the
expansions are known. Also, while the expansion (l.1) for m is convergent, the €-
expansions for the critical exponents are almost certainly not convergent in
general, unless they are treated in a speclal way. We will also see that there are
a number of formulae like (1.2) which relate the various critical exponents to one
another, although perhaps with not quite the mathematical rigor and generality of
(1.2).

These remarks more or less sum up the attitude I will be taking towards the

subject matter of these lectures.

2. Critical Phenomena in magnets and fluids: Universality and Exponents

2.1 The gas—liquid critical point

The first critical point to be discovered was in carbon dioxide. Suppose one
examine52 a sealed tube containing CO2 at an overall density of about 0.5 gm/ce, and
hence a pressure of about 72 atm. At a temperature of about 290 C one sees a sharp
meniscus separating liquid (below) from vapor (above). One can follow the behavior
of liquid and vapor densities if one has a few spheres of slightly different
densities close to 0.48 gm/cc floating in the system. When the tube Is heated up to
about 36) C one finds a large change in the two densities since the lighter sphere
floats up to the very top of the tube, i.e., up into the vapor, while the heaviest
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Fig. 2.1 (a) (p,T) diagram for a typical physical system;
(b) corresponding plot of particle number density p versus T.
The vertical “"tie-lines™ link coexisting liquid and vapor
densities, and span the region of liquid vapor coexistence.



one sinks down to the bottom of the liquid. However, a sphere of about “neutral”
density (in fact "critical density”) remains floating "on" the meniscus. There 1is,
indeed, still a sharp interface between the two fluids, but they have approached one
another closely in density. Further slight heating to about 310 C brings on the
striking phenomenon of critical opalescence. If the carbon dioxide, which is quite
transparent in the visible region of the spectrum, is illuminated from the side, one
observes a strong intensity of scattered light. This has a bluish tinge when viewed
normal to the direction of illumination, but has a brownish~orange streaky
appearance, like a sunset on a smoggy day, when viewed from the forward direction
(i.e., with the opalescent fluid illuminated from behind). Finally, when the
temperature is raised a further few tenths of a degree, the opalescence disappears
and the fluid becomes completely clear again. Moreover, the meniscus separating
"liquid” from “vapor” has completely vanished: no trace of it remains! All
differences between the two phases have gone: 1indeed only one, quite homogeneous,

"fluid" phase remains above the critical temperature (Tc = 31.04o C).

These phenomena are best interpreted in the pressure-temperature (p,T) phase
diagram shown in Fig. 2.1. The first three stages are represented by the points a,
b and ¢ on the vapor pressure curve. Note that Tc and p, are the critical
temperatures and pressures respectively at which critical opalescence is observed.
As the temperature is raised further, the system follows a contour of constant
overall density (the "critical isochore™). The whole process is completely
reversible. Significantly, it is possible to go from liquid (point 1) to vapor
(point 2) either smoothly via a route along which the properties of the fluid always
change smoothly and continuously, or through the vapor pressure curve, at which a
first order transition takes place with a discontinuity in density, internal energy,
etc. Any point iInside the shaded region of Fig. 2.1(b) corresponds to liquid and
vapor coexisting with one another. As the critical point is approached the two
densities, pliq(T) and pvap(T) become closer and closer to each other until they
match at T = Tee

2.2 Universal behavior

One finds that the actual variation of pliq(T) and pvap(T) is close to
universal for gases such as argon, krypton, nitrogen, oxygen, etc., in the sense
that if the temperature 1s normalized by the critical temperature, Te» and the

density by the critical density, Per then the data for the different gases all fit

very nearly on the same coexistence curve. The shape of this coexistence curve will
be one of the first objects of our investigation. The simplest curve which has the
same basic shape as the coexistence curve graphed as T vs p is, of course, the
parabola y = sz. The assertion that the coexistence curve 1is parabolic (in the

critical region) in fact represents the "Biblical” or classical theory of the



coexistence curve. At first sight, it seems to be a most natural and unprejudiced
starting point. But what really is the shape of this curve near Tc? That is the

question one must ask!

To that end we introduce here a variable that will be greatly used, namely, the

reduced temperature

t = —=5, (2.1)

which measures the deviation of the temperature from critical in dimensionless
units. Now as T approaches Tc from below, the difference between the liquid and gas
densities, Pliq and Pyap respectively, 1is going to vanish as, we might reasonably

expect, some power B of It'. Thus we write

pliq_pvapN [t] as T + Tc—. (2.2)

The exponent B 1is the first of the critical exponents that will be introduced in
these lectures. It is the analogue of m because it directly describes the shape of
the coesxistence curve. From the way the parabola is oriented in Fig. 2.1(b), we
see that the classical or "Biblical” theory prediction is simply B=1/2. How does
this compare with the value of B measured in the real world? The experiments that
have been done in this connection are some of the most precise experiments ever
performed in Physics. A notable example is provided by the work of Balzarini and
Ohrn’ who measured the coexistence curves for xenon and sulphur hexafluoride using
very sensitive optical methods. These two fluids are obviously very different
chemically but, nevertheless, their critical behavior is found to be essentially the

same. The data on the density jump Ap = p - span the range from t = 3 x 10_2
1liq

p
down to 3 x 1076 and on a log-log plot lie ;2?; accurately on two straight and
parallel lines. This first confirms the power law behavior and then yields a value
of B which is quite close to 1/3. The precise value lies somewhere in the interval
0.32 — 0.34, perhaps closer to 0.32. Despite the experimental accuracy and the
great range of the data one cannot, unfortunately, actually determine such critical
exponents to much better than +0.02, We are certain now that it 1s not a simple
fraction, or at least not a very simple fraction 1like 1/2 or 1/3! Clearly,
therefore, the "Biblical" value is quite outrageously wrong. Finally, in line with
n being independent of the size of the circle, it is found that B is also quite
independent of the type of fluid; the same values are found for water, a highly
associated liquid, for liquid metals, and for the 'quantal liquids' helium three and
four at their liquid-vapor critical points.



2.3 Binary fluids

Another type of system which has been much investigated is that of a mixture of
two chemical compounds, say A and B, that at high enough temperatures are mutually
soluble, but at lower temperatures separate out into two phases as o0il separates
from water, which we will call o and B (see Fig. 2.2). There are a great many
combinations that can be used: organic liquids such as aniline and cyclohexane or
carbontetrachloride and perfluoroheptane are favourites because the interesting
behavior occurs (under atmospheric pressure) at temperatures close to room
temperature. The vapor phase is usually present, as shown in Fig. 2.2, but plays no
essential role. The denser phase at the bottom could be, for example, A-rich, while
the less dense one floating above it would then be B-rich. As the temperature is
increased a liquid-liquid critical point or consolute point is reached and critical
opalescence is exhibited just as for a one-component fluid. Beyond this point only

a single, homogeneous liquid phase exists.

N

-|—Vapor

#;
?a/i/B—rich phase
\\ \/A—rich phase

Fig. 2.2 Illustrating phase separation in a binary liquid mixture of two
chemical species A and B.

Now what should one focus on instead of the density difference? We will use

symbols such as x:

and so on. As the critical temperature is approached from below one observes that

to denote the mole fraction of A molecules in the A-rich phase a
the composition difference between o and B phases varies as

a B B

X, =X~ [t]®, (t + 0-). (2.3)

The question is "Does B8 have the same value as before?” The answer 1s an
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unequivocal "yes™ as can be seen from experiments on very many binary fluid systems
(including molten metal mixtures). An interesting comparison has been published by
Sienko4. He finds, for example, that on a normalized log-log plot the coexistence
curve for CC14 and C7F14 shows a form which is almost indistinguishable from that of
the 1liquid-vapor coexistence curve for C0,, so that B again lies close to 1/3.
Sienko and coworkers also studied the metal-ammonia systems in which alkali metals
Na, Li and Ca are dissolved in NH,. At first sight these mixtures appear to provide
an exception to the B = 1/3 rule. For temperatures deviating from (below) Tc by
from 1% to 10% (i.e., t = 0.01 — 0.1) the coexistence curve on a log-log plot has a
steeper slope than for other systems and, indeed, seems to conform to a B = 1/2
relation as predicted by the "Biblical"” theory. But accurate data that are taken
closer into the critical (or consolute) point fall clearly into line with all the
other systems: the slope changes quite rapidly around t = 0.007 to 0.009 and
decreases to yield again 8 = 1/3. So we are forced to accept this universality of
behavior, but we learn that the universality does not extend indefinitely out of the
critical region. Indeed it 1is really a matter of extrapolating in towards the
critical point if one wants to determine the true, universal, asymptotic behavior.
So when I discuss critical behavior it is always a matter of approaching close
enough to the critical point. It is worthwhile to embody this point in a formal
definition of a critical exponent which can then be used for more exact and rigorous

theoretical arguments and analyses.

2.4 Critical exponents defined precisely

A

Generally, when we say a function f(x) behaves like x", or write

£f(x) ~ xA as x + O+, (2.4)

it will be taken to mean that

1im In[f(x)]

®»0+ 1Inx =X (2.5)

In this way we can avoid introducing a constant for the coefficient of xx as would
be essential if we wrote f(x) = AxA or f(x) « xA. At a more subtle level suppose we

have a function such as
A
f(x) = Allox|"x". (2.6)
This does not vary as a simple or "pure" power law but rather has a "confluent”

logarithmic singularity. From a theoretical viewpoint one can still use eqn. (2.4),

and in this way one obtains a critical exponent equal to A. Thus even functions of
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this type with more complex singularities are covered. One of the important
contributions of renormalization group theory is that it reveals the circumstances
under which such logarithmic factors should be anticipated. One must always expect,
of course, that over any finite range there will be some correction terms: thus
even for an asymptotically pure power law one will generally have
f(x) = Axx {1 + aexe + e.. + a x + a2x2 + eee.}, (2.7)

where the confluent "correction” exponent, 6, may well be less than unity (although
it must be positive for the form written to make sense). On a log-log plot
corrections such as these can and do actually alter the slope and lead to erroneous
values for measured critical exponents. The most serious correction terms are those
where 8 < 1, the smaller the value of 6 the worse the problem. In fact, values of
around 1/2 are expected on theoretical grounds in many real situations. This
assertion reflects another valuable contribution of the renormalization group since
it has enabled us to give a sensible estimate of the exponent 6 and to explain why

this sort of behavior is what one should expect in most circumstances.

There have been people in the past who have questioned whether nature really is
required to conform to power law behavior near a critical point. The evidence,
both experimental and theoretical, is now compelling that, apart from logarithmic
factors in special cases and certain correction terms, power law behavior 1is the
rule. One would have to be a brave scientist indeed to hold out against this
conviction and this point. Nevertheless there are still those —— some would call
them “cranks" -- who argue that perhaps the "Biblical"” theory is still correct if
one goes really close to T., so that B8 = 1/2 after all! However, I am afraid that
in science, new and more correct ideas often win out only after their opponents die
or retire. ©Evidently many people are not as open to rational conviction by new

thoughts, as might be desirable!

Another problem that arises in the handling of experimental data is that the
critical temperature Tc is, of course, not known in advance. Usually one treats Tc
in the expression t = (T—Tc)/Tc as a fitting parameter. When the data extends over
several decades, the data close in to the transition point will sometimes be used to
determine Tc, while that further out then serves to determine the critical
exponents. Sometimes Tc will be determined separately from both sides in similar or
distinct experiments. All in all, great care has to be exercised when interpreting
even the very best data if one is not to assign misleadingly small "error” estimates

to parameters such as Tc’ B, and the amplitudes A, etc.
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2.5 Specific heats

In 1963 Voronel' (then in the Soviet Union) and his coworkers5 made some
historically important measurements of the specific heat at constant volume, Cy(T)
of argon in the vicinity of its critical point. More precisely, they observed the
specific heat at constant overall density along the critical isochore p = Per Below
Tc the system will, as seen, then consist of a mixture of vapor and liquid, and the
proportions of the two will actually change as the temperature is varied. So this
"specific heat” actually contains a latent heat contribution. Nevertheless that is,
both experimentally and theoretically, the most appropriate function to measure for
the study of critical behavior. Now the "Biblical"” or classical theory predicts
that (I will not say "this" anymore) the specific heat merely has a jump
discontinuity at the critical point, i.e., Cv(Tc') # CV(Tc+)‘ Actually
Cv(Tc_) > CV(TC+) is predicted as indicated by the dashed curve in Fig. 2.3.
Voronel' was the first one to do sufficiently careful and accurate measurements to
show unambiguously that this was not so! On the contrary, Cy(T) rose up smoothly
but very steeply on both sides of T, as sketched in Fig. 2.3. Asymptotically the

variation has the form
Cym ~ [e]™, (e > 0h), (2.8)

where the specific heat exponent o has a value in the region of 1/8 to 1/9 for most
fluids. Because of the small value of a, correction terms now assume much greater
importance and make o hard to determine precisely. Also one might question whether
CV does, indeed, diverge to infinity, or whether it just has a sharp spike or cusp
at Tc'

On this latter question microscopic models are able to provide us with some
definite guidance. These models come in various shapes and sizes: but the most
famous is undoubtedly the Ising model, which I will be discussing in more detail
later in these lectures. Onsager's celebrated solution of the 2-dimensional Ising

model in 1944 gave the specific heat as
Cy(T) = A In|t] + finite "background” terms. (2.9)

The singular behavior is carried mainly by the leading logarithmic term (although
terms 1like tln|t| appear in the “background"). As 1is readily confirmed by
application of the formal definition (2.5), a logarithmic divergence corresponds to
the limiting case of ¢ + O+. [Consider the function zq(:) = (|t|_q—1)/a .] To draw
attention to the fact that the logarithm is present, this case is usually reported

as

a =0 (log).
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Fig. 2.3 Sketch showing the variation of the specific heat, Cy(T), of argon and
other fluids through the gas-liquid critical point. The dashed curve
represents the prediction of the classical (or "Biblical™) theories.



One small detail that Fig. 2.3 suggests one should take into account is that
the specific heat does not mirror itself around the critical point. Thus one
should, properly, define two exponments: a' for T < Tc and o for T > Tc' The
convention is that primed exponents refer to T < T, and unprimed to T > T, (except
where, like B, the definition makes sense only for T < Tc). Nowdays it is rather
well established on both experimental and theoretical grounds that a = a', so the

distinction is often dropped unless one has reason for being circumspect.

Modern experiments on critical specific heat obtain temperature resolutions of
107 or 1077 in t. Some of the best experiments are those of Ahlers6 on liquid
helium at its lambda point, T, = T, = 2.18 K, where the normal fluid becomes
superfluid. The transition is seen to remain sharp down to a tenth of a
microdegree. More recently Lipa7 has pushed the resolution still further down to
only tens of nanodegrees. The specific heat seems to continue rising down to these

very small deviations from Tc’

It is worthwhile asking the question at this point i1if, with continuing
experimental refinements, one can expect to observe the specific heat continuing to
diverge indefinitely close to T,. Naturally, precautions must be taken to allow for
gravity and other small disturbing factors. However, wultimately the basic
theoretical answer 1is "No, the specific heat cannot increase without bound”. The
reason is that in the laboratory one would always be dealing with a finite system,
with a finite number of atoms confined in a bounded region of space. A perfectly
sharp phase transition can take place only in a truly infinite system, i.e., in the
thermodynamic limit where the system is infinitely large in extent but its density,

pressure, and all other intensive quantities are fixed and finite. However large a
system is in practice, it will still be finite and, ultimately then one will reach
the point where the specific heat singularity is seen to be rounded off.
Experiments deliberately done on small samples certainly show these rounding
effects. So in talking about a phase transition one really should always have in

mind the thermodynamic limit.

The specific heat anomaly at the lambda transition in He4 is now believed to be
very close to logarithmic. Thus Ahlers quotes a = a' = ~0.02 * 2 (the uncertainty
being in the last decimal place) signifying that o 1is probably very slightly
negative. This suggests that the specific heat does not quite diverge to « but
rather comes up to form a sharp cusp at which point C(Tc) is finite but the slope
(dC/dT)c is infinite.

Similar behavior is also observed at magnetic phase transitions: a notable
case being the specific heat of the ferromagnet nickel near its Curie or critical
point, Tc' Magnetic systems are in many ways much simpler to think about
theoretically because magnetic field H=0 is a point of symmetry. One finds that the
zero-field specific heat of nickel displays a sharp cusp, but it is much less strong

than in the case of superfluid helium or some of the other fluid systems. In this
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case, and that of other magnetically isotropic magnetic systems, one finds that a« 1is
definitely negative although still quite small say o = -0.10 to =-0.15, high
precision being again difficult to attain.

2.6 The order parameter

In the case of simple fluids the parameter of apparently central interest is
the density, p. Following Landau's general conception of phase transitions, we name
this special quantity the order parameter and denote it generally as ¥. So for
single-component fluids we write ¥ = p. For fluid mixtures we saw that what
mattered was the difference between the mole fractions, Ax, which measures
differences in composition: so here we have ¥ = Ax. For superfluid He4, the
crucial theoretical concept, which embodies our understanding of superfluidity, 1is
an effective macroscopic wave function, ¢ = ¢' + 1 ¢''. As a wavefunction this has
both real and imaginary parts. While p and Ax are both simple scalar quantities, a
complex number is best thought of as a two-component vector. Thus the superfluid
order parameter, Y = y, is a two-component vector which has the symmetry of a
circle, i.e., can point in any direction in the complex plane. It is the phase of Y}
which is in fact responsible for the existence and nature of superfluidity. In the
case of ferromagnetism, there are various possibilities, but certainly it is the
magnetization, ﬁ, which should be the order parameter. In the case of a magnet
like nickel, the magnetization can point freely in any direction; i.e., nickel is
spatially, highly isotropic; then the magnetization can be thought of as a three-
component vector t= (Mx’ My, Mz).

In summary, we see that the order parameter, ¥, has a tensorial character which
may depend on the class of systems considered. Theoretically it is natural to
distinguish between these various cases, and the renormalization group has enabled
us to make this distinction meaningful and effective. In particular we often refer

to n, the number of components of the order parameter. Then we have:

n = 1 for simple fluids, binary fluids, uniaxial ferromagnets, binary alloys,

etc.

4 3 4

n = 2 for superfluid He" and He” + He ' mixtures, XY-magnets (easy plane

of magnetization).
n = 3 for isotropic magnets, etc.
As regards values of the critical exponents, none of which conform to

“Biblical” or classical theory, there is found to be a subtle dependence on n.
Specifically, one has a(n=1) = 0.11, a(n=2) = 0.0 and a(n=3) = 0.14 + 4. Similar
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slight differences are found for the critical exponent B8, viz. B(n=1) = 0.32,
B(n=2) = 0.34 and B(n=3) = 0.35 ~ 0.37. The n = 2 value applies to XY-magnets but
the corresponding superfluid order parameter is essentially inaccessible to
experiment. Clearly then, the symmetry or tensorial character of the order
parameter 1is important. The three cases described above are often referred to as
Ising-like (n=1), XY-like (n=2), and Heisenberg-like (n=3). Larger values of n are
not just of theoretical interest; they are also required for describing real
physical systems, in particular various magnetic crystals of more complex structure

and symmetry.

2.7 Fluid-magnet analogy

The close analogies that exist between fluids and ferromagnets are worth
emphasizing, even though ferromagnets have an intrinsic symmetry that makes them
easler to think about. Conjugate to the order parameter, ¥, in any thermodynamic
system, is a "thermodynamic field" variable, h. 1In the case of fluid the pressure,
p, has traditionally been treated as this conjugate variable, but often it is better
to regard h as the chemical potential, u. The pressure p or chemical potential y is
the variable that directly allows one to alter the density (at constant
temperature). The analogous variable for a magnet should therefore be the magnetic
field H, which is the variable primarily coupled to the magnetization. Fig. 2.4
illustrates clearly how far the analogy can be taken. 1In the case of the magnet, in
the (h,T) plane, there i1s a line of first order transitions separating the "up” and
"down" ferromagnetized states; this line ends at the critical (or Curie) point. The
first order transition line 1is analogous to the vapor pressure curve, but differs
from it in one minor respect in that it is entirely confined to the H=0 or T-axis.
This, of course, is a consequence of symmetry under H + -H. In the (¥,T) plane
there 1s a coexistence curve in both cases. Inside this curve the magnet breaks up
into domains; this is analogous to gas-liquid coexistence in fluids. For the magnet
the coexistence or "spontaneous magnetization” curve is symmetric about the T-axis
while for the fluid this symmetry is apparently absent. Below Tc the order
parameter variation for the fluid is given by Pliq Pyap ~ ltIB while for the
magnet it is MO(T) ~ ltlB, where the spontaneous magnetization should be defined as

MO(T) = lim  M(H,T). (2.10)
H>0+
This careful definition of MO(T) is neccessary because M takes different limiting
values depending on whether H=0 is approached from positive or negative values. The
specific heat exponent is also defined in an analogous way for the two systems, and
so on. Thus while most emphasis will be placed on magnetic systems, analogous

effects and similar results hold for other types of systems in nearly all cases.
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Fig. 2.4 Phase and coexistence diagrams illustrating the magnet—-fluid analogy.
Note magnetization corresponds to density and magnetic field to pressure
or, better, chemical potential.
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The question of how the perfect symmetry of the spontaneous magnetization curve
is reflected in the less than fully symmetric nature of the fluid coexistence curve
is a fairly subtle one. For the magnet the natural field variable to take, because
of the symmetry, is H. One suspects that for a fluid the most suitable variable by
analogy should be

h = P‘Pc'(T-Tc), (2.11)

where po' is the limiting slope of the vapor pressure line at Tc' In this way h
would measure the deviation from the limiting tangent (shown dashed in Fig. 2.4),
which one expects might be the analogue of the H=0 symmetry axis of the magnet.
This 1s sometimes called a scaling axis. A remarkable feature of the coexistence
curve 1s that the 1line of mid points between the 1liquid and vapor phases is
surprisingly straight. Furthermore, one can clearly define two different exponents,
B_ and B, with respect to deviations below and deviations above critical density,
Pes i.e., for the vapor and liquid sides of the coexistence curve. There is no
obvious (or known) symmetry between liquid and gas that should tell us a priori that
these two exponents should be the same; yet to an exceedingly high degree of
accuracy they are identical in value! Somehow the system builds 1itself an

asymptotic symmetry from a Hamiltonian which does not, in the first place, possess

this symmetry at all. Again, the renormalization group 1s able to explain how a
system is able to build up a symmetry on approach to a critical point, and to decide
when a symmetry can be built (or, on the contrary, when a weakly broken near

symmetry of the Hamiltonian is amplified).

2.8 Magnetic susceptibility

Above TC the spontaneous magnetization of a ferromagnetic material is
identically zero, but magnetization can be induced by applying a magnetic field,

H. Fig. 2.5 illustrates the type of isotherms observed.

The isothermal susceptibility is defined quite generally as a function of H and

T by

Xp(T,B) = (%%)T- (2.12)

One usually measures, and is most interested in, the so-called initial

susceptibility

o _ 1lim
xT(T) = 50+ xT(T,H), (2.13)

which measures the slope of the magnetization isotherm at zero field (as shown by
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Fig. 2.5 Typical ferromagnetic magnetization curves (isotherms) above T., at T,
and below T, (for a scalar,Ising-like or n=1 system).

the tangents in Fig. 2.5). 1In practice one often drops both the superscript o and
the adjective "initial” and Just refers to "the susceptibility”.
Clearly XT measures the ease of magnetizing a ferromagnet and hence 1is expected to
grow large and, indeed, diverge at the Curie point where, after all, a ferromagnet
essentially magnetizes itself! This divergence can be seen in Fig. 2.5: the slope
of the critical, T=T, isotherm is actually infinite at zero field. For theoretical

purposes it is usually convenient to define the reduced
ideal ideal

susceptibility x = XT/XT , where X is the isothermal susceptibility of an

ideal paramagnet (with no spin-spin interactions). Evidently, x, which is

dimensionless, measures the enhancement in magnetic responsiveness caused by the

interactions, which are, of course, responsible for the ferromagnetic critical

behavior. The analogous reduced susceptibility for a fluid is y = KT/KTideal, where
=1 (3
Ky =2 (ap) , (2.14)

T
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is the isothermal compressibility of the fluid and K193l = 1/p 1s the
corresponding quantity for an ideal gas. Since, as explained, x measures the ease
with which the order parameter is changed in response to the conjugate field, it is

often known as the response function. (See also the lectures by A. L. Fetter).

The divergence of x(T) at criticality is very strong and is characterised by an

exponent Y defined as expected via
x ~ 1/t (t+0+; h = 0). (2.15)

Measured values of Y are typically y(n=1) = 1.23 -~ 1.24, +y(n=2) = 1.31 --1.32
and Y(n=3) = 1.35 — 1.38. 1In the case of superfluid Hek, one does not know how to
measure X: thus only the exponent o can be measured (of the thermodynamic
properties we have defined). As can be seen, Y has a small n-dependence, but in all

cases deviates markedly from the "Biblical” value which is simply y=1.

Below Tc the situation 1is more complex. Even at H=0 there is a nonzero
spontaneous magnetization, MO(T). Nevertheless, (as mentioned), one can still
define the initial susceptibility as the limiting slope of the magnetization curve
when H » 0+. The temperature dependence of ¥, so defined, provides one with the
further exponent y'. These last remarks apply, however, only to the Ising-like case
of n=1. If n=2 or 3, so that a continuous (rotational) symmetry is present it can
be shown theoretically, although experimentally it is not so easy to observe, that
this limiting slope is infinite, so that xT(T,H) diverges as H»0+ for T < T, and the

exponent y' cannot be defined in the usual way.

2.9 Critical isotherm

The order parameter variation on the critical isotherm is generated by fixing
the temperature precisely at Te» varying the order field, h, and observing the
change in ¥, i.e., M or p as the case may be. For a magnet one finds that for small
H this variation is given by (see Fig. 2.5)

M(T = T ) ~ /8 @ o, T ), (2.16)

which defines the critical exponent §. Values of § are typically: &(n=1) = 4.8,
§(n=2) = 4.7, and &8§(n=3) = 4.6. These should, perhaps, be regarded as more
theoretical than experimental, since § is extremely difficult to measure accurately
owing to the steepness of the critical i1sotherm. The classical value is § = 3 which
corresponds to a cubic curve for the critical isotherm. Of course, this is just the

simplest analytic function which has the correct shape.

Naturally the critical isotherm near a fluid critical point displays completely
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analogous behavior. The relation is often written in reverse form as
lp=p_| ~ lap]® (T=T ) (2.17)
c 3 c ? hd
where Ap = PP s but this clearly corresponds precisely to the expected magnet-fluid

analogy. Likewise, "Biblical” theory (in this case the original prophet is van der
Waals) predicts §=3, a cubic relation, but experiment yields § = 4.2 to 4.8.

3. Scaling

3.1 Introduction: thermodynamic functions

The "Biblical” or classical theories break down completely in the region of a
critical point. What then, can replace them? It turns out that the simplest
phenomenological theories that come anywhere close to explaining critical behavior
embody the concept of scaling. In order to make the discussion reasonably
comprehensive one needs to couch it in terms of the full thermodynamics. Let us
consider a ferromagnet since its symmetry allows us to make certain convenient (but
inessential) simplifications. The Helmholtz free energy, F(T,H), is associated with
the basic differential thermodynamic relation

dF = -SdT - MdH, (3.1)

where S 1is the total entropy. From this one can, by means of a Legendre
transformation, generate the alternative free energy function, A(T,M) = F+MH, and it

is then a simple matter to show that the basic differential relation becomes
dA = ~SdT + HdM. (3.2)

The magnetic field and susceptibility are obtained from A by differentiation
according to
H = (%) and X = ——) . (3.3)

M M

Note that the susceptibility will diverge when T » T., but it is intrinsically non-
negative: 1Indeed a negative static compressibility or magnetic susceptibility is
thermodynamically inconceivable. This is equivalent to the statement that the free
energy A as a function of M must be a convex function: although the graph of A
versus M can have a flat portion, its curvature must, otherwise, be strictly

positive (See Fig. 3.1 below).
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3.2 The classical phenomenological approach or Landau theory

The simplest type of phenomenological theory in this context derives from mean
field theory; it was developed to a fine art by Landau and now frequently goes under

his name. It consists, first of all, in identifying the order parameter, VY,

(physically if this is possible but otherwise just as an abstract quantity), and
then expanding the appropriate free energy as a Taylor series in powers of the order
parameter. For a magnet the issue is straightforward: we have ¥ = M and the power

serles expansion reads
2 4
A(T,M) = AO(T) + AZ(T)M + AA(T)M + ... . (3.4)

By symmetry under M <+ -M no odd powers of M can be present. At high temperatures
this expansion can be justified for all reasonable models on fully rigorous grounds,
but near T, it turns out to be dangerous! By differentiating twice one obtains the
inverse susceptibility, which in zero field above Tc 1s thus given by

x & = 28,(T) for T> T, (4,M = 0). (3.5)

The next assumption is that the coefficients Aj(T) can also be expanded in
powers of t « (T—Tc) so that, in particular, we may write
x L=, .+ 24 &+ oed). (3.6)
2,0 2,1
When T + Tc+ the susceptibility, by definition of Te» diverges to infinity, so that
x"l + 0 as t » 0+, and hence A2 0= 0. The predicted behavior of x near Tc is thus
’

x = C/t as t > 0+, (H,M = 0). (3.7)

This, of course, corresponds to Yy = 1. The fact that this theory gives an incorrect
value for Yy can be traced directly to the unjustifiable assumption that A(T,M) can
be expanded in a power series near and, indeed, at a critical point. Nevertheless
this seems to be a very natural assumption of the sort which is frequently made in
physics and engineering. Furthermore, it can also be shown to be the essentially
inevitable outcome of any of the wide variety of more microscopically-based mean

field theories that have been proposed in this and many other related contexts.

In spite of the evident shortcomings of the classical phenomenological theory,
let us continue to explore its consequences by considering the effect of the term of

fourth order in M. Its coefficient is

A (1) = A, o+ OCt) = —2-!.1 + o(t), (3.8)



b amT)
T>Te

T<Te

Fig. 3.1 Variation of the free energy A(T,M) according to classical phenomenolog-
ical theory. The non—-convex section of the isotherms for T < T, must be
“corrected” by drawing in the flat, tangential segment, so forming the
“convex cover" of the underlying, approximate function.
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where the replacement of A4,O by #ll is purely a matter of convenience. We will
assume u > 0 to ensure thermodynamic stability (although, in fact, the case u < 0 is
required for dealing with tricritical points). Let us now examine the equation of
state, which is the relationship connecting T, H and M, near Tc‘ It is obtained by
differentiating A with respect to M and is easily seen to be of the form

H = M(ct + uM), (3.9)

where we have put 2A2 1] = ¢ 8o that, from (3.5) and (3.6), A2(T) = .%ct . For a
s
fluid the corresponding equation would, for example, follow from van der Waal's

equation with M replaced by p - Pe and H by p - Pee

On setting t = 0, we obtain the critical isotherm as H ~ M3 and, thence, the
erroneous prediction § = 3. For T < Tc and H > 0- one obtains an equation with

three roots, namely,

M=0
1
and M= & M (T) ~ Blt] =
4
with B = (c/u) . (3.10)

The first root turns out to have a higher free energy than the other two (see Fig.
3.1) and therefore is of no real physical interest. The other two roots provide two
equivalent states of equilibrium spontaneous magnetization. We see clearly that the

predicted value of the exponent B is 35 , the incorrect classical result.

One of the difficulties of the classical theory is associated with the
necessary convexity of the free energy. If one follows through in graphical terms
the arguments just presented, one obtains for the variation of A as a function of M
for various values of T the results shown in Fig. 3.1. Above Tc the variation
predicted by (3.4) is quadratic in M for small M and obviously convex. At T, the
coefficlent of the quadratic term vanishes and A has a pure fourth power dependence
on M. The graph is extremely flat but still convex as it should be. Below Tc’
however, the coefficient of M2 is negative, so the curve starts off at M = 0 like an
inverted parabola, although it is ultimately turned around by the positive quartic
term. The resulting concave portion of the curve for small M is clearly unphysical,
and this should be taken as an indication that the theory has gone wrong! This
defect in the theory can, however, be repaired in a more-or-less ad hoc way by means
of the "Maxwell construction”, which essentially consists of drawing a straight line
between the two minima at —MO(T) and +M0(T). This process generates the so—called
“convex cover" of the original A(M) plot. But what can be done about the totally

incorrect values of the critical exponents that come from this theory? Can anything
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be salvaged? The temptation is to somehow or other graft on the correct values!

This desire brings one naturally to the idea of scaling.

3.3 The scaling concept

There are several ways in which the desired modifications of Landau theory can
be introduced. One of the earliest and most direct approaches was that of Widom.
The gist of the argument goes as follows: Consider the exponent 8. The incorrect

classical value of b& arises from the presence of the M2

term in (3.9). Let us
therefore try to patch up the theory by replacing M2 by Ml/B where B is now a free
parameter that can be fitted to experiment. If this were all, the equation of state
would thus become

B~ Mct + u'/®y,

(3.11)

and so the spontaneous magnetization below Tc would come out correctly! Likewise,
however, one might try to get the susceptibility exponent, Yy, right by replacing t
in (3.9) by t'. For T > T, it follows that H = cMt” and so x ~tY as desired. If
this modification is to apply also for negative values of t then t should obviously
be replaced by |t|. This, however, is easily seen to lead one into trouble since it
introduces non-analytic behavior into the equation of state everywhere on the
critical isotherm t = 0 (even for H or M nonzero). This has quite unphysical
consequences since, in fact, the equation of state 1is, both theoretically and
experimentally, completely free of singularities on crossing the critical isotherm
away from H = M = 0. Similar problems arise in (3.11) for small values of M above

T where the expansion (3.4) should be valid but is not unless 1/8 is an even

C,
integer!

To avoid these problems let us rewrite (3.9) by dividing through by c|t!3/2 to
obtain the equivalent form

) {£1 + (L)”B}, (3.12)

B[)® Bt |®

H M
i
where we have replaced 3/2 by A while B and D are simply related to the original
constants ¢ and wu. However, from this point on we may release A from its
constrained value and treat it as a second free exponent, which, hopefully, can be
adjusted to get, say, Y correct. Now the spontaneous magnetization variles as ltl8
so the quantity M/B|t|P can be viewed as the magnetization scaled by the spontaneous
magnetization, MO(T). Similarly, on the left hand side of (3.12) we have the
magnetic field, H, scaled by a characteristic power of the temperature, namely,
[t]2. Next we notice that the full equation of state is a relation connecting M,T
and H which we could express as M =~}{(T,H). Widom's original suggestion was that,
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perhaps, when T > T,, and M and H become small the equation of state in general
simplifies if M is replaced by the suitably scaled magnetization, namely M/BItl8 and
H is replaced by a suitably scaled field, namely DH/ItIA. This evidently applies to
the special case (3.9) which embodies classical theory but perhaps it also holds
asymptotically for the true equation of state in the critical region! More
explicitly, the nature of the proposed simplification is that, in the critical
region, the equation of state reduces from a function M (T,H) of two variables to a
function of only one variable, but which relates the two scaled variables

together. In other words, we make the scaling postulate

M 7 - BW(D_HA)‘ (3.13)

|t It
where W is some sufficiently general function of a single argument. This assertion,
the scaling ansatz, must, at this stage, be regarded purely as a guess, albeit, as

we shall see, a remarkably successful guess!

In the classical theory we have B = 1/2 and A = 3/2 and these values are
universal for all systems: they simply arise from the integral exponents in the
assumed Taylor series expansion. Additionally in classical theory, as one sees from
(3.12), the full scaling function, W(y), is also universal. Thus we may expect more
generally that B and A are universal exponents and W(y) is a universal function,
even though the values will differ from their classical counterparts. On the other
hand, the parameters B and D, 1like Tc itself, must reflect the details of the

particular ferromagnet: thus they are referred to as non-universal amplitudes. The

exponent A is often termed the gap exponent.

Let us now examine some of the implications of this simple but, in fact, far-

reaching assumption. The susceptibility for t > 0 and H + 0 is given by

x = (g~ el mowrco, (3.14)
T,H=0

where W'(0) must just be some number. Since, by definition, we have y ~ t_Y, we see

that
A =8 +y. (3.15)

This shows how A should be chosen to give the right value of y. Otherwise it tells

us nothing new.

To find a new result let us look at the critical isotherm, T = Tc, for which
purpose the limit t + O must be studied. In this limit the scaled magnetic field

evidently diverges since

H

T as t > 0. (3.16)
lt]

y =D
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In the spirit of the enterprise let us then assume that W(y) also varies as

some power when y becomes large, i.e., suppose
A
Wy) =~ W 'y as y >, (3.17)
where W  and X are constants. It follows that
w= |t|® e w'/et. (3.18)

When t + 0, the temperature variable should drop out of this expression since M then
becomes a function of H only; consequently we must demand AA = B which fixes the

exponent A as

X = B/A. (3.19)
Thus there is, in reality, no free choice of A! Moreover, from (3.17) we now see
that M ~B'; but, by definition we have M~ H/® for T = T.. Thus we
conclude 6 = 1/, and hence

Ao+
§=g=1+g (3.20)

This novel equation relating the three exponents 8, Y, and § is known as Widom's

relation. It is our first nontrivial scaling law or, simply, exponent relation.

In a similar way, by integrating M = —(aF/aH)T to obtain the free energy F(T,H)
and then differentiating with respect to T one derives expressions for the entropy

and specific heat and hence establishes the so-called Essam-Fisher relation
a' + 28 +y' = 2, (3.21)

A little further investigation using the fact that there must be no singularities as
one crosses the critical isotherm, t = 0, at nonzero H or M reveals that one must

also have
a=al, (3.22)
for the specific heats above and below Tc and
Yy =v' (3.23)
for the susceptibilities. Evidently there are four relations connecting the six

exponents o, a', B, Y, Y' and 5§, and so only two of them can be independent: this

is a striking prediction, by now verified many times experimentally!
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M T~ l M/IfIB W, (y)
?/ T=T,
/ T>T W, (y)

0 y= /1

(a) A schematic plot illustrating equation of state data. i.e., M versus
H isotherms, for a ferromagnet through the critical region; (b) a scaled
plot of the same data illustrating the “collapse” of the data onto a
single scaling function W(y), with two branches W>(y) and W<(y)
corresponding to t 2 O.
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The success of scaling can be illustrated graphically by replotting equation of
state data for magnets, fluids, ete. in scaled form. Thus consider Fig. 3.2(a)
where M versus H isotherms are sketched for a ferromagnet. This data may be
replotted in scaled form as M/|t|® versus y = 0/|t|®® (recalling that A = 8§ by the
scaling laws) for appropriate choice of the exponents B and §, which might be
determined separately from the spontaneous magnetization curve and critical
isotherm. Scaling is confirmed if one observes, as in fact 1s fouﬂd,8 a "collapse”
of the data for the different isotherms onto a common locus, which represents the
scaling function W(y). Actually in this representation one finds two branches,
asymptotically matching as y + «, corresponding to Wy(y) and w<(y), the scaling
function for T % Tc‘ When the procedure is repeated for different magnets one

finds similar results with, indeed, the same scaling functionT

up to different
scaling amplitudes B and D. The scaling function that emerges for fluids 1is,
likewise, the same for all fluids, and furthermore it agrees, as do the exponents,

with that found for rmagnet:s!T

To sum up then, the scaling postulate proves to be a remarkably successful
guess, Our theoretical task from here on is to set scaling theory in a broader
context, to explain why it works, and to ask if we can actually calculate the
exponents and, also, the scaling functions, The renormalization group approach
provides many of the explicit answers and, further, explains the circumstances under

which scaling can break down and how it fails.

3.4 Scaling of the free energy

It 1is useful at this stage to recapitulate by taking a somewhat different
approach to scaling, and to be a little more precise. Specifically we will again
use the symbol "~" to mean "behaves 1like"” and take the symbol "=" to mean
"asymptotically equal to" i.e., if f(x) = g(x) as x » 0, the ratio, f£(x)/g(x)
approaches unity when x + 0. As before, the discussion will be couched in magnetic
language but, as previously emphasized, the same types of behavior are to be found

in many other systems 1f one merely identifies the analogous quantities properly.

In the critical region the free energy, F(T,H), will have a singular part which
embodies the leading critical behavior. Let AF be the deviation of the free energy
from its value at the critical point with other non-singular contributions (the
“"background” terms) also subtracted off. We define a normalized or reduced free

energy by

TWe restrict attention here to wuniaxial, n = 1 or Ising-like magnets. For
isotropic, n = 3, Heisenberg-like or XY, n = 2 magnets of different symmetry the
exponents differ slightly, (see later below) and, necessarily, the scaling functions
must also differ slightly for these distinct “universality classes.”
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-AF
fsingular = kBTV' (3.24)

Division by kBT produces a dimensionless quantity which, however, is still
proportional to the size of the system; thus, we have also divided by the volume, V,
in order to obtain an intensive quantity which contains the bulk thermodynamics.

The dimensions of f are thus inverse volume or number density. As we will be

working in the thermodynamic 1limit, f is independent of V (which we suppose becomes

infinite through a sequence of domains of reasonable shape).

In the previous section scaling was introduced via the equation of state in
(3.13). If we integrate M(T,H) with respect to H, this leads to the free energy
which (after background subtraction) will be similarly scaled. Alternatively, we
could introduce a scaling postulate directly for the free energy. In this way, the

scaling ansatz becomes the assertion

)

2-a
£ (T,H) = Ajlt] Y (0 —

eing. as t,H + 0, (3.25)

]
where A0 and D are non-universal scaling amplitudes which depend on the details of
the system. The first, AO, sets the scale of the free energy while D sets the scale
of the magnetic field. As before, there appear two universal exponents a and A. A
technical point that arises here concerning the scaling function Y(y) was already
alluded to before: specifically, the universal function Y(y) should really be
considered in two parts: Y>(y) for t > 0 and Y<(y) for t < 0. These two parts must
match analytically as y *» «, but to pursue that point here would be unecessarily
distracting. The reason for writing the power of the temperature prefactor in
(3.25) as 2 - a 1is to get the specific heat exponent correct, as is easily seen.
Let us set H = 0 and normalize the scaling function by setting Y(0) = 1, which we
may do because of the presence of the factor AO' Recalling that
entropy is given by S =- (aF/QT)H=0 it follows that the singular part of the

entropy varies as

-+
rh
—
4

AS(T) =

t " Alt ,» (H=0). (3.26)

Q)

The internal energy behaves similarly. The specific heat then follows as

-a
= At . (3.27)
8t2 2

Q

c(T) = T(—%) «

In these expressions Al and A, are amplitudes proportional to Ay (Note that the
variation of the prefactor T in the definition of C(T) is smooth and so does not
affect the critical behavior of the specific heat. For t > 0 the symbol C referred
to here could be subscripted either M or H since in zero field (H=0) one has

CM = CH: this is a special feature resulting from the symmetry of a simple
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ferromagnet. More generally, one should consider CM(T) or, for a fluid system,

CV(T) and so on.

The reader should sketch the variation of the zero field entropy S(T), noting
that S is monotonic, ahd also continuous through the critical point, T = Tc’ but
exhibits a vertical tangent there, varying in the vicinity as #+ Itll—“ where, as is
typically true, we have supposed o has a positive, albeit small value. Moreover,
the internal energy and many other quantities 'driven' by the critical behavior,
such as the resistance, exhibit precisely the same form near Tc' Thus it is not
these quantities themselves but rather their temperature derivatives which diverge
at T, (or, 1f -1 < a < 0 exhibit a sharp cusp there).

The equation of state M = A (T,H) is obtained by differentiating with respect
to H. This yields

M = _(a_)T « g%, agp|e[2 Y'(D'lti_A). (3.28)

The reason for calling A the gap exponent can now be seen. Each successive
differentiation with respect to H, to form y = (3M/3H), X, = (3x/3H), etc. changes
the exponent of the Itl prefactor by the constant decrement A. For T < Tc and H» 0
the scaling function Y' will approach a nonzero constant value and so, as before,
My(T) = B Itlz_“_A. But since, by definition, My(T) ~ ltls. it follows that

B=2-a-A. (3.29)

Adopting M/|t|s as the scaled magnetization, we see from (3.28) that this is a
function only of the scaled magnetic field, y « H/|t|%, thus recapturing the
original scaling postulate (3.13).

To obtain the critical isotherm we let t + 0O, and iIn line with the arguments
used in the previous section, assume that Y(y) = y)‘+1 when y » o, The
choice A = B/A ensures that |t| cancels out when t + 0. In this way, repeating the

details for the sake of completeness, we obtain

B/

M~ P (A ~ uf/8, (3.30)
A
t
But since M ~ gl/8 we conclude
A = BS, (3.31)

as before [see (3.20)].

Finally, the susceptibility is given by Xp = (aM/aH)T and for the reduced
susceptibility above Tc we find
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2
. 3—§ o A D2EZTH2E L oY, (3.32)

9H 0
so that we obtain the scaling relation

Yy=-2+a+ 2A. (3.33)

By combining (3.29), (3.31) and (3.33) one readily establishes the various scaling

relations
a+B8(1 +8) =2, (3.34)
o+ 2B +y =2, (3.35)
and A =8 +vy = BS. (3.36)

Quite clearly, the classical values of the exponents, viz. a = 0, B = 1& Y =1
and § = 3 satisfy these relations! Even before the full advent of scaling,
Rushbrooke had shown on rigorous thermodynamic grounds that, because of the

convexity of the free energy, the exponent inequality

a' + 28 +y' > 2, (3.37)

was a thermodynamic necessity. Note that this is a rigorous result that does not
depend on any assumption as scaling theory does. Similarly, Griffiths later proved
the inequality

a' +B(1 +8) > 2, (3.38)

corresponding to (3.34). Evidently, then, scaling theory certainly does not
conflict with thermodynamics even though it asserts that the rigorous inequalities
hold as equalities. Nor, however, can the scaling laws be obtained by pure
thermodynamic arguments although quite a few theorists have been tempted to think so
and to try to demonstrate it! Occasional reports in the past of measured values of
critical exponents violating the above inequalities have all proved to be poorly
founded (which is just as well, since otherwise a violation of the Second Law of

Thermodynamics would have been observed!)

It seems that, at least as far as systems belonging to the same symmetry class
are concerned, the critical exponents are universal quantities satisfying the
scaling laws. Similarly, the scaling function Y is a universal function only of the
scaled field y for such systems. However, as mentioned before, one does expect some

change in Y as n, the number of components of the order parameter and d, the spatial
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dimensionality, are varied. So we can write Y = Y(y;n,d). To emphasize this point,
note, as will be shown, that there are good grounds for believing that classical
theory 1s correct when d > 4. To see how the scaling function depends on d,
consider the behavior of the (zero-field) susceptibility above and below
criticality. We can write

+
x = C/tY as T T+,

= C_/'t:lY as T+ T -, (3.39)

where the amplitude ratio, c¢*/c”, should be universal but, clearly, depends on the
particular form of the scaling function. Within Landau theory it 1is an easy
exercise to prove C+/C_ = 2 (which is, indeed, universal). We can accept this for
d > 4, but for the Ising model (n = 1) and d < 4, we find C+/C_ ~ 5.03 for d = 3
while for d = 2 one knows the exact univeral value C'/C” = 37.693562... .

3.5 Fluctuations, correlations and scattering

What 1s the 'cause' of the failure of mean field theory and Landau theory? Why
do they yield wrong exponents and wrong scaling functions? The short answer is
"Because they neglect fluctuations”. To understand the significance of this piece
of now conventional wisdom and to explore further striking critical phenomena that
provide a key to the renormalization group approach, let us study fluctuations in
the critical region and introduce the correlation and scattering functions which

serve to quantify them and to describe relevant observations.

Much can be learned about criticality by scattering radiation --— light, x-
rays, neutrons, etc. =-—-— off the system of interest. In a standard scattering
experiment, a well-collimated beam of light, or other radiation, with known
wavelength, A, is directed at the sample, fluid, magnetic crystal, etc., and one
measures the intensity, I(0), of the light scattered at an angle © away from the
“"forward"” direction of the main beam. The radiation undergoes a shift in wave

vector, k, which is simply related to 6 and X by
[k| =<~ sin 48, (3.40)

The scattered intensity I1(6) is determined by the fluctuations in the medium. If
the medium were perfectly uniform (i.e., spatially homogenous) there would be no
scattering at all! If one has in mind light scattering from a fluid, then the
relevant fluctuations correspond to regions of different refractive index and,

hence, of particle density p(R). For neutron scattering from a magnet, fluctuations
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in the spin or magnetization density are the relevant quantities, and so on. We

Iideal(e)’

need to study the normalized scattering intensity I(6,T,H...)/ where

I(9;T,H..) is the actual scattering intensity observed at an angle 6, which will
normally depend on such factors as temperature, magnetic field, etc. while Iideal(e)
is the scattering that would take place if the individual particles (spins, etc.)
doing the scattering could somehow be taken far apart so that they no longer
interacted and thus were quite uncorrelated with one another. Now this normalized

scattering intensity is proportional to the fundamental quantity
. 1k-R
G(k) =/d1~z e TG(R), (3.41)

which represents the Fourier transform of the appropriate real space correlation

function G(R) (of density-density, spin-spin, etc.)

As the critical point of a fluid or fluid mixture is approached one observes
enormously enhanced values of the scattering, especially at 1low angles,
corresponding via (3.40) and (3.41), to long wavelength density fluctuations in the
fluid. In the immediate critical region the scattering is so large as to be visible

to the eye, particularly through the phenomenon of critical opalescence. This

behavior is not, however, limited to fluids. Thus 1f, for example, one scatters
neutrons from iron in the vicinity of the Curie point one likewise sees a dramatic
growth in the low-angle neutron scattering intensity as sketched in Fig. 3.3. (With
neutrons care must be taken to ensure that the total elastic scattering is observed
since the proportionality of 1I(8) to &(E) holds only if inelastic scattering
processes can be neglected.) As can be seen, for small angle scattering there is a
pronounced peak in I(8,T) as a function of temperature, and this peak approaches
closer and closer to Tc as the angle is decreased. Of course, one could never
actually observe zero-angle scattering directly, since this would mean picking up
the oncoming main beam, but one can extrapolate to zero angle. When this is done
one finds, in fact, that the zero-angle scattering I(0,T), actually diverges at
Tc. This 1is the most dramatic manifestation of the phenomenon of critical
opalescence and is quite general, being observed whenever the appropriate scattering

experiments can actually be performed.

In order to understand these effects we need to examine the correlation
function for the relevant quantity, which, in general, is the locally fluctuating
order parameter, ?(5), for the transition in question. Thus W(E) could, for
instance, describe how the spin varies from lattice site to lattice site in a
magnetic crystal. The overall spatial average of this quantity is what was
previously referred to as the (total) order parameter, ¥. We will define the
correlation function wa(g), or, for brevity, just G(R) by

Gyy (R) = <H(Q¥(R)> = <H(Q)><¥(R)>. (3.42)
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| 1(6,T)

6—0
"zero-angle
scattering”

small 8

Fig. 3.3 Schematic plot of the elastic scattering intensity of neutroms scattered
at fixed angle, 8, from a ferromagnet, such as iron, in the vicinity of
the Curie or critical point. The small arrows mark the smoothly rounded
maxima (at fixed 0) which actually occur above Tc (in contrast to
classical and most mean field theories which yileld a nonanalytic maximum
at T-= Tc).
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We will always presuppose a macroscopically large system, so that there is
translational symmetry. Likewise, we suppose that inhomogeneous effects due to
gravity, etc. can be ignored. This means that the two  average
quantities, <¥(0)> and <¥(R)> will be equal to one another and to the overall, bulk,

thermodynamic order parameter ¥. We may thus let

8¥(R) = ¥(R) ~ <¥>, (3.43)
represent the deviation or fluctuation of ¥ about its uniform mean value; then it is
a matter of simple algebra to show that the correlation function directly measures
the fluctuations since

G(R) = <8¥(0Q)S¥(R)> (3.44)
For simplicity we will often assume an isotropic system so that G is a function of R

rather than R.

3.6 The correlation length

If one thinks of a lattice of spins above Tc in zero field, H = 0, one
has <¥> = 0 by symmetry. A ferromagnetic exchange coupling between neighboring
spins then tends to align the spins parallel to one another whereas thermal energy
works to randomize them. Thus at high temperatures one expects the spin-spin
correlation function, G(g), to fall off rather rapidly with the
distance, R, separating the spins, whereas at lower temperatures the spins should
become correlated with each other over longer and longer distances, the correlation

function then decaying more slowly with R.

What should the law of correlation decay be? On fairly genmeral grounds one can
show” that away from T, the correlation function should fall off exponentially with
R for large distances, i.e., that the leading behavior is given by

G(R) ~ e_R/E as R + = (3.45)

where £ is a quantity that has the dimensions of length, and is thus called the

correlation length. It evidently tells us the scale on which the correlations

decay. At high temperatures £ will be just a few angstr;ms, but near a critical
point it becomes very large. This ties in well with our earlier comments on

critical opalescence, since if £ becomes comparable with the wavelength of the

*One must assume that the interactions themselves are of finite range or
decay rapidly.
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radiation, the medium will then contain fluctuations or inhomogeneities on that
scale, and this will give rise to strong low angle scattering i.e., to critical

opalescence.

There 1s another, very general theoretical route that tells us that £ must
become large near a critical point. This utilizes the fluctuation-susceptibility

relation which reads
G(0;T,H) = ‘fkg G(R;T,H) = x(T,H). (3.46)

For simplicity we consider here only the magnetic case. Note that a(Q;T,H) 1s the
limiting value as k + O of the Fourier transform of G(R;T,H). It thus depends only
on T and H and is therefore a thermodynamic function: via statistical mechanics one
finds it 1s just the reduced susceptibility, x(T,H) = kBT XT/mz, where m 1is the
magnetic moment per spin. Now when T » T, for H = 0, we know that x d;verges;
somehow this divergence must also come out of the integral in (3.46). Since G(R) is
a bounded function it cannot, itself, diverge [In the case of S = L@ spins one
has G(R) < %J; thus a divergence of the integral can only mean that G(B) decays very
slowly when T = Tc’ certainly more slowly than an exponential. Consequently we are
forced to conclude that £(T) diverges to infinity when T » T,. The variation of £

near Tc can, naturally, be described by
BT ~ 1/t°,  (M=0), (3.47)

where for three-dimensional systems the new exponent, v, has values around 2/3.
This contrasts with the classical prediction v = 1/2 (which follows from an
extension of phenomenological, Landau theory to inhomogeneous situations). More
concretely one has v= 0.63 for Ising-like (n = 1) systems, particularly fluids,

increasing to v = 0.70 for Helsenberg-like systems. For the two-dimensional Ising
model the divergence of £(T) was established by Onsager along with his original
calculation of the zero-field free energy which revealed the logarithmic divergence
of the specific heat; his results yield v = 1. In experiments on fluids such as
carbon dioxide, the correlation length has been measured down to t = 10_4 or 1070 by
when £ 1s thousands of angstr;ms in magnitude. The divergence of the correlation
length is one of the crucial clues to our general understanding of critical
phenomena; the renormalization group approach, in particular, focuses on the

behavior of the correlation length.

3.7 Decay of correlations at and below criticality

At Tc the correlation length is infinite. If it were not, then the integral in

(3.46) would necessarily converge and be finite: then x would be bounded at Tc
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which is certainly not the case! Thus precisely at T = T, the correlation function,
G(R) cannot be an exponential function of R. Moreover, it must, in general, still
decay to zero and one should, in fact, anticipate an “algebraic” or inverse power

law form such as

D
Gc(R) Rd-2+ﬂ as R + o (3.48)
(where the nonuniversal amplitude D should not be confused with our previous use of
this symbol). The reason for writing the decay exponent in this rather special way
is that G(R) frequently appears, as in (3.46), in volume integrals of the form

m
/dg G(RIX(R) «f R4 le(ryx(R) dR,
0
so that the d drops out. Evidently n is a new critical exponent which describes how
G(R) behaves at T.- Its numerical value is always rather small and in classical
theory, which, as already mentioned, will be found to apply for spatial
dimensionalities d > 4, one has n = 0. (Of course this result provides another good
reason for writing (3.47) in the form given.) For real three-dimensional systems
one finds n = 0.03 to 0.06, but it proves to be a very difficult parameter to
measure reliably and accurately in experiments. For d = 2 Ising-like systems the
theoretical value 1s n = 1/4; this can even be confirmed by experiments on
(effectively) two-dimensional systems. Since n is in all cases small, the integral

in (3.46) necessarily diverges and the susceptibility is indeed infinite at Tc‘

Beneath Tc there is a subtlety that has to be taken into account. The

correlation function in general now exhibits long range order, i.e., G(R) does not

decay to zero as R + « but rather approaches a nonzero value, say G(«). This
appearance of long range order 1is, in fact, one of the notable characteristics of
most phase transitions. In a magnet the zero field spin-spin correlation
function <S(Q)S(5)) when R + « becomes proportional to [MO(T)]Z, the square of the
spontaneous magnetization. Via the scattering theory this leads to a magnetic Bragg
peak in the scattering of strength proportional to [MO(T)]Z. In systems such as
antiferromagnets, where ¥(R)is a “"staggered magnetization”, this provides a means of
measuring the spontaneous order which would, otherwise, be inaccessible to
experimental observation. If one subtracts the limiting value, <S(0)S(=)>, from the
correlation function one obtains a net correlation function which again decays to
zero. In Ising-like systems there is then also an exponent v' for the correlation
length beneath Tc' Experimentally, one finds v' = v and theoretically, according to
scaling, the two exponents should be exactly the same. Experimentally the
scattering intensity I(6) = I(E) provides us with the 1information needed to
determine £. It is not hard to show that &(&), which we recall is essentially
proportional to I(E), is an even function of k which, rather generally, can be

expressed in the form
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= L v eh? 4 oay, T > T). (3.49)

&(k)
In a so-called Ornstein-Zernike analysis one thus plots 1/&(&) [or 1/1(&)] in the
critical region versus kz. The data for small k (such that ka £ 0.1 where a is a
typical molecular dimension) usually fall close to a straight line whose intercept
with the k% = 0 axis determines the susceptibility y(T). As T » T, this intercept
falls to zero but the successive isotherms remain more or less parallel on the
Ornstein-Zernike (or 0Z) plot. The reduced slopes evidently serve to determine
E(T). Close to Tc the plots in the case of very good experiments show a slight
downward curvature: this is an indication of a nonzero and positive value of the
d—2+n’

exponent n. Thus at T = Tc we have, by (3.48), the power law decay 1/R and on

Fourier transformation this yields

G (k) ~ (3.50)

kz—n

asymptotically for small k. On an Ornstein-Zernike plot the curvature of the
critical isotherm thus measures n. It should be stressed, however, that since n has
such a small value, it is difficult to measure this curvature unambiguously:
extensive data are needed and careful corrections for multiple scattering and other
extraneous effects are called for. Nevertheless, a small positive value 1is

definitely established.

3.8 Scaling of the correlation functions

Our treatment of correlation functions has evidently introduced two new
exponents, Vv and n. Are these independent of each other? Are they independent of
the thermodynamic exponents a, B, Y, and 6? Or are all the exponents somehow linked
together? Let us see what the idea of scaling has to say in this context.
Accordingly, with no loss of generality we write the correlation function and its

Fourier tranform as

9D (r;T,H)

D (k;T,H)
Rd--2+-n

and G(&;T,H) = 7=n

G(R;T,H) = (3.51)

k
which serves to pull out the critical point behavior. Now we expect (or hope!) that
G and & will exhibit some simplified behavior as T + Tc' Scaling means that there
should be some reduced description, some compression or collapse of the
multivariable data. Thus the dependence of the correlation functions on three
variables might, perhaps, reduce to a dependence on only two, properly scaled,
variables. The behavior at T, has been extracted in terms of the functions &

and ® . In line with our previous application of scaling, it is thus natural to
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postulate that ® and.‘!; are functions not of three variables, but only of two scaled
variables. We saw before that the scaled magnetic field had to take the form
H/ltIA; there 1s no good reason to expect this to be changed in any way for the
correlation functions. However, the length R should now also be replaced by a
scaled length and, likewise k by a scaled wave number. We have of course, already
identified a characteristic length for the problem: this is the correlation length
E. Since £ diverges at criticality it is reasonable to guess that it is the only
length that really matters in the critical region. We conclude that the natural
scaled length is R/E = R[t|Y and that the appropriately scaled wave number is
Kk = k|t|™Y. Accepting this we can, asymptotically, replace ® and ® by scaling
functions D and B to obtain the scaling postulates

v A
G(R;T,H) = IE!UJLL_ﬂiLLEl_l (3.52)

— )
Rd 2+n
and, quite equivalently under Fourier transformation,

p(k/[t]VsH/ e (%)

(3.53)
k2

G(k;T,H) =

where, for simplicity, we have left out the nonuniversal scaling amplitudes needed
for full normalization if we wish to explicitly exhibit the expected universality of
D and D.

Notice that the only other lengths that could conceivably play any role are the
interatomic spacings or the atomic and molecular diameters on scales, say, a. But
near the critical point all such lengths become extremely small compared to the
range of the correlations, and so, being "overwhelmed”, become unimportant to the
long wavelength behavior of the fluctuations measured by G and 8. This, indeed,
gives us some insight as to why there should be universality. Different fluids are
found to have the same critical exponents and scaling functions. The same thing
applies to magnets (if they have the same symmetry number n). Where does this
universality come from? Clearly the only important differences between different
fluids can be traced to the shapes and short range interactions of their constituent
molecules, i.e., to differences on a scale of a few angstroms. Near the critical
point, fluctuations are taking place on the scale of 103 A and beyond, so
differences on a scale of a few A are "washed out” or "averaged over". Thus one can
understand, in an intuitive way, universality as a consequence of the fact that the
correlation length becomes very large so that the important “"effective interactions”
no longer take place on an atomic scale but rather on a semi-macroscopic scale set
by £. On this level the microscopic differences do not matter and one obtains
universality. As systems move away from criticality and the correlation length
becomes smaller, the differences start to matter. These intuitive ideas, formulated
most clearly in the first place mainly by Kadanoff, are capitalized upon and made

more concrete in Wilson's development of renormalization group theory.
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To see how the correlation function scaling hypothesis implies connections
between the critical exponents, let us examine the fluctuation integral in (3.46)

that leads to the zero-field susceptibility above Tc, namely,

[oiTn = 0) %k,

o D(Rt D(Rt ;0) d—
c, j K= —— i R dR. (3.54)

We have been explicit here in dealing with a volume integral in d dimensions;
because of the assumed (asymptotic) isotropy this reduces to an integral over the
radius with the factor Cde-l representing the surface area of a d-dimensional

sphere: for future reference the relevant coefficient is

L d/2, 1
Cy = 2 /F(Ed)'

A change of variable to the scaled combination x = Rt transforms the integral to

the form

~8

-(2=)v

X = cd t D(x)xl_ndx

S
o

= (const.) t (MY, (3.55)
Comparing with the definition y ~ t™Y we discover the new scaling relation
= (2-n)v, (3.56)

which relates v and n. The classical exponent values Y = 1, n = 0 and v = 1/2
obviously satisfy this relation. Experimentally, also, this relation checks very
well. If it is accepted, it actually provides the best method of measuring the

elusive exponent n!

Our theory at this stage is what might be called “three-exponent scaling”,
since from only three exponents, say a, A and v, one can obtain all the other
exponents for both thermodynamic and correlation functions. Notice that all the
exponent relations so far encountered have no explicit dependence on the
dimensionality, d (even though the actual values of the critical exponents
themselves do depend on d). There is, however, an important further exponent
relation which does involve d explicitly: this we consider now. The argument we

use may, perhaps, be regarded as not very plausible but it does lead to the desired
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result, and other arguments are not much more convincing! Following Kadanoff we
start by noting from (3.24) and (3.25) that the exponent o makes its appearance in
the singular part of the free energy in the following way:

(1 =0), (3.57)

and that, as remarked, the dimensions of f are those of reciprocal volume or 1/Ld

(where L is a length). Now f + 0 when t + 0 and so the relevant "critical

sing.
volume” is evidently diverging, i.e., there is a significant length which is
diverging! But, as we have argued, there should be only one important length in the
critical region, namely, the correlation length, £, which moreover is also diverging

as t > 0. This suggests the identification

1
p ~ i~ . (3.58)
sing. Ed (t v)d
Then comparing with (3.25) yields the new relation
Tdv =2 - a, (3.59)

which explicitly involves the dimensionality. This 1is called a hyperscaling
relation to emphasize the fact that it goes beyond and cannot be derived from the

ordinary scaling relations for exponents.

Notice now that this extra relation means that just two exponents, say A and Vv
can be used to predict all the others, i.e., we have achieved a "two—exponent
scaling theory". On combining the hyperscaling relation (3.59) with various other

exponent relations one can easily derive the further hyperscaling relation

- = (6~1)

2-n =d T )" (3.60)
Again, following Buckingham and Gunton, one can show by rigorous statistical
mechanical arguments that this relation must (for most systems) be satisfied

rigorously as an inequality, namely,

(6-1)
-n < T .
2-n < d 7D (3.61)
Once again, then, we see that scaling comes in as the borderline of a general
physical inequality. Notice that the experimental observation 8 < 4.8 for d = 3
implies, via this 1inequality, n > 0.034.

A peculiar feature of the hyperscaling relations 1s that the classical exponent
values do not satisfy them unless d = 4! To check this, substitute § = 3 and n = 0
in (3.61) and a = 0 and v = U& in (3.59). This fact also serves to demonstrate
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that the hyperscaling relations have a rather different status than the other
scaling relations. However, they hold exactly in the two—dimensional Ising model,
and renormalization group theory is able to show why the hyperscaling relations are
to be expected fairly generally, why they hold for d < 4 but break down for d > 4,
and by what mechanisms they can be expected to fail when they do. [See Appendix D.]

As discussed, the critical exponents themselves depend not only on d but also
on n, the symmetry of the order parameter; so far, however, no general exponent
relations have been discovered in which n appears explicitly, On the other hand,
for certain classes of problem there are special relations between exponents in
dimension d for one type of system and exponents in dimensions d + 1 and d + 2 for
different types of problem! Many of these relations also owe their genesis to

renormalization group ideas.

One might mention, in closing our phenomenological discussion of scaling, that
the scaling relations can also be obtained by making certain assumptions concerning
the asymptotic homogeneity character of the functional relationship between
thermodynamic variables. The formalism is elegant and the end results are the same,
but this approach tends to obscure the physics of the situation, which is that near
a critical point each important quantity has a natural scale or size. When these
natural scales are used, a reduced, universal description emerges. At the critical
point itself all the temperature and field scales vanish (or diverge) so that one is
left with spatial self-similarity. The fluctuations of the order parameter, for
example, look statistically the same on all length scales if the magnitude of
V(B) is rescaled appropriately. Likewise for the energy-energy fluctuations, etc.,
which, in the interests of simplicity, we have not discussed. These and general
aspects of scaling theory are summarized briefly in the following subsection (which

need not, however, be studied in order to follow the balance of these lectures).

3.9 Anomalous or critical dimensions: general definitions and relations

We present here, in note form, a summarylo of exponent definitions and scaling
relations which emphasizes the correlation functions or, more properly, the
cumulants or “connected correlation functions”, for a general set of critical

operators (or local densities) A(R), B(R),... .

For operators or local variables A(E)' B(£), "'N(E)’ conjugate to fields h,,

hB""‘ including:

the order parameter Y¥(r) conjugate to field h = hy,
the energy density E (x) conjugate to field t = h& = AT/TC,
anisotropy energy @ (r) conjugate to field g = h, , etc.,

the general Cumulant is
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AB...NEp »recE ) = <A('Q)B(£1)C(£2)°"N(En—l»g (3.62)

with
K, =, K () = <AQB(x)> - <A(Q)> <B(D)>, ete. (3.63)

The general scaling hypothesis for critical operators A, B, ... is then

v
D(;EI/R,... ’En-l/R;Rt )

K (z.3t) = *
AB..."~] RNA + “p toeen YU and 0 < t K 1, other fields being

for rl,...rn_l»a, (3.64)

at their critical values.

Here the Wps Wgsese are the critical (or anomalous) dimension of A, B,..., while w®

may be called the anomalous dimension of the vacuum. Note that we write t in place

of |t|, which is generally needed, merely to reduce the complexity of the formulae.)

Hyperscaling means generally
w =0, (3.65)

as predicted by formal renormalization group analysis (see later); as found in the
Ising model (n=1) for d=2, and in the spherical model (n==) for d<4; but as violated
at critical points for d > 4: see Appendix D. (Note that Kadanoff, in a notation
adopted by many authors, writes Xp, X, etc. in place of wy, Wp, etc. but also

*
assumes hyperscaling and so sets w = 0.

Thermodynamic scaling i.e,, the scaling of the free energy
f= fsing = —AF/kBTV, obtained by integration of the cumulants and is expressed by
2-a . h hA
f(t,h,...,hA,...) = t Y(—A, ...,T, eee) (3.66)
t t'A
where (see further below)
* *
2 ~a=4d /Xg = (d~w )/(d—w& ) (3.67)
and
A d-w
v ¥
A=¢, =5 = —0rf (3.68)
Y £ d—ws

while the "crossover exponent” is defined by

¢A = )‘A/)‘E’ (3.69)
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where we have introduced

d = d-w , (3.70)

and the general scaling eigenvalues or complementary exponents, )‘A’ through
A, vuw, =d, +uw, = ... =d. (3.71)

(Kadanoff uses Yo» Yp» etc. in place of )‘A’ p\ «ss)e Hyperscaling implies, of

B,
*
course, d = d and other relations such as

dv = 28 + y', g = l/2 (d-2+n)v, (3.72)
etc, which can be found from the following general

Exponent relations:

Correlation exponents

-v
E~t Y, &~ hy A, V=, (3.73)

(unindicated fields set to their critical values)

v, = 1/)\A = 1/(d—wA); (3.74)
- *
6 _(p) = (@¥(p>_ ~ /x5 0= g 2-d-u" (3.75)
- - =d-1+ Yo n= 1, (2 *od-(2- .
Ae d—w‘ 1/v, w, =d-1+ fon=1Yy (2=a) /v, w =d-(2-a)/v. (3.76)
Thermodynamics
2 -a
23 f - A,
Xy =5 - fdg AQADS, ~ by N (3.77)
3h
A
where
* *I =a,) (3.78)
2 -a, = (d~w )/(d—wA) =d /A’ (a = ag), .

while for first order cumulants

8
w>~th @ =8); <@~h (8 =8y, (3.79)
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with

* %*
By = (o )/Ae, §, = AA/(wA—w ) = 1/(1-aA). (3.80)

For the cross-susceptibility one has

2% VB
Xap = 5.5%; © [d; AQBEY, ~t T, (Yeyy) (381
* (3.82)
Vg = (dw,w )/(d-we). .
Crossover (at multicritical points):
¢A
hA scales as t with
A =¢y =B +Y =88, (3.83)
and ¢A = XA/A = v/vA = (d—mA)/(d—wE ). (3.84)

General relations

a + BA + BB + Yap = 2, (3.85)

0p = Bpt Vpu = Byl

4. Microscopic Models

4.1 The need for models

The traditional approach of theoreticians, going back to the foundation of
quantum mechanics, is to rum to Schrsdinger's equation when confronted by a problem
in atomic, molecular or solid state physics! One establishes the Hamiltonian, makes
some (hopefully) sensible approximations and then proceeds to attempt to solve for

the energy levels, eigenstates and so on. However, for truly complicated systems in
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what, these days, 1is much better called "condensed matter physics,” this 1s a
hopeless task; furthermore, in many ways it is not even a very sensible one! The
modern attitude is, rather, that the task of the theorist is to understand what is
going on and to elucidate which are the crucial features of the problem. For
instance, 1if it is asserted that the exponent o depends on the dimensionality, d,
and on the symmetry number, n, but on no other factors, then the theorist's job is
to explain why this is so and subject to what provisos. If one had a large enough
computer to solve Schrlédinger's equation and the answers came out that way, one
would still have no understanding of why this was the case! Thus the need is to
gain understanding, not just numerical answers: that does not necessarily mean
going back to Schr.édinger's equation which, in any case, should be really regarded
just as an approximation to some sort of gauge field theory. So the crucial change
of emphasis of the last 20 or 30 years that distinguishes the new era from the old
one is that when we look at the theory of condensed matter nowadays we inevitably
talk about a "model”. As a matter of fact even Schr'édinger's equation and gauge
field theories themselves are just models of the physical world, albeit pretty good

ones as far as we can presently judge!

We should be prepared to look even at rather crude models, and, in particular,
to study the relations between different models. We may well try to simplify the
nature of a model to the point where it represents a "mere caricature” of reality.
But notice that when one looks at a good political cartoon one can recognize the
various characters even though the artist has portrayed them with but a few
strokes. Those well chosen strokes tell one all one really needs to know about the
individual, his expression, his intentions and his character. So, accepting
Frenkel's gu:l.dam:e,11 a good theoretical model of a complex system should be like a
good caricature: it should emphasize those features which are most important and
should downplay the inessential detalls. Now the only snag with this advice is that
one does not really know which are the inessential details until one has understood
the phenomena under study. Consequently, one should investigate a wide range of
models and not stake one's life (or one's theoretical insight) on one particular
model alone. Nevertheless, one model which, historically, has been of particular
importance and which has given us a great deal of confidence in the phenomenological
descriptions of critical exponents and scaling presented earlier deserves special
attention: this 1s the so-called Ising model. Even today its study continues to

provide us with new :{.nsigh':s.12
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4.2 Ising model

This model is absolutely the simplest model of a many body system! First of
all we regard space as divided up into a lattice of cells of volume vgs each
represented by a single lattice point. The easiest lattice to think about in two
dimensions 1is the square lattice but, following our resolution, we should at least

look also at some other types, such as the triangular lattice (see Fig. 4.1). At

each lattice site we allow just two possible microscopic states: in the language of
a ferromagnet we place an Ising “spin”, s, on each site. To distinguish spins on
different sites I will usually label the spins with the position vectors R,R',... of

the lattice sites or with site indices i, j, ...t thus Sp OF 84, etc.

~

X

t

(a) (b)

Fig. 4.1 Two dimensional lattices: (a) the plane square lattice of coordination
number 4; (b) the plane triangular lattice with coordination number 6.

As implied, an Ising spin is permitted to take just two values which are expressed

numerically or symbolically as

= +1, (4, "up”), (4.1)
= -1, (+, “down").

This two-valued variable is a similar but somewhat simpler entity than the quantum

84

mechanical spin variable, E, for total spin S = 1/2, whose z-component can take the
two values S% = & LQ . One must notice that the Ising model also constitutes a
model for a fluid, albeit the very simplest one, namely, a lattice gas. In this
model we replace continuum space by the lattice of sites and suppose that the atoms
or molecules can sit only on the sites. Since two atoms cannot easily be forced on
top of one another, only two possibilities are contemplated at each site: either
there is an atom present or there is not. Thus one can obviously establish a one-
to-one correspondence between an Ising magnet and a lattice gas in which each 'down'
spin, ¢, represents an occupied site and each 'up' spin, 4, represents a vacant

site: pictorially we have:
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7
=t 7~
Fig. 4.2 lattice gas Ising ferromagnet

Similarly a.direct correspondence exists between an Ising ferromagnet and the
simplest models of a binary alloy or of a binary fluid whose composition is the
important local physical variable. One can conveniently adopt the convention that
an A-atom (molecule, or ion) is represented by an 'up' spin, 4, while a B-atom then

corresponds to a 'down' spin, +.

Mathematically all of these situations are precisely analogous: there 1is only
one problem to solve! An Ising spin 1s, clearly, just a scalar and hence the Ising

model is the prototype of an n=1 system.

In order to obtain any interesting behavior there must be some interactions
between the spins. The standard, simplest Hamiltonian for an Ising model, given

that there are N lattice sites, is

%N ({si}) = - Higtl sy - (i%>Jsi-sj. (4.2)
The first term in 1‘N takes account of any externally applied magnetic field, H.
This term on its own would give us only a paramagnet. The second term describes the
interactions between spins. For J > 0 it 1is of ferromagnetic character
(approximating the so-called exchange coupling) and tends to line up the neighboring
spins, sy and 84» in the same direction. The notation <i,j> indicates that the sum

extends only over nearest neighbor pairs of lattice sites. (Sometimes the notation

[1,j] 1s used.) When it is appropriate to consider interactions of longer range,
the sum must run over all pairs (i,j) and the coupling or “exchange parameter”, J,
is replaced by Jij = J(gi,gj) with Jij = J(Rj_ﬁi) in the normal, translationally

invariant case.
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4.3 Solution of the one-dimensional Ising model

The one-dimensional case of this simple model was originally solved by E. Ising
in his 1925 thesis: the solution can be found in a number of text books on
statistical mechanics. It will not be repeated here in full but some of the
essential steps will be outlined. (They should be part of any graduate level course
in statistical mechanics!) The modern way of solving the Ising model in one-
dimension is first to recognize that what has to be calculated is the partition

function

—“(s)/kBT} =E ...z e_x(sl’””sN)/kBT. (4.3)
sl=i1 sz=t1 sN=i1

Because there are so many spins the calculation is difficult. On facing a hostile

Zyl# 1 = Trfe

army in overwhelming numbers the classical tacticlans advised: "divide and
conquer”, or if possible, "pick them off one by one”. The easy method of solving
the one-dimensional Ising model (which, incidentally, 1is not the method Ising
himself used) follows the second adage. One considers a linear lattice of N spins

in which the spin summations, z have been done over all spins sy (i=1,2,...)

s5,=+1"
except the last one, 8- Then one asks what happens on adding one further spin,
Sy+1e Assuming one knows the “partial partition function™ for the N-spin system,
say ZN[IC ;sN], one sees that only one more summation, i.e., over sy, 1s needed to

compute ZN+1[JG ;SN+11’ and so on. Finally one must take the thermodynamic limit in

order to compute the bulk free energy density and see 1f it has any singularities
that might represent phase transitions or critical behavior. Explicitly, we define

the reduced free energy density via

£(T,H) = lin (v ™' 1nz (% 1, (4.4)
Noo

where Yo is the volume (length in this d=1 case) per site. It turns out that the
process of sequentially adding one spin at a time can be done very simply and
directly in terms of a 2 x 2 matrix, which depends on T and H. Furthermore, on
taking the thermodynamic limit one finds that for any boundary conditions all one
needs to know about the matrix 1s its largest eigenvalue, say, Amax(T’H>' In terms
of this maximal eigenvalue (which, since the matrix is nonnegative, has to be real)
one simply has

£(T,B) = InA__ (T,H). (4.5)

On deriving the appropriate 2 x 2 matrix and solving a quadratic equation for
its eigenvalues the answer that comes out (after subtracting the harmless ground

state contribution) is

£(T,B) = 1n[cosh h + /sinh’h + x 1. (4.6)
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Here we have introduced the reduced variables
h = H/kBT, and K = J/kBT, (4.7)
and taken
x = e = exp (-43/kyD). (4.8)

The variable x is a temperature-like quantity which vanishes when T + 0. For H =0
and T + 0 the ground state will be attained and, clearly, this will correspond to
all the spins pointing in the same direction, either 'up' or 'down'. To reverse a
particular spin then requires an energy input of 4J because of the interaction of
this spin with its two neighbors. So this first, ‘'single-spin-flip' excited state
comes with a Boltzmann factor of exp(—&J/kBT) which demonstrates why, in Ising
systems, x 1s the natural low temperature in terms of which one would, a priori

expect simple, analytic behavior.

What, historically, was disappointing to the early investigators was that this
model seemed not to give any phase transition whatsoever! In particular it displays
no sharp specific heat anomaly at any finite (nonzero) temperature. This can be
seen by setting H=0 in (4.6) so obtaining f = 1n(1+x1/2) which is clearly a smooth
function of x or T right down to the absolute zero. In fact it is now known that
one-dimensional systems with quite general finite range pair interactions cannot
have phase transitions at any nonzero temperature. Nevertheless, even the simplest
nearest neighbor, one-dimensional Ising model does have a transition at T = 0 which
can properly be regarded as a critical point! This can be seen, for example, by

studying small x (or T + 0) for which one has

/2 /

£ = (%) = 211+ 0 M) (4.9)
Since a priori we would have expected f to vary simply as x (as explained above) we
see that the power 1/2 must really be regarded as a special sort of critical

exponent (for the exponential temperature variable x).

At first sight it may seem a bit artificfal to regard this effect as signifying
a phase transition but, in fact, the case for doing so 1is strong! Consider, for
example, the magnetization isotherms for the model, as sketched in Fig. 4.3. At T =

0 a discontinuity in M occurs as H passes through zero, whereas for any nonzero

temperature M varies smoothly with H. Moreover, as T + 0 the
susceptibi%ity, X = (BM/BH)T diverges very strongly: in fact, one

has x ~ x ¥ where Yy = 1/2. This exponentially strong divergence of y with T + 0
should be contrasted with the simple paramagnetic behavior x ~ 1/T. Similar

exponents can be defined for all other quantitfes of interest. Also scaling theory
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M| T=0

o
T

Fig. 4.3 Magnetization curves for the one-dimensional Ising model.

can be applied with (T—Tc) replaced by x. (It is a good exercise for the student to
check this and find the scaling functions!)

4.4 The two—dimensional Ising model

We will, here, just present some of the exact results, calculated for the two-
dimensional Ising model, which reinforce our belief in the scaling hypothesis. This
model is almost synonymous with the name of Lars Onsager who solved it analytically
in 1944 by a generalization of the matrix method sketched above for the one-
dimensional model. The first important result to emerge was that there was indeed a
phase transition at Tc > 0. At the critical point the specific heat diverged with

exponents
a=a'=0 (log), (d=2, Ising). (4.10)

The logarithmic divergence was the first striking demonstration that the classical

theory was quite wrong! Onsager also showed that

8 = % ,  (d=2, Ising), (4.11)
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which is very different from the classical value of 1/2. (Onsager announced his
result at an early stage but delayed publishing his derivation. The first published
calculation for B is due to C. N, Yang.) Onsager also calculated the correlation
length from which one finds

v =v' =1, (d=2, Ising), (4.12)

which contrasts with the classical value 1/2. Finally he set up the calculations
which lead to the demonstration that

n =%, (d=2, TIsing), (4.13)

in disagreement with the classical Ornstein-Zernike prediction n=0. Later

investigators showed that

W

y=vy'=1 and § = 15, (d=2, Ising), (4.14)

the classical values being vy =y' =1 and § = 3.

Note that precisely the same exponent values apply to all soluble two-
dimensional Ising models, which means all those with only nearest-neighbor
interactions. Furthermore, the exact values satisfy all the scaling and all the
hyperscaling relations derived earlier. Unfortunately, the full scaling of the
equation of state itself cannot be checked because the model has not yet been solved
in the presence of a magnetic field. However, scaling of the pailr correlation
functions can be checked in detail. (One might remark that the exact solution of

the two-dimensional Ising model in a magnetic field would probably teach us much

more about phase transitions and critical phenomena, at this stage, than the exact
solution of the three-dimensional model in zero magnetic field: in particular, it
would reveal the nature of the singularities on the approach to a first order

transition, a fascinating but subtle matter beyond the scope of these lectures.)

4,5 Ising model in three dimensions: series expansions

One thing that has been very clearly revealed by the exact analysis of two-
dimensional Ising models and by comparison of the results with experiment and with
the classical predictions, is that the dimensionality, d, must play a crucial role
in determining the critical exponents. It is obvious, therefore, that one should
also want to study the three-dimensional Ising model! This model cannot be solved
analytically in the same way that Onsager solved the two-dimensional one (although
there were, initially, quite a few attempts). However, answers to many of the

crucial questions have been obtained to rather good precision by means of numerical



“"solutions”. The method that has been used is the technique of exact series
expansions (pioneered by Cyril Domb13). To see how this works, the easiest quantity
to consider is the reduced susceptibility

ideal
X = Xp/Xp eat, (4.15)

At high temperatures, as T » =, any spin system will behave more and more like an
ideal paramagnet, and so x + 1. Thus we may seek an approximation which will
approach this result in the high temperature 1limit but which we will, in fact,

attempt to use also near in the critical region. To this end, recall that for H = 0

the partitien function,is given by

z,, = TrN{e““/kBT} =§:\, explK 2 85, 1. (4.16)
{s~¢1} <,y 4

It is a function of the single parameter K = -J/kBT which becomes small when
T > o, It is thus natural to search for an expansion of the properties of the Ising

model, for arbitrary dimensionalities, in powers of K. The most direct approach is

to make use of the identity (see also the more detailed discussion in Appendix C),

ex=l+x+-%x2+ cees (4.17)

and thence obtain an expansion for Iy in powers of K. However, to simplify the
calculations it turns out to be better to introduce another temperature-like

variable, namely,
v=tanh K=K+ OK)>0asTo» o (4.18)

Then, and this 1s not very difficult to show for the first few terms, one finds, for
example, that the expansion for xy in powers of v for the simple cubic Ising lattice
is

2 3 4 5 6 7
x =1+ 6v+30v + 150 v + 726 v + 3510 v + 16710 v + 79494 v (4.19)

+ 375174 v© + 1769686 v + .. + 86228667894 v 10+ 401225391222 v 4+ ..,

where we now know even the coefficient of v19

although it is too long to write
here! The coefficients have a fairly simple interpretation. Starting at the origin
site on a simple cubic 1lattice, a1=6 is the number of ways to reach the first
nearest neighbor sites; a2=30 to reach the second nearest neighbors and so on,
except that from a5=3510 onwards further complications enter. The general
coefficient, ans is, in first approximation, just the total number of distinct self—
avoiding walks of m steps starting from the origin: however, this has to be

corrected by allowing for a “gas of polygons" that use some of the m available
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lattice bonds. A great deal of effort has been expended in calculating the higher
order coefficients; computers are of some assistance but they by no means make the
task trivial: indeed for many years they could not compete effectively with

systematic hand calculations!

Now it is quite evident that the coefficients a, in (4.19) are increasing in a
rather regular fashion with m. To study this, let us examine the ratios um=am/am_1
of successive coefficients by plotting them versus 1/m. Readers are urged to do
this for themselves using the data given in (4.19). (Note that the ratios for m = 1
to 9 and for m = 17 can be plotted). Those lacking the energy or time may consult
the literature.14 For lattices like the triangular or fcc lattices that contain
three-sided polygons, i.e., triangles, one finds that successive ratios fall close
to a straight line of positive slope vs 1/m. For 'loose-packed' lattices like the
square and simple cubic lattice (containing no triangles) there is an odd-even
alternation of the ratios but both sets of ratios rapidly approach a similar
straight line!

What does this mean? Certainly one may conclude that, to apparently ever

better approximation as m increases, one may write

a

E%“*’%"’“']’ (4.20)

m-1

where the dots stand for terms vanishing more rapidly than 1/m (see below). Here n,
represents the (asymptotic) intercept of the line of ratios with the m = », i.e.,
1/m = 0 axis, while g represents a dimensionless measure of the slope of the plot.

But again, what is this telling us?

Now it is a simple matter to see, with the aid of the binomial expansion, that

the power series expansion of the function

Ay =—L =E (28 ()" =1 +av+a v e, (4.21)

& [l-(v/vc)]1+g w0 " Ve 1 2

produces coefficients which generate ratios given exactly by

m mv
m—1 c

[+

p=-2_fgm L o, 8 (4.22)
Vc m

that is, which fall exactly on a straight line in a plot versus 1/m. Further we see
that the limiting ratio determines the point of divergence of the series as v » v -

via
-

uo= l/vc. (4.23)

More importantly, however, the slope, g, of the ratio plot evidently tells us the

exponent of divergence! (Higher order terms in a ratio plot correspond, of course,
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to deviations from the ideal, pure binomial form (4.20): see further below).

To apply this observation to the Ising model note the successive relations

-(1+ -(1+ 1+
x(v) ~ =178 Lk T8 Ly pen 1R (4.24)
c
So that, on recalling the exponent definition y ~ l/tY, we see that the

susceptibility ratio plots provide an estimate of the exponent Y via
Y=1+g. (4.25)

In a similar way u,, the intercept at 1/u = 0, is directly related to the critical
temperature. In fact one finds for the square, honeycomb and triangular lattices
that the ratios U, extrapolate to the exactly known transition temperatures found by
Onsager for these lattices to a precision of 1 in 104 to 105 or better (depending on
the length of the series uséd). Likewise the estimates of vy for the two-dimensional
lattices come out very close (to within #0.01 to #0.003) to the exact value y=1.75.

For three-dimensional Ising lattices a parallel analysis yields estimates for
the critical points (which, of course, depend on the lattice) of, apparently, quite
comparable precision. Furthermore, to within the apparent accuracy all three-
dimensional lattices studied (sc, bcc, fcc, and diamond) yield the same value of
Y. This checks the concept of universality. In 1966, a reasonable best estimate
obtained by these methods and various refinements was quoted as y = 1.250 + 3, where
the assessed uncertainty refers to the last decimal place given. More recent work,
stimulated in particular by renormalization group calculations, by the availability
of longer series and by methods for studying corrections to (4.21) (see below) leads

to series estimates l:lke15

Y = 1.239 + 2. (4.26)

which are about 17 1lower. These latest estimates agree remarkably well with
experimentally measured values for fluids, binary alloys, and other n=1 systems,
Other exponent values obtained for three-dimensional Ising models by these

techniques are:
@ = 0.105 + 10, v ~ 0.632 + 2, and B =~ 0.328 + 8. (4.27)

To within the apparent uncertainties these estimates satisfy all the exponent

relations including the hyperscaling relations.

Series extrapolation methods are not applicable only to critical phenomena, but
can be used also in many other situations. Notice the fundamental difference in the

approach from the normal truncation method of just adding up those finite number of
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terms of an infinite series that one has been able to calculate, and merely stopping
there! Even for a convergent series this latter method must fail completely in
critical phenomena since it can yield no more than a finite polynomial which could
never reproduce the divergence to infinity of the susceptibility or other more

subtle singular behavior that occurs at critical points.

When a large number of terms in a series have been calculated one can hope to
estimate the higher order coefficients in the asymptotic form (4.20) for the
ratios. The actual variation of x for a reasonably wide range of t is, as seen
earlier, given by

X =%{-(1+cete + s +c1t+c2t2+... }. (4.28)

If the leading correction term is ¢;t (i.e., 6 > 1), it turns out that c; can
be related to the coefficient of a l/m2 term in (4.20). If, however, there is a
singular correction term, cete, with 6 < 1, this will show up as a dominant non-
integral power l/mH'e in the expansion of Hne Extracting reliable information from
these terms has proved difficult but, as indicated before (4.26), there has been

recent progress on the problem.

In the case of the spontaneous magnetization of three-dimensional Ising models
the series turn out to be much more erratic in appearance. For example, the fcc

Ising lattice yields, after much labor, the low temperature expansion

M () = 1 - 2x12 = 24x22 + 26x2% + 040-48x30 - 252%°2 + 720x" (4.29)
- 438x38 - 192x3% _ 984x" — 1008x*2 + 12924x** - 19536x*
+ 30628 = ... + 400576168x'® - £410287368x0 + .... .

The ratio method evidently fails completely for a case like this! Fortunately,
however, there is another method, the so-called Pade approximant technique
(propounded originally for this sort of problem by G. A. Baker, Jr. and J. L.
Gammel), Pade approximant methods and their generalizations are able to handle such
series and yileld estimates for B and other low temperature exponents like those
quoted above. In addition Pade approximants and their extenslons provide efficient

methods of approximate summation of series over the whole range of temperatures.

Considerable effort by various research groups has gone into these series
expansion methods in an effort to calculate increasingly precise and reliable values
for all the critical exponents. An important historical motivation has been the
desire to check universality over a variety of models/beyond the simplest Ising
models. Do the exponents depend on anything besides d and n, e.g., lattice
structure, quantum effects, the magnitude S of the spin, further neighbor couplings

and so on? As more extensive results have become available these calculations have
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increasingly confirmed the surmise that for systems with interactions of finite
range d and n are the only relevant quantities; other parameters embodying the
fundamental constants ‘h, ¢, e etc., apparently play no role at all in this
question! This was a great surprise to many of the earlier workers in the field but
now, thanks to the work of Kadanoff, Wilson, and others, the reasons for this fact
are much better understood. As we shall see, the renormalization group concept

provides a natural explanation.

4.6 The n-vector spin models

As pointed out earlier, we need to study not just one model but, rather, a variety
of models. A natural hierarchy of classical spin models 1is represented by the

following choices of spin variables:

+ 1 (n=1),

(a) Ising model: 8y

>
s

(b) XY model: 1

= (5% 80, 51 =1 (n=2);
(c) Heisenberg model: Ei =(s;,%,8,7, §;%), |§i| =1 (n=3);
and finally

(d) n-vector models: ;i = (si(l),si(z), cens si(“)), |§i|=1 (general n).
In these models the spin components are simply regarded as classical variables and
there are no problems associated with noncommutability, as in the more realistic
quantal Heisenberg model with spin § < « (but still with n=3). The total spin
magnitudes may be normalized to unity as indicated or, as is more appropriate if one

>
wants to consider large n, to |sil2 = n,

The Hamiltonian in the simplest case would be

> > \ (1)

X - —JE 8,8, ~ HZ s, s (4.30)
4,3 J i

where the first term 1s the coupling between nearest neighbor spins and the second

represents the interaction with the external magnetic fileld which one supposes is

applied in such a way that it couples only to the first component of the

vectors ;i' With the spin normalization set by |31|2 = n, the free energy density

of interest is derived from the Hamiltonian via
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_ . d _ 1
fl# ] = 1im FN/nNa kBT = 1im 3

1nZN[11 ], (4.31)
Nroo N+»» nNa

where we have expressed the cell volume Yo in terms of the lattice spacing a
supposing, for simplicity, a d-dimensional hypercubic lattice. The factor of n in
the denominator means that f is a free energy evaluated not only per unit volume,
but also per single spin component. When defined in this way one can extract
sensible results even when (as proposed by H. E. Stanley) the limit m> i.e., of an
infinite number of spin components, 1s taken! It transpires that this leads to the
so-called spherical model invented by Mark Kac. The interest in this seemingly most
artificial limit is not because the model is at all physical, but rather because it
can be solved exactly and it embodies important features, characteristic of models
with n > 1 which cannot be studied in the scalar case of Ising models. The exponent

values that emerge for the exact solutions are
n =0, and B =-;— , for all 4, (4.32)

and, with a striking dimensional-dependence,

Y = 2v = 2/(d-2), for d < 4, (4.33)

1 , for d > 4,

and, for the specific heat:

a = £€/(d-2) where € = 4-d. (4.34)

We see here the appearance of the dimensionality parameter € = 4~d; later on we will
use this as a crucial expansion parameter in renormalization group theory. From a
mathematical point of view it makes perfectly good sense (with a little care) to

treat the spatifal dimensionality, d, as a continuous variable even though it is only

integral values that have a direct physical meaning. In this model there are

clearly two speclal values of d, namely, d = 4, called the upper borderline (or

marginal) dimensionality; and d = 2, called the lower borderline dimensionality.

For d > 4, classical theory is seen to work. At d = 2 the critical temperature
vanishes, Tc = 0, and for d < 2 there is no phase transition at all. As d + 2+ some
of the critical exponents diverge to ® as can be seen from the results above. It
turns out that these two borderlines apply for all n > 1. Symptomatic of another
feature that appears generally at borderline dimensionalities is that for d = 4 one

finds that the full critical behavior of the susceptibility is

X ~ ¢ Int as t > O+, (4.35)
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i.e., there is a logarithmic correction factor to the leading power law behavior.

The appearance of a logarithmic factor at the borderline dimensionality d = 4
suggests, correctly, that simple power law scaling forms must break down somewhat at
this margin. However, for d < 4 (including continuous values of d) the spherical
model satisfies all the exponent relations and the thermodynamic and correlation
functions scale completely in the standard way. Above d = 4 one finds that scaling
again works: indeed the classical theory is, asymptotically, valid. However, that
does mean that the hyperscaling relations (that involve d explicitly) must fail for

a > 4, This observation indicates the somewhat different status that should be
accorded the hyperscaling relations: below d = 4, however, they are precisely

satisfied in the spherical model.

While the physically realizable values of d are severely limited, the values of
n are much less restricted. Thus, as we have seen n = 1,2 and 3 are commonplace;
but the case n = 18, for example, is of interest in describing the superfluid
properties of He3 (where the order parameter can be represented as a complex 3 x 3
matrix) and values as high as n = 48 are at least conceivable in connection with
certain incommensurate phase transitions. In the opposite direction, n = 0 turns

out to describe the pure self-avoiding walk problem or, in physical terms, the

excluded volume problem for polymers in solution. Even a negative number of
components may be considered! Thus the case n = -2 has certain attractive
16

analytical features.

4.7 Continuous spin models

In these models the spin is again regarded as an n-component classical vector,

but now each component is allowed to range from +» to —~, so we have

. (u)

(@) (n)
i (s . Si ), < + o, (4.36)

1 y ses with - « < 5,

As regards the interactions between the spins, the Hamiltonian is just the same as

before, that is

K == >, 505, - sti(”. (4.37)
<i,3i> i
However, there 1is now a further feature one must consider: this is the spin

distribution. If one were not to place some sort of constraint on the magnitudes of

the spins, H , or on the way in which the components si(“) can be distributed then

i
the total energy could be made indefinitely large and negative over an Infinitely
large region of phase space; the partition function would thus diverge while all the

spins become Infinitely large! We may, however, choose to regard the standard Ising
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model as a special class of continuous spin models, and this provides us with some
guidance as to what to do to obtain a sensible model. An Ising spin s; can be
congidered as a continuous, one-component spin, but with the constraint that it can
take on only the values +l. Another way of describing this would be to say that
each spin is subject to a distribution function or spin weighting function
-w(s,)
e i’ = 6(si+1) + G(Si—l), (all i). (4.38)
With the use of this weight function, the trace sums that are involved in

calculating the partition function of an Ising spin system can be transformed into

integrals so that we obtain
«© oo
z I #H]1 =/ ds, .../ ds_e” #int/kBTﬁ- (8D, (4.39)

(In the case of the n-vector model with n > 1 each integral becomes an n-fold

(u)
1 )

integral over the components s

The simplest generalization of (4.37) that provides a genuinely continuous spin
distribution, 1s the Gaussian model. This model (also due to Kac) is obtained by
setting

s (all 1i). (4.40)

The integrand in (4.38) 1s now just an exponential of a quadratic expression.
Consequently the calculation of ZN[JZ ] reduces, after diagonalizing the quadratic
form, simply to taking a product of Gaussian integrals. The model is thus exactly
soluble! The Gaussian model happens to correspond precisely to the artificial limit

n = -2 mentioned above! The exponent values that emerge from its solution are
n=0, and Y = 2v = 1 for all d, (4.41)
while the specific heat exponent is given by

e for d < 4, (4.42)
for d > 4.

=]
]

1
2
0

Unfortunately, the Gaussian model has serious shortcomings. Its worst feature is
that it has no low tsmgerature behavior! The reason for this is that the
exponential decrease e_ISI of the spin weighting function for large |;| is just not
rapid enough to keep the attractive coupling terms under control when T is too

small: as a consequence the integrals diverge and the model collapses!

To overcome this fatal defect we introduce a generalization of fundamental
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significance: this is the so-called s4 model now often called the LGW or Landau-
Ginzburg-Wilson model. In this model the spin weighting function 1s taken as
> ~

LGy SRRt

e = e with u > 0. (4.43)
The effect of the ;|;|4 term 1s to pull the tails of the Gaussian weighting function
down rapidly and hence give it a squarer looking shape (see Fig. 4.4). It then
approximates the Ising model more closely, at least inasfar as there is little
weight for large s; unphysical features of the Gaussian model below Tc are quite

absent. It 1s widely believed that the exponent values for the scalar (n = 1) gt

Ising (delta functions)

Fig. 4.4 Schematic comparison of thz spin weighting functions exp[-w(s)] for
the Ising, Gaussian and s  models.

and Ising models are exactly the same. The only sad result of including the s
terms in the exponential 1s that the integrals defining the partition function in
(4.37) can now no longer be done exactly as before! This, however, 1is where &-
expansions, which will be discussed in a later section, have a valuable role to
play.

The weighting function contributions, w(si), are often treated as an integral

part of the overall Hamiltonian: thus one writes the total reduced Hamiltonian as
H o(s) =-H, (s BT -3 WG 4.44)
s 1t (Bro o008y kg 221 w(si), (4.
and the partition function 1s given by
,? > > ® o 7 > >
Zyl¥ ) = Try e Crr oo SN)}’/ d's) / sy R R (XL

These expressions will be our starting point in discussing the renormalization group

€ expansions.
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At first sight the continuous spin models with smooth weighting functions seem
intrinsically different from the discrete spin or fixed-length spin models.
However, as we show in Appendix A, they can in fact represent the discrete and fixed

length models exactly!

5 Renormalization Group Theory

5.1 Preamble

To start with let us concentrate on the essence of renormalization group
theory, putting the ideas in their simplest form. An analogy may be useful to give
some perspective. 1In the progression from classical mechanics to a full account of
quantum mechanics one starts first of all with the Bohr-Sommerfeld model or
picture. Although this represents only a crude approximation, it nevertheless
introduces some important ideas, such as quantization and energy levels, and it
provides an explanation for the existence of discrete spectral lines and other
specifically quantum—mechanical phenomena. Naturally one wants to move on from
there to Schfédinger's equation and the particle-wave duality, to Bose-Einstein and
Fermi-Dirac statistics, to Dirac's equation, and to quantized field theory!
Nevertheless, it 1s iInstructive to start with the simplest embodiment of the most

basic ideas.

In critical phenomena, the counterpart of quantization is the concept of a
renormalization group transformation. The simplest such transformation which
corresponds to the Bohr—-Sommerfeld picture, is realized in the renormalization group
treatment of the one dimensional nearest neighbor Ising model. This model can, as
we have seen, be solved exactly in a fairly easy way but an analysis using a
renormalization group approach still serves to introduce some important concepts.
From there one hopes to progress to more subtle models. In general, the mose basic
task of renormalization group theory is to explain scaling, to show us where the
critical exponents come from, and to explain universality. Beyond that one would
like to calculate, more-or-less explicitly, critical exponents and scaling
functions. Further, the theory should tell us where the simplest scaling ideas fail
and what should replace them when they do!

5.2 A renormalization group for the one-dimensional Ising model

What always enters into the partition function, as discussed previously, is the
quantity - ﬁ(/kBT, which for brevity will be called iZ . For the one-dimensional

nearest neighbor Ising model we therefore have
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H = ﬂ/kBT KE s ThY 8;+C) L (5.1)
k] J ]
in which
= J/k T, h = H/k,T, (5.2)

while an extra term, equal to CN, has been added. This has no physical consequences
but turns out to serve a useful mathematical purpose in any full renormalization
group treatment. It might be regarded as equal to —E(O)/kBT where E(0) is some

reference energy.

This "reduced” Hamiltonian, , 1s evidently “equivalent" to the set of
variables (K,h,C): knowledge of these three variables specifies , and therefore
determines the free energy completely in the thermodynamic limit. Thus can be
regarded as a point in the space of the three parameters K,h, and C. As the

physical variables T and H are changed this point moves around.

One of the first approaches to renormalization group theory is to regard it
merely as a special way of calculating the partition function which, in this case

may be written

— 73 %
R IR Poal SR S Y S (5.3
2 Sl=i1 SN=il

o o]
S| 52 53 54 e S_ SO S¢ ... 52k4 SZK

partial trace U

F——Zo—'i I-—20—-I

spatial
rescaling I-—o—-l-—c’—-{

NE

(a'=a) 8
5

52 N Sk

Fig. 5.1 Schematic representation of the simplest "decimation” or "dedecaration”
renormalization group for a one-dimensional nearest neighbor Ising model
in which a partial 'trace is taken by summing over alternate spins (boxed)
to reduce the number of spins, followed by a spatial rescaling to restore
the original appearance of the problem. (see text).
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The factor 1/2N has been introduced here so that ZN is convenienfly normalized to

unity when T » «, This too has no physical consequences. The free energy per spin
is then

£l 4]z £ (K,h,C) =lN Iz, [% 1. (5.4)

The renormalization group method of tackling the problem of evaluating f[# ] is,
like the matrix method discussed earlier, one of "divide and conquer”. The idea is
that instead of trying to do all the N spin summations at once, one should somehow
do the summations over only some of the spins at one time, in such a way as to try
to preserve the system looking as much as possible like it did before the summation,

and in such a way that a spatial rescaling of the system is effected.

To achieve these ends in the present case we perform a partial trace by summing
over only every second spin variable along the chain, leaving the alternate spins

unaffected.l7

In this way we obtain a “renormalized” chain with only half the
number of original spins as illustrated schematically in Fig. 5.1. To see what this
really entails we first of all write the total Boltzmann weight in the factored form
1 1
7 Ks_s0+-§ h(s_ + so) +C Ksos+ + E(SO + s+) + C
e S... € e R

= ... db(s_,so) P(so,s+) vee, (5.5)

where P can be regarded as the Boltzmann factor for a nearest neighbor "bond”, and
depends only on the two spins lying at the ends of that bond. The spins 80y S and
s, just denote one of the typical spins over which we wish to sum, together with its
two nearest neighbors, respectively. The partial trace to be taken will eliminate

the spin variable 80, and result in a new Boltzmann factor, namely,

1
P'(S_,s+) =5 z ® (s_,so) P(so,s+), (5.6)

s =t1

0
for the new "bond” connecting s_ and s,. It is unlikely that the new Boltzmann
factor will look exactly like the old one and so it has been written with a prime
and is sald to be "renormalized”. The factor % is included in this relation because
with each spin eliminated one must remove a factor of i-from the overall normalizing

factor for the partition function in (5.3). This pricess of eliminating spins is
usually called "decimation” although “secundation” might be a more appropriate term
in view of the fact it is every second spin that 1s "killed off" rather than every
tenth one (from which Roman disciplinary procedure the word derives!) The term
"dedecoration” 1is sometimes also used since the process is the reverse of

“decorating” every bond with a new spin.
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Now the renormalization group ideal is to be able to express the new bond

factor, (P’, in the same basic form as the old one i.e., we would like to have

K's_s, + %h'(s_+ s,) + ¢!
@ '(,s_,s_'_) =e , (5.7)

so that the new spin chain would also be completely Ising-like. There 1s no reason,
however, to expect that the new or renormalized parameters, K', h' and C' should
take the same values as the old ones. Rather we suppose the new parameters define

the renormalized Hamiltonian

'z (X', n,cH, (5.8)

which will have only half as many spins. If one can indeed achieve this, one is
said to have accomplished one step of a renormalization transformation. The result

is written formally as

#' =R _[#]. (5.9)

bl

The important parameter b is called the spatial rescaling factor which in this case

is simply equal to 2 (see Fig. 5.1). The change in the number of spins is described
by b since N =» N' = N/2 = N/b. In two spatial dimensions, however, ome could
consider decimation by knocking out alternate rows of spins and alternate columns of
spins: then one would have N =»N' = N/4 = N/bz. Generally, in a d-dimensional
system the spatial vrescaling factor is related to the reduction in the number of

degress of freedom, here simply spins, by
d
N =N' = N/b . (5.10)

Back in one dimension, we have expressed the hope that ¢P'(s_,s+) as obtained
from (5.5) can somehow be expressed in the desired form (5.6). Now we have three
variables K', h' and C' that can be adjusted in order to make this hoped-for
identity true. Since s_ and s, can only take on the values (+1,+1), (-1,-1), (+1,-1)
and (-1,+1), imposing the identity leads to four matching equations, the last two of
which turn out to be identical (because the two ends of a bond are symmetrically
related). It is thus an elementary exercise to show that these matching conditions

are solved by

GAK' . cosh(2K + h) cosh(ZK - h) (5.11)
2
cosh™h

e2h' _ .2h cosh(2K + h)

cosh(2Kk - h)’ (5.12)
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and, lastly, demonstrating why it was important to introduce the "constant” term C,

1]
e4C = e8Ccosh(2K + h) cosh(2K - h) coshzb. (5.13)

We thus see that the proposed renormalization group transformation can be
performed explicitly and exactly in this case. It has resulted in a new Hamiltonian
but one retaining the same general form and it entails a reduction in the number of

spins and, as we shall see shortly, an associated spatial rescaling.

5.2.1 Spatial rescaling and spin correlations

The original Ising model consisted of a chain of spins each separated from its

neighbors by the lattice spacing, a. After eliminating every second spin the

remaining spins are now a distance 2a apart (see Fig, 5.1). In an effort to have
the renormalized model look as much like the old as possible, we rescale all lengths
in such a way that the new lattice spacing, a', equals the old one. Under this
scale transformation any distance R in the original lattice becomes R' = %-R in the

new lattice when measured in units of the lattice spacing. In general we have
R =3 R' = R/b. (5.14)

This spatial rescaling is of particular importance in relation to the spin-spin
correlation function, <sosR>. First let us notice that it obviously makes sense to
renumber the remaining spins so that their labels again run consecutively. Thus, as

shown in Fig. 5.1, we take

1 A 1
szz}sl R s4=}sz s eee ,s2k:=} 8 s oo (5.15)

which, if we regard the labels as distance coordinates, is the same as making the

identification sé, = Sopee

transformation) since the undecimated spins retaim their characters and relation to

Second, note that (for this renormalization

one another the renormalized correlation function <so’s'R.> is actually equal to the
original correlation function <3052R’>' It follows that if the renormalized
correlation length is E' = E[ # '] the original correlation length, £ = 5[32 ], is
just twice as long! More generally for a spatial rescaling factor b we have derived

the important renormalization relation
E[# ] = bE[# '], (5.16)

We see from this that the renormalization group procedure has the effect of

shrinking the correlation length. Hence if we recall the central fact of critical
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phenomena, namely, that £ becomes indefinitely large as t + 0, we see that a
renormalization transformation has the effect of driving a system away from
criticality. It transpires that this is, perhaps, the most crucial feature of the

method, the one that enables us to focus on critical points!

5.2.2 Unitarity

Another crucial aspect that a renormalization transformation should embody may
be called unitarity (although the term is not here being used in the sense familiar
in matrix theory or quantum mechanics). Recall that the renormalized Hamiltonian
arose in the process of carrying out a partial trace over some of the original spin
degrees of freedom. If one now simply completes the trace operation by summing over
the remaining spins as coupled through the renormalized Hamiltonian to obtain the
renormalized partition function, the end result must be the same as if one had
performed the entire trace operation in one go. In mathematical terms, we have,

first, the partial trace

;2 1] L 1 J—z
e#1) Lps () (5.17)
where s'' stands for the N'' = N-N' spins over which the decimation trace was taken,

and then we compute

7 "(s')y

— r
2, [ % '] Tr;,{e

= el el e % (s)yy L TeSie ¢ (9

ZN[%]. (5.18)

In other words the partition function is preserved under renormalization or,

equivalently, renormalized by the simple factor unity!

This central result yields the law of renormalization for the free energy

itself as follows:

RER =% In zN[iE]

= (3 v In 7, [ %] = bdf[ %], (5.19)
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Note that for the sake of generality we have used (5.10) which applies for any

renormalization group.

Having seen how to construct a renormalization group explicitly (in at least
one case!), and having identified a number of important general properties, let us
enquire into how it may be used to elucidate the nature of a critical point. To
this end, we will leave aside the particular algebraic forms that appear in
analysing the one-dimensional Ising model, and focus instead upon the more abstract

features which they illustrate.

5.3 Flow equations, recursion relations, and fixed points

A renormalization transformation, as we have just seen, fundamentally changes a
given problem into a new one, which, however, still contains the same essential
information as the original one. If we rewrite (5.19) and (5.17) [which entails
(5.11)=(5.13)] we may describe the renormalization procedure by a set of flow
equations which describe the motion of a point describing the reduced
Hamiltonian, % , In the appropriate space of parameters, which for our Ising chain

are the variables K, h, and C. First, from (5.19) we obtain
f[K,h,C] = b—df[K',h',C'], (5.20)

for the free energy, and then we have

K' =RK(K,h), (5.21)

h' =<R.h(1<,h), (5.22)
and, finally,

¢ = vic + R (&,h), (5.23)

for the "coupling constants™ or "thermodynamic fields" specifying # . The last

three flow equations are sometimes also called the recursion relations for the

coupling constants: of course, for the Ising chain they are just (5.11)~(5.13)

written in a more abstract form.

Now since the temperature, T, is built into the parameter K, these relations
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also 1mply a flow equation for T. To explore the significance of this let us, for
simplicity, first suppose that the magnetic field on our model vanishes, i.e.,
H = 0, so that this flow equation can be written simply as

T: 3T =R (T), (5.24)

where R (T) is the appropriate function of T. We will also suppose, without
justification at this point, that (R (T) has the form shown in Fig. 5.2, the
important feature being that the plot crosses the line T' = T. We may call the
temperature, T*, at the crossing a fixed point because it clearly satisfies the

relation
* *
T =R(T), (5.25)

which means that when the recursion relation (5.24) is iterated the temperature T
does not change if 1its initial value is set at T = T* i.e., it remains "fixed"” at
T*. Subsequently we will see that T*, in fact, represents the critical point (in
this simplified, “Bohr-Sommerfeld” description).

Now if one starts with a temperature T > T* then, as is easily seen from Fig.
5.2 one finds that Tl' =R (Tl) > Ty, so that if the renormalization transformation
is iterated, it drives the temperature, T, further and further from T*. The same
thing applies if the starting temperature, say Tos 1s below T* as also illustrated
in the figure. Consequently we see that T* is an unstable fixed point: the

temperature always moves away from it under successive renormalizations. Of course,
there is, in the figure another fixed point at T = O which is stable, but this turns
out to be only of limited interest. 1In practice a similar stable fixed point also
occurs at T = « as we might have guessed. These totally stable fixed points are

usually referred to as “trivial” fixed points.

As we have seen, the flow equation for the correlation length, is
E(T) = bE(T'). (5.26)
At a fixed point therefore we must have
£ = (1), (5.27)
but since b > 1, this equation has only two possible solutions, namely,

(1) E(T*) = o, which evidently characterizes a
critical point, and
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(i) E(T*) = 0, which corresponds to a trivial
fixed point.

The vanishing of the correlation length at infinite temperature where the spins are
totally uncoupled, or at zero temperature where they are frozen in a ground state is
of little physical interest here and we shall ignore it. However, we have clearly

made good our promise to prove
T.=1T, (5.28)
i.e., to show that the critical temperature is located at the fixed point. We will

now show that the properties of the renormalization group in the vicinity of the

fixed point determine the values of the critical exponents.

s

5.3.1 Linearization about a fixed point

A renormalization transformation is, in general, a non-linear transformation as
evident, for example from (5.11)-(5.13), but in the close vicinity of a fixed point
we should be able to linearize it on the assumption that it behaves sufficiently
smoothly. In the present context this merely means replacing the curved plot
of ® (T) near ™ by 1its tangent at T*. Writing, as before

(T-T) *
t = = (5.29)

*
Tc T

it follows that after renormalization the temperature deviation will be given by

erz D, A, (b)e, (5.30)

for small enough t, where Al(b) is the slope of the tangent, which, as has been
indicated will depend explicitly on the spatial rescaling factor b. To see this
suppose one iterates twice so obtaining

(2)

t'' =t =~ Al(b)Al(b)c. (5.31)

Clearly this should be quite equivalent to transforming with a spatial rescaling

factor b2. Thus we conclude that one must also have

(2. Al(bz)t, (5.32)

from which we see that
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2
Al(b)Al(b) = Al(b ). (5.33)

We learn from this that A1 must depend on b in a rather special way, namely as

A
A =b L, (5.33)

where Al is some constant (independent of b). If the renormalization

transformation is iterated 2 times one clearly obtains
= A7t =D t, (5.34)

while the effect on the correlation length follows from (5.26) as

A2
£(t) = blE(b |

t). (5.35)
We have been explicit in these equations about the fact that the behavior stated
really holds only asymptotically close to the critical point within the regime where

the linearization represents a good approximation.

Now £, the number of iterations, is quite arbitrary and so we may select its
value in a way which procures a major simplification. Specifically if we choose £
to satisfy

—1/)\1
b =t s (5.36)

the flow relation for the correlation length becomes

-1/A
E(t) ~ t L) -Somste (5.37)
1/)\1
t
This evidently matches the power law behavior, & = l/tv, which we expect to see

near a critical point! On comparing exponents we make the identification

v o= (5.38)

One can carry out a precisely similar analysis, based on (5.20), for the free
energy. The result that emerges (on choosing C so that f vanishes at the fixed
point) is

-dg

£(t) ~ b ED b)), (5.39)

from which, again choosing b to satisfy (5.36), one obtains
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da/x

f(t) = t 1

£y = ¢, (5.40)

This we may compare with the standard critical behavior for the free energy which we

recall from (3.25) is f = Aotz-a. Hence we deduce the hyperscaling relation

20 = & = av, (5.41)
1

first introduced heuristically in Sec. 3.8.

5.3.2 A second variable and scaling

If the magnetic field H is no longer constrained to vanish, the renormalization
group operator, IR, p» acts in a more complicated non-linear fashion to generate T'
and H' from T and H, We can express this fact either in terms of the pair of

coupled recursion relations

T = <R.T(T,H), (5.42)

H' = (R.H('r,H), (5.43)
or as the "vector” recursion relation
T Ty' T

Note that we may ignore the “constant" term C because its flow, while depending on T
and H, cannot itself have any influence on T and H, since it merely represents an
additive contribution to the Hamiltonian and, thence, to the free energy but does
not affect the coupling or spin configurations in any way. [This can, of course, be
seen explicitly in (5.11)-(5.13)]. On the other hand, in neglecting other possible
variables and focusing just on T and H we are presenting what, in our quantum-—
mechanics analogy, might be termed only a "single-particle picture” rather than a
many-particle theory which, in quantum mechanics, would entail discussion of Fermi
and Bose statistics, and so on. To the extent that the nearest-neighbor one-
dimensional Ising model can be treated correctly within this limited context it can
be regarded as the "hydrogen atom” of critical phenomena; however, as in most of
chemistry and physics, it will prove essential to move beyond the hydrogen atom to

approach the most interesting problems!

With these provisos in mind, let us, as before, assume the existence of a

nontrivial fixed point (T*, H*) which, from the symmetry of the magnetic
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*
Hamiltonian, should occur at H = 0. By the previous arguments, this fixed point

will again prove to be the critical point since we still obtain

—k
el H ]

m
vy
]
[~
Y
]
8

.

(5.45)
Near this fixed point we may linearize the recursion relations which yields

2% -

AT
an) = L () (5.46)

~ “AH

where the linear operator, L is now the matrix

IR IR, | *

oT 9T

L= , (5.47)
3Ry MRy
9H oH

the derivatives being evaluated at the fixed point, while AT T—T* and AH = H—H*

denote the deviations of T and H from their fixed point values.

Now the 2 x 2 matrix L will have two eigenvalues
A, =D and A, =Db 7, (5.48)

with associated eigenvectors say, q, and q, in terms of which we may expand the
~1 =2

deviation vector as

(q11 (q21)

=h
952 2 tay,

2 9 1 . (5.49)

ATy _
(ag) =Py gy +B
The coefficients, hl and hz, can evidently stand in for AT and AH which, in turn,
represent the deviations from criticality since, in this simplified “Bohr-
Sommerfeld” treatment, the critical point is at the fixed point. The parameters hl

and h2 are therefore called the critical fields or, in a somewhat more general

context, the linear scaling fields. 1In general we must expect to find, by solving

(5.49), that h1 and h2 are linear combinations of AT and AH: this would, for
example, be the case at the critical point of a fluid where H; in particular, must
be replaced by a particular combination of Ap = (p—pc), the pressure deviation, and
AT = (T—Tc) « t. In the case of a simple ferromagnet, such as we have in mind,

symmetry under H =p -H dictates that L is a diagonal matrix and hence that we have

h1 = t and h2 = H, (5.50)

where we have chosen a convenient normalization for the eigenvectors.

On iterating the linearized renormalization group transformation (5.46) % times
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we obtain
MCD RN and B ~ b %q, (5.51)

provided that T(l) and H(z) remain in the linear region. If the iterations are
repeated too often then, ultimately, the flow of T and H will become non-linear and
the forms (5.51) break down. This can be seen explicitly by using the recursion
relations derived for the one-dimensional Ising model for which the overall flow
pattern is shown in Fig. 5.3. Notice that this actually displays a whole line of
trivial fixed points! The nontrivial fixed point of interest here occurs at ™ =0
corresponding to the fact, discussed in Sec. 4.3, that critical point behavior

occurs at Tc = Hc = 0.

In the linear region near the critical point the flow of the free energy is now

given by

AL AL
ey = b e, b2 om), (5.52)

(where, again, C has been chosen so that f vanishes at the fixed point). On making

use of the freedom to choose the value of £ we may set

—l/kl
t
v = (%) , (5.53)
t
where tT is a suitably small, fixed reference temperature, selected to keep the
iterations within the linear regime. Thus we obtain the relation
d/x
t t H
£(t,h) = (=) e, —— ).
e R
(t/t)

But since tT is now just a fixed parameter, this result corresponds exactly to our

1 (5.54)

original scaling ansatz for the free energy, namely

2-a

£(t,h) =~ A t° " ¥(D —). (5.55)
0 tA
Comparison yields the exponent identification
P
2-a = Q_’ and A = —Z. (5.56)
Al by

Thus we see how the renormalization group eigenvalues, Al and Xz, at the appropriate
nontrivial fixed point determine the critical exponents! At the same time scaling
is implied just by the form of the transformation. The non-universal amplitudes,

t

AO and D, are also easily expressed in terms of t , Al and Az, while the scaling

function itself is given formally by
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Fig. 5.3 Overall flow pattern in the (T,H) plane for the decimation or
dedecoration renormalization group for the one-dimensional Ising model
(based on Nelson and Fisher (1975) loc. cit.). Recall tha K = J/kBT and
h = H/kBT. The dashed curve delimits, approximately, the region over
which a linearization of the renormalization group (in this case in the
variables x = exp(-4J/kBT) and H) is justifiable.
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(y) = £y, (5.57)

where tT must evidently be chosen sufficiently small to eliminate the effects of the
neglected nonlinearities. Sometimes the scaling function may be calculated by a
"matching” procedure which involves iterating TR, sufficiently many times that a
noncritical region is reached where the renormalized free energy can be matched, to
sufficient accuracy, onto results obtained from some other theory, such as mean
field theory or perturbation theory which can be regarded as valid away from

criticality.

At this point the reader will find it a very instructive exercise to return to
the exact recursion relations (5.11)-(5.13) for the linear Ising chain and work
explicitly through the chain of reasoning leading first to the zero-field fixed
point and evaluation of the critical exponents o, and v and then through the two-
variable situation to the scaling behavior (5.54) and the gap exponent A. It will

be found that the nontrivial fixed point occurs at T* = H* = 0. Because this is a

zero—temperature fixed point one finds it appropriate to use the variable x = e_4K
in place of T, in terms of which the recursion relations are readily linearized. In
this way all the critical features derived in Sec. 4.3 are recaptured correctly
without the need of solving exactly for the full free energy: that, of course, is
what the renormalization group is all about! Details will be found in Nelson and
Fisher17 but we quote the exponents

1 1 1
2 - a =V = T = —2- and A = '2-, (5.58)

ble X
x X
where the subscript x denotes the use of x in place of t in the exponent definitions
and scaling forms, while Ah is merely an alternative notation for the eigenvalue
AZ' The scaling function is found to be simply
1
2,2
¥(y) = (1 +y5)7, (5.59)

the nonuniversal amplitudes then being AO =D=1.

5.4 General Renormalization Groups

We have used the one-dimensional Ising model to introduce some of the most
important aspects of renormalization group theory at an initial level. However, we
have presented no explanation of the observed universality of critical phenomena.
Nor have we shown how one might construct a renormalization group transformation,

TR, , for systems of higher dimensionality or with other types of local variables
than the simplest Ising spins. Neither have we seen how to calculate explicitly for
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more complex systems. Accordingly, we will now resurvey the terrain, but from a
general perspective, presenting, as it were the Schr;dinger picture of critical

phenomena.

5.4.1 The space of Hamiltonians

Let us start by listing some of the essential attributes of, and some of the
important assumptions we will make (or that should be proved) about an effective
renormalization group transformation. A crucially important point is the need, in
formulating TR, for a “"large" space,lH , of Hamiltonians. Historically, this aspect
was rather late in being generally recognized; it was K. G. Wilson who first
emphasized it strongly. A simple example serves to illustrate why and how this need

arises. Consider the double Ising chain or two-layer lattice which, pictorially,

congtitutes a ladder. What is the effect on the corresponding Hamiltonian of a b=2

decimation which eliminates alternate pairs of spins? In the absence of a

S+
Ji NIl won B e
J2| 2
J Y S2 5 S3

Fig. 5.4 A double-chain or two-layer Ising model ladder with nearest neighbor
interactions of strength 9 along the chains and J, between the chains.
The boxed pairs of spins are summed over and thence eliminated in a b=2
decimation transformation.

magnetic field the original Hamiltonian is specified, as shown in Fig. 5.4, by three
interaction parameters, namely, Jl’ the coupling between nearest neighbors along one
chain, J2, the cross-chain coupling between adjacent spins on opposite chains, and
by C, the additional "constant” parameter that was introduced earlier in treating
the simple Ising chain. Carrying out the partial trace clearly results in a new
double chain, and we need to match the Hamiltonians for this renormalized system and
for the original system on sets of four untransformed spins like 81> 8, 8 and s,
in Fig. 5.4. Now there are 16 possible configurations of these four spins and these
give rise to 16 matching equations. For H=0 a number of these equations turn out to

be equivalent. Nevertheless, as each reader should convince him or herself, it is
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quite impossible to achieve matching using only three renormalized coupling
constants C', Jl', and J,' as would be expected for a simple ladder. Rather it
proves essential to introduce two more new parameters, namely, J3', for pair
couplings like s| 83 and sy 5, and J4', for a quartic coupling term 8| 89 83 S5, as
illustrated in Fig. 5.5. Thus we establish the need for an enlarged space,]H ,

Fig. 5.5 A "braced ladder” of Ising spins with four-spin couplings resulting from
renormalizing the simple 1Ising ladder of Fig. 5.4 by a decimation
transformation.

of in this case five-parameter Hamiltonians. In the "initial", physically given
Hamiltonian two of these, Js and J,, just “happen” to vanish identically! After

renormalization, however, they necessarily appear.

In general, then, one must allow for an indefinitely large space H of
Hamiltonians H= (C’KI’KZ’KS’
useful renormalization group to exist. The Hamiltonians will be characterized by

.ss), in order to provide a reasonable chance for a

coupling parameters C, K1 B JI/kBT’ K2 = JZ/kBT’ etc. which, in general, will be
infinite in number. For this reason renormalization group problems tend to be
difficult, and as yet, there are not many that have been solved exactly or analyzed

by rigorous methods.

5.4.2 Renormalization group desiderata

A renormalization group Wz’b for a space H of Hamiltonians should satisfy the

following requirements:

A, Existence. There should, in the first place, clearly be a well-defined

transformation, or mapping,
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H=p2' "R #I (5.60)

which, in particular, remains unambiguous and well-defined’ in the thermodynamic
limit N » =, (See also below.)

B. Elimination. In the process of making the transformation there should be a
reduction in the number (or density) of the original degrees of freedom, so that we
can write, as before,
. d
N =P N' = N/b, (5.61)

where b is the spatial rescaling factor.

C. Spatial locality. The transformation should not be so drastic that it mixes up

the local degrees of freedom, the spins, in a hopelessly haphazard way! More
concretely, one should be able to identify the same regions of space and associated
local variables before and after the transformation, although, of course, spatial
distances will have been changed: two regions of space originally separated by a

distance x will be brought closer together by a factor b after the transformation,

xpx' =1, (5.62)

o] W

thus preserving the overall density of degrees of freedom (which is what, basically,

fixes distance scales).

Hand in hand with this rescaling of space goes the transformation of the

correlation length according to
E=p E' =~ E/b. (5.63)

However, this particular relation must, in general, be regarded as mainly heuristic
since the true transformation for &, especially away from criticality, must depend
on the details of the particular definition of correlation length which is
adopted.18

In momentum space the effect of TR, b is to enlarge wave-vectors by a factor b,

so that

q =>gq' = bg. (5.64)

D. Unitarity. Thermodynamics should be preserved by a renormalization group
transformation. In other words, the two Hamiltonians should give rise to the

equivalent thermodynamic functions under proper transformations of the thermodynamic
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fields or the couplings. In particular the unitarity relation
Zol& 1 =2,0& '], ‘ (5.65)

preserves the total partition function and from this we obtain the flow equation or

recursion relation for the overall free energy density, namely,
£IR ] =b" £[4'], (5.66)
as already demonstrated in (5.19).

E. Smoothness and uniformity. In employing a renormalization group transformation

it is normally essential to assume that the transformation is smooth in the sense
that 1f # =$ %' and H£ + 626 => ' + SFL"' then as §# > 0 one has § # ' > 0;
or, more strongly, that 6 J¢ ' becomes proportional to § # so that a first
derivative exists; and so on for one or more higher derivatives. Again, such
smoothness is normally assumed to hold uniformly over interesting regions of the
Hamiltonian space JH and to apply, in particular, to the flow equation for the free
energy where, furthermore, one trusts that one 1is entitled to neglect the
differences fN[ ¥ ] - £, [#6 ] and their derivatives, etc., in the thermodynamic
limit N + @, These properties are not obviously guaranteed and really need thought
and justification as the specific cases arise. (Indeed, smoothness has been
seriously questioned by Griffith's and Pearce19 for certain types of renormalization

group transformation.)

F. Aptness or focusability. For any given Hamiltonian or class of Hamiltonians

there is not just one renormalization group - "the renormalization group” as some
people say - but rather there are many that might be introduced, and one must
question, for example, whether the process 1is best carried out in real space or

momentum space and 8o on. A "good” renormalization group must be "apt” or
appropriate for the problem at hand, and it must, in particular, “focus" properly on
the critical phenomena of interest. To this end it 1s sometimes necessary to
introduce additional devices to make the renormalization group  work
satisfactorily. An important instance is provided by spin rescaling in which the

(continuous) spin variables undergo the transformation
5 =8 =8/, (5.67)

where c, the spin rescaling factor, may have to be chosen appropriately as some
function ¢ = c(b) of the rescaling factor b (or, even, as c[ % ;b]). We will see
concretely how this need arises in Section 6 when the momentum shell renormalization

group is used to generate the € = 4~d expansion for critical exponents. However,



83

the significance of ¢ can be seen more generally in the context of an important

special class of renormalization groups which we characterize as quasi linear.

5.4.3 Quasi-linear renormalization groups

Spin rescaling has an intimate connection with the correlation functions as we
now show, The spin-spin correlation function for two points, say ¢ and x, will
depend on x and also on the magnetic field and interaction terms in the Hamiltonian,

so we may write quite generally

<sg SB> =Gl{x; # 1. (5.68)

Now a renormalization group transformation not only changes x and # but also
involves some definition of the renormalized spin variables and their relation to
the original spin variables. In the decimation transformation this simply amounted
to a re-identification (or relabelling) of the original spins. More generally,
however, the relation between 8, and s;, may be, and usually will be more complex.
Consequently the transformation law for G[x; # ] is not necessarily simple. In the
case of a quasi linear renormalization group, however, an identification such as
(5.67) holds so that, in particular, the pair spin correlation function has the
transformation law

Glx; # 1 = czclg'; %'l (5.69)

2

The factor c¢“ appears simply because each spin in the definition (5.68) is to be

rescaled.

Now, granting such a relation, consider the situation at a nontrivial fixed

point which, by definition satisfies

(%" =R (%"= 2" (5.70)

so that (5.69) yields, for the fixed point correlations
* * 9 %
¢* ) = (6" Gx/b). (5.71)

*
Since b is essentially arbitrary this represents a functional equation for G which

has the unique solution

¢ (x) = 2, wien =l #%) =Y, (5.72)
X



where D and w are constants (independent of b). However, such power law behavior is
just what is to be expected at a fixed point which represents the critical point of
a system. Thus we can make the identification

1

w =% (d-2+n), (5.73)

)

where n is the critical point decay exponent introduced in (3.48).

This conclusion can be restated in another way: in order to obtain a
nontrivial fixed point of appropriate critical character, it is necessary to adjust
¢ (at least close to X = ;&*) to satisfy (5.73), where n need not be known a
priori. This is somewhat analogous to the adjustment of the energy in a Schr;dinger
equation for a stationary state so that the wave function satisfies proper boundary

conditions, and the energy then yields the desired eigenvalue.

If one now returns to our exact decimation solution of the one-dimensional
Ising model one sees that, without raising the question, we implicitly took a spin
rescaling factor ¢ = 1 or w = 0 in (5.72). Further, as mentioned, the quasilinear
criterion, (5.69), was indeed satisfied. The fact that we then obtained a sensible
fixed point for one-dimensional Ising criticality at T = O was thus really a result
of the "accident” that n = 1 describes the scaling behavior of the Ising
correlations via (3.52) as T » O: this, happily, agrees with (5.73) since
2w=d+2 = 0-1+2 = 1! It is evident, however, that if one suspects that n is not
simply equal to (2-d) it is iInappropriate to use a quasilinear renormalization group

unless one allows for a spin rescaling factor.

5.5 Flows, universality and scaling

The assumption of smoothness means that systems represented by Hamiltonians
corresponding to nearby points in our multidimensional parameter space,l}i , flow
under renormalization to other points which also lie relatively close together. Let
us apply this observation to the set of Hamiltonians representing a single physical
system, say for concreteness the ferromagnet pure nickel, in the vicinity of its
critical point. We will enquire into the flow trajectories generated by iteration
of the renormalization group and see how this leads naturally to a concept of

universality.

5.5.1 Universality, relevance and irrelevance

Consider Fig. 5.6 which presents a visualization of the space, ZF] , of
Hamiltonians and, in particular, exhibits a "physical manifold” described by the
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A representation of the space of Hamiltonians,ﬂ'j] , showing initial or
physical manifolds and subsequent renormalization group flows. Critical
trajectories are shown bold: they terminate on the fixed point #*.
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initial, unrenormalized Hamiltonians, j_/.(’%t,h), corresponding, as we agreed, to
nickel near its ferromagnetic critical point. At the critical point itself, when
the physical fields t and h vanish, we have £ = « because of the characteristic slow
decay of the correlations. However, the critical Hamiltonian #:C) = JZ(°) (0,0
is not, in general, a fixed point! After one operation of the renormalization group
transformation we obtain a new manifold, representingl the first-renormalized
Hamiltonians 1—2 '(t',h'), in which 1s embedded the renormalized critical
Hamiltonfan, 1.—(-,": =TR b[ ;cc]. It is crucial to realize that this also will be a
critical Hamiltonian [and, hence, equal to # '(t'=0,h'=0)]: the reason for this is
simply that the flow equation (5.63) for the correlation 1length tells us
that Ec=} E(': = F,c/b =o/b =»! Thus under successive renormalization a line or
trajectory of critical points 1s generated. In principle this critical trajectory
might eventually fly off to infinity or it might wander around in I forever, even
perhaps in some sort of turbulent or chaotic motion! Nevertheless in the light of
the previous examples (and further calculations to be performed) it is also very
plausible to suppose that the critical trajectory eventually terminates at some
fixed point ﬁ* at which, of course, further renormalization produces no further
motion. The critical trajectory starting from the critical point of nickel and
proceeding through a sequence of critical points of renormalized forms of nickel,
lies on the stable critical manifold of the fixed point 1_c* i.e., the set of all
points in _ﬂ—] which are ultimately carried by the renormalization group flows

— *
into #¢ . Evidently all points on this stable critical manifold, including the

fixed point itself, correspond to systems at criticality.

Now one might start in quite a different region of parameter space
corresponding, say, to iron or gadolinium, as suggested by the other initial,
physical manifold indicated in Fig. 5.6. Then, perhaps, under renormalization the
critical point Hamiltonians for iron and gadolinium flow to the same fixed point as
before! If it happens this way, then Ni, Fe and Gd must all lie on the same
critical manifold. The universality of their critical behavior then follows from
this fact! To demonstrate this point consider what happens to the free energy under

% successive renormalization group iterations: by (5.66) we have
= -d? .. — (&
f1% 1 =0 % 7M. (5.74)

We see that the behavior of f(t,h) for any ;ZZ = (t,h) which lies near a critical
Hamiltonian is determined by the behavior of f[# ] for a multiply renormalized
Hamiltonian which will lie close to the fixed point. Thus the critical behavior for
Ni, Fe, and Gd, and for any other systems whose critical points lie on the same
manifold, will be essentially identical. 1In particular, because of the smoothness
of the mapping all will display the same critical exponents and, furthermore, all

will be described by the same scaling functions. It is only as regards the various
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non-universal amplitudes that the various systems will differ.

Not all systems, of course, are expected to have critical Hamiltonians which
flow to the same fixed point. For instance, suppose iron is placed under a uniaxial
stress. The initial parameters, and hence the initial physical manifold, are now
slightly altered. 1If the critical point Hamiltonian were still to flow to the same

fixed point as before, we would call this uniaxial stress an irrelevant perturbation

since it does not change any of the essential asymptotic critical properties. On
physical grounds, however, in this particular case we suspect strongly that the
critical behavior will change since the uniaxial stress should enhance parallel spin
fluctuations but tend to suppress transverse fluctuations. Thus the new flow should

carry ii c to a different fixed point which may be described in terms of a single-

component, scalar or n = 1 Ising-like order parameter, whereas the original fixed
point for unstressed iron is expected to correspond to an isotropic Heisenberg-like
or (n = 3)-component order parameter. Now there will be another manifold of
Hamiltonians that all flow to the new Ising-like fixed point; the critfical
properties of systems described by these Hamiltonians will be different from those
of the former set. In such a case we say the uniaxial stress represents a relevant
perturbation since it causes the critical Hamiltonian to flow to a distinct, new
fixed point. ’

The flow picture brings out clearly the idea of various universality classes.
Systems which belong to the same universality class have critical Hamiltonians which
flow into the same (or equivalent) fixed points. The corresponding critical

manifolds can be regarded as the catchment areas or basins of attraction of the

different fixed points.

5.5.2 Continuous flows

As we have seen, one utilizes a renormalization group transformation by
iterating it, obtaining successive renormalized Hamiltonians. Accordingly it
usually proves convenient to introduce a discrete flow variable %, which counts the
iterations. It can clearly be thought of as a time-like renormalization or
rescaling variable which parameterizes the flow trajectories. To this end we
rewrite the spatial rescaling factor as b = el, and recall that the renormalization
transformation is parametrized by b as ' = ﬂ{ b[ii 1. Quite often, however,
there arise situations in which £ can be regarded as a continuous, truly time-like
flow variable. When this 1is so, the renormalization group equations can be written
more directly as differential flow equations. Thus for the Hamiltonian itself the

transformation is represented by

% G &l (5.75)
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where the G is the infinitesimal generator for R . It can thus be expressed via

a limit operation as
G - 1in (—s=p)- (5.76)
b1+
Since 17 merely represents the point (C, Kl’ K,, «ss), the flow can also be written

as a set of simultaneous differential equations of the form

dc _
a‘z‘ go(cy K19 sz "')’

dK1

T= 91 (C, Kl, Kz, -..), (5-77)

for the parameters C, Kl’ K2, etc. (If, as before, C represents the "constant” term

in J_(, it will not actually enter in the g i for 1 > 0.)

5.5.3 The fixed point spectrum

In order to use a renormalization group to describe critical phenomena we must
assume that there is an appropriate fixed point 12*. This assumption is backed up
in many cases by various more-or-less detailed calculations. A few, like those for
the one-dimensional Ising model, are exact but most are at best systematic
approximations. However, if we follow the assumption through, powerful general
conclusions follow: conversely 1if no proper fixed point exists we may expect

scaling and other consequences to fail.
The first step, as we have seen, is linearization. To implement the procedure
we take # close to the fixed point and write

*

= +:@, (5.78)

where g is small and @ is some “operator”, 1.e., a partial Hamiltonian. On

operating witth, b and invoking the smoothness assumption, we obtain
— — — % 2
%' =R (#1=-%" + gh,& + o6, (5.79)

where ﬂ"’b = (8# '/6 X% ) 1s a linearized renormalization group operator. As a
linear operator, it can be expected to have a spectrum of eigenvalues Aj(b) and

associated ‘“eigenvectors", (¢ which are "operators"” or partial Hamiltonians.

j,
Sometimes the (.Qj are called critical densities or scaling operators, etc. They

are determined by the eigenvalue equation
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ZL/b @j = Aj(b) C?J.. (5.80)

Each of the eigenvalues should be expressible in the form
A,
Ag(®) = b 3, (5.81)

where the individual )\J.'s are independent of b, (This reflects the semigroup
property, TR, bb. - R b R’ b.* of the renormalization group transformations.)
Typically, one can make %he irzxdentifications

Q. -€. @, =v, (5.82)

where ¥ denotes the order parameter and E the energy (see also below).

If we assume the eigenvectors form a complete set, or at least a sufficiently

complete basis in some asymptotic sense, we may expand # in terms of them as

— * \
Z=7" ), gy @yt (5.83)
J
Acting on JZ with Rb then yields
_ —x O )
"= + A, @+ o8] e, 8, 5.84
~ oty el &y (gJ gigJ), ( )
o
and on iterating £ times we find

—w) _ =+ \" L 2
A A +2_, gyl C?J. + 008”8, 8;)- (5.85)

The gj are called critical fields or linear scaling fields. Evidently we may

express the L-renormalized field as

@) ¢ h|
. = g.A, =b . (5.86)
gJ gJ 5 gJ,
where we must write = ("asymptotically equals”) in place of = because we are

neglecting the higher order terms in (5.84) and (5.85). ©Now as % increases there
are three possible courses for gj (R'):
(a) If )‘j > 0 then we have AJ. > 1 and gj

system away from the fixed point and, hence, away from the corresponding

) grows rapidly larger, carrying the

criticality. In accord with our previous discussion, such gj are called relevant

fields and the associated C?j are called relevant operators. At a normal critical

point we know that criticality is destroyed by varying the temperature, which
couples to the energy, é , from T, or by changing the ordering field, h, which

couples to ¥, from its critical value, h = 0. Thus we expect to find two relevant
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scaling fields which, reflecting (5.82), may be identified as g, =t and g, = h.
(b) If A, <O one has A < 1 and gk(”
therefore, it should be possible to ignore such fields. For this reason, again in

shrinks steadily to zero. Ultimately,

concordance with the earlier discussion, g 1is called an irrelevant variable or

field in such a case and the associated (9 k is an irrelevant operator. If the

relevant fields are all set to zero the flows will take # to the fixed point, so it
must then lie on the critical manifold. Thus another way of stating universality is
to note that the fixed point 1is insensitive to the irrelevant variables, so that
systems differing from one another only with respect to irrelevant variables belong
to the same universality class and are "governed” or “controlled” by the same fixed
point.

(e¢) Finally there is the borderline where Am = 0 so that Am = 1. The corresponding

g, are called marginal variables, and neither grow nor shrink very rapidly. Rather

the flow of a marginal variable must be described by

E"i=o+o( 2y (5.87)
az gigj'gj ’ .

and so 1is determined by terms quadratic in the fields. Thus a marginal variable
varies only relatively slowly with £. On following through an analysis in which
marginal variables feature (see e.g. in Sec. 6) one finds there are various special
things that can happen, which violate the simplest scaling precept. One of the
typical effects 1is the appearance of logarithmic correction factors, such
as (1n|t|)v, multiplying the usual critical power laws. The ability to identify and
predict such departures from straight forward scaling represents one of the powers

of the renormalization group approach.

5.5.4 Scaling of the free energy and hyperscaling

Let us now express the free energy in terms of the set of scaling fields
£1:89:83, etc. The flow equation for the free energy then takes on the simple

asymptotic form

2 2 22

e e, b Zh, eue, b Jgg -, (5.88)

f(ty h, g31 ~°-) = b_

where we have made use of the identifications 8 = t and g, = h.
Now we can make the previous choice for b or £ by setting

ZAI
b = 1/t, (5.89)

which yields the general scaling result
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24
E(Eh, ey gy oen) = tz_af(l,:n—A-, ceey = Ly, (5.90)
t tj

where the standard thermodynamic exponents are given, as before, by
2—a = d/)\l and A= )\2/)\1, (5.91)

while the “crossover exponent” for the scaling field gJ. 1s given by
L= AL/A. 5.92
ERWS (5.92)

Now 1if ¢j > 0 for some j, the scaled combination gj/t 3 becomes large as t + 0 and
so it clearly cannot be ignored: in other words gj 1s another relevant variable and
its presence will normally lead to crossover to different critical behavior (or,
perhaps, to noncriticality as for t and h). On the other hand, when ¢k 1s negative
one has

¢k ek
gk/t 2 gt 0as t > 0, (5.93)

and so & becomes inconsequential: it is anq’irrelevant variable. By expanding
(5.90) in terms of the scaled combination gk/t k, if this is allowed, we see that
such irrelevant variables can contribute “corrections-to-scaling” i.e., correction
factors to leading power laws of the form [1 + cj t o+ «ss]. At some slight risk
therefore (in case the g enter in a "dangerous” way), one can thus discard all the
irrelevant variables and worry only about the relevant ones. Finally, this
justifies the postulate of asymptotic scaling near a critical point in terms of only
a few important variables. For a standard critical point with only two relevant

variables we thus recapture the scaling form

£(t,h,84,8,, -0 ~ t0 (), (5.94)
t

in considerable generality.

It is worth mentioning that in addition to the singular corrections to this
asymptotic scaling form which arise from the irrelevant variables and their exponents
as factors (1+cte+...), one must always expect farther analytic corrections to
scaling which will appear as t and h depart increasingly from criticality. At the
most trivial level the "harmless" change from t = (T—Tc)/Tc to t' = 1-(TC/T), which
is often useful theoretically and experimentally, introduces such correction terms

since one has t' =t - t2 + t3 + ... . More generally, on solving the recursion
relations near a fixed point beyond linear order one finds that the scaling fields

t, h, ..., gj, «es in the scaling relation (5.90) should, for greater accuracy, be

replaced by non-linear scaling fields, 'E, ?1, ooy Ej’ «ss wWhich, in quadratic and

higher order can couple the original fields together so that, for example, one
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has Z =t + alt2 + a2h2 + a3th2 + ... , where symmetry may dictate that certain
terms are absent although the coefficients ay here are mnonuniversal. Clearly
further analytic corrections to asymptotic scaling arise from this source and can be

significant in practice.
Finally, let us appeal to the locality assumption for the renormalization group
and recall (5.63) to obtain, for h = 0,

A =1/

1t,0,...)= t 1

£(t,0,...) = bE(D £(1,0,0,...), (5.95)

where we have used (5.89) and allowed the irrelevant variables to go to zero.
Comparing this with the definition £(T) ~ t Vas t>0 (h=0) yields again (see (5.38))
the identification

v =1/, (5.96)

which may, with good reason, be regarded as the most fundamental of the
renormalization group exponent relations. However, the provisos explained after
(5.63) and in Sec. 5.4.3 must be borne in mind and, more properly, one should work
with the correlation flow equation (5.69) or its analogue for nonquasilinear

renormalization groups.

If we combine (5.96) with (5.91) we immediately obtain the hyperscaling
relation, dv = 2 - a, first introduced in Sec. 3.8 on heuristic grounds [see (3.57)
to (3.59)]. From this and the previous d-independent scaling relations, follow all
the other hyperscaling relations such as (3.60), which relates n and §, (3.65) and
(3.72). It is clear at this stage that hyperscaling is "built into" renormalization
group theory in a rather intimate and deep way. Nevertheless hyperscaling fails, as
mentioned previously, for classical or mean field theory (unless one has d = 4); but
we have already seen evidence, most concretely through the exact results for
spherical models, that the classical exponent values are valid for d > 4;
furthermore, this is confirmed generally by the explicit renormalization group e-
expansion analysis presented below in Sec. 6! Thus we are faced with the paradox
that hyperscaling seems to be predicted very generally by renormalization group
analysis but, nonetheless, fails strongly for d > 4: this issue is discussed
further in Appendix D where it is resolved in a consistent way in terms of the

properties of dangerous irrelevant variables.

This is also an appropriate place to caution the reader that ome can encounter,

in the critical spectrum of operators, certain so-called redundant operators: these

appear formally in the specification of the Hamitonian IZ and its flow under
renormalization but the associated scaling fields have no effect on the free energy
or other observable properties! As discussed by ngner,zo redundant operators may

be envisaged as describing, in a continuous spin system, for example, a mere change
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in the origin or scale of the spin variables (which, since all spins are eventually
integrated out, cannot have an effect if all couplings, fields, ete. are changed in
a covariant way as specified by the corresponding scaling field). In well-
controlled practical calculations redundant operators do not normally cause problems

and the reader will find little reference to them in the literature!

5.6 The construction of renormalization groups

The actual process of explicitly constructing a useful renormalization group is
not trivial. We will only consider briefly a few particular renormalization groups,
and then delve a 1little more deeply into one of them. A renormalization group
typically involves going over from one set of local variables or spins to another
set, {S}N => {s} y'+ A rather general form for T can be expressed via

ei_i{s} e7€'{s'}

=

matters, 1is defined by

, where the renormalized Boltzmann factor, which is what really
= s —
e# (") _ Ted {@ y o(8',8) e#{(s)}’ (5.97)

N N',N

in which the kernel @N' N(s',s) has N original or unrenormalized variables, s, but
b

a smaller number N' of renormalized variables s'. [The rescaling factor b is

defined as usual via (5.61).] Now in order to meet the unitarity requirement

(5.65), this kernel must satisfy the condition
S' 1 -
TrN, { QN,,N(S s)} = 1 for all s. (5.98)
Two of the simplest and more fashionable renormalization groups can then be

specified as follows:—

5.6.1 Kadanoff's block spin renormalization group

I(adanoff21 was the first person to expose the intimate connection between the
idea of a rescaled "block™ or "cell" spin and the scaling properties of a critical
point, thereby prefiguring Wilson's development of the general renormalization group
approach, He was also the first to bring this particular approach to the point of
being a practical computational scheme. (It might be mentioned, however, that the
idea of block spins as a way of approaching critical phenomena had been proposed

22 at one of the first

independently a year or so earlier by M. J. Buckingham
conferences to explicitly i‘ecognize the unity and universality of diverse critical

phenomena.) The simplest way of picturing Kadanoff's construction is to consider a
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An 1llustration of Kadanoff's block spin renormalization scheme for a
square lattice Ising model. The original spins are denoted by crosses;
the renormalized block spins are shown by solid circles. The spatial
rescaling factor here is b = 2.
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two-dimensional Ising model on a square lattice as illustrated in Fig. 5.7. The
lattice 1s divided into blocks or cells each containing 2 x 2 = 4 spins. On
renormalization each cell of spins is replaced by a single block or renormalized
spin. Thus for this renormalization group we have b = 2, There are several

algebraic ways in which this replacement can be effected.

One might, for example, imagine a pair coupling of strength Jg between the
block spins and the original spins in addition to the given couplings, say Jl’ J2,
etc., between the original spins. A full trace is then taken over the original

spins leaving a square lattice of block spins.

A crucial feature that appears directly one sums over the original spins in
such a "real space" renormalization group for a lattice of dimensionality d > 1 is
that couplings now apppear not only between first neighbor block spins but also
between second neighbors, third neighbors, fourth neighbors, and so on. Worse in
fact, since one is actually forced at the first step to go over to a space of
Hamiltonians in which there are an infinite number of coupling constants not only
between all pairs of spins but also between all triplets, all quartets, etc.
Despite this inescapable complexity one can write down a formally exact expression

forTJR, . 1In the simplest general case this is expressed by the kernel

pd
1
1
&, =ﬁ—[1+cs',2 s 1,
NN enls 2 2 x in % (5.99)
x' cell x'

where ¢ serves as a spin rescaling factor. The product runs over all the blocks or
cells; the sum runs over all the bd spins in a given cell. One can also check that

this yields a quasilinear transformation (as discussed in Sec. 5.4.3).

Although (5.99) is a neat closed formula, it certainly does not mean that the
problem 1s solved! In fact the best that can be done (unless d=1) in order to
actually implement this renmormalization group, i.e., to relate the new renormalized
couplings explicitly to the old ones, 1is to invoke some approximation scheme.
Unfortunately, the methods of approximation normally used entail truncating the
number of interactions at each stage of renormalization to some finite number of
more-or-less short range coupling terms. This is a fairly uncontrollable method of
approximation, and really useful new results from this renormalization scheme have

not been very plentiful.

5.6.2 Niemeijer and van Leeuwen's majority rule

This method is most frequently applied to plane triangular lattices but can be

adapted to other geometries and dimensionalities. In the simplest case triangles of
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adjacent spins, s, are formed into blocks and associated with a block spin, s'. Now
in any block of three Ising spins, S1» Sp» and sq say, at least two will always be
pointing in the same direction. The transformation rule then states that the
corresponding block spin, s', points in the direction of the majority! The

corresponding kernel can be written, with rescaling factor given by bd = 3, as

(R = H 1 R ,
N',N g L+ cosx,Ej st es | s 1 (5.100)

cells £y < X x %
L

~ ~

X

~

where the sum and second product run over the three spins in the cell x'; the

0= "% =%. It is easily seen that this transformation

is not quasilinear so that it 1is not necessary to adjust ey or ¢ to achieve a

coefficients are fixed by c

condition such as (5.72) and (5.73). One may be tempted, however, to try different
values for ¢ and ¢ and to try to optimize their choice in some way. However, the
exact transformation again necessarily involves an infinite number of coupling
constants so some sort of approximation scheme must be used. Many possibilities
arise and it is hard to find a truly systematic procedure since no small parameter
presents itself. Variational criteria for choosing the optimal cy and ¢y have been

explored but they cannot be relied on to yield correct final results.

5.6.3 Wilson's momentum shell integration

This renormalization group, which is particularly important since it turns out
to allow a systematic expansion procedure, is designed for or, perhaps more fairly,
requires continuous spins, ;x = (s:) with -» < si < » as discussed in Sec. 4.7. 1If,
for simplicity, one considers a d-dimensional hypercubic lattice of spacing a (i.e.,
a square lattice for d = 2, simple cubic for d = 3, etc.) one can introduce the

associated Fourier transformed spin variables

- ig°x ,
s =/,e s_, (5.101)

~

where the wave vector g runs over the appropriate first Brillouin zone of the

reciprocal space lattice: this can be expressed by

la ls lagl, «ev < gy = 7/a, (5.102)

where q, represents a momentum space cutoff which, of course, simply reflects the
underlying lattice structure. The situation for a square lattice is illustrated in

Fig. 5.8. For the original spins in real space one has, reciprocally,

—ig'x .
> _l ~
s5 = N%_:e sg. (5.103)



Fig. 5.8

97

\qy

7777

<

RZ

T

N

qT/b
1

— o
NN

o
./

v

dy Xb

I

\

N
A

<
FanY
g

Momentum space for a square lattice illustrating the construction of an
inner zone, marked <, and an outer zone or shell marked > (upper part of
figure). After integrating over spin variables with momenta in the
shell, the inner zone is expanded by a factor b to form the new,
renormalized Brillouin zone.



98

In this way any reduced Hamiltonian X¢ (;x)’ expressed in terms of the real
space (or lattice) spins, can be re-expressed }arecisely in terms of the Fourier

spins, s'9 as ﬁ( sS). Likewise the trace operation

S @
e X =T] ﬁ' f dst, (5.104)
N X k=l de £

becomes simply

>

Tr 3. 1T T jw d;;. (5.105)

N g u=l

Now, motivated by the idea that it 1is the low momentum or long wavelength
fluctuations that are of most importance for critical phenomena, while the short
wavelength, high momentum fluctuations are less crucial, Wilson divides the
Brillouin zone into two regions as shown in Fig. 5.8. In the inner region, which we

will indicate by a superscript <, the wavevectors ¢ satisfy

qul, |qy|, -es < qu /b, (5.106)
while the remaining, outer region constitutes a "momentum shell” of
thickness Aq = (1—b_1) w/a which can, if convenient, be chosen infinitesimal. Now
the original Hamiltonian 1is a function of spin variables; with wavevectors
distributed uniformly throughout the whole zone. Let us partition these into a
set, {;<} , of all those N' = N/bd spins with wavevectors in the inner zone, and into
the remaining set, {;;} , of the (N-N') spins in the shell. We can then write the

reduced Hamiltonians as
—_ A = g ay
(s )=H (s, ). (5.107)
% S) 1 4

Evaluation of the partition function requires an integration over all these spins as
implied by (5.105). 1Instead of doing this in one step, Wilson proposes that the
integration be performed in stages, starting with an iIntegration over only the spin
variables {;:} in the outer zone or shell. This procedure clearly embodies the
physical idea that the high momentum variables play a smaller role in the critical
behavior and hence may reasonably be eliminated first. (It should be stressed,
however, that it is a serious over-simplification to assert that all the critical
behavior occurs only at low momentum: this is not the case and is not assumed in
the renormalization group approach which, on the contrary, allows properly for all

contributions.)

This renormalization procedure yields a new Hamiltonian ¥#{' given by



9

— -, ~y ORI
#'(s',) s (s, )
q' q # 0 %
e = Tr {e }. (5.108)
N,N'
In this expression we have also allowed for spin and spatial rescaling. The latter

proceeds simply in accord with (5.63) and (5.64). As illustrated in Fig. 5.8, the

rescaling

4=g' = bg, (5.109)

of the wavevectors corresponds to an expansion of the inner region of the original
Brillouin zone to f1ll out the new, renormalized zone back to the size of the

original zone.

A spin rescaling 1is needed since it 1s not hard to see, by examining the
transformation of the Fourier space spin correlation functions G(g) = <s s g>, that
the renormalization group defined by (5.108) 1is quasilinear. Accordingly, the

renormalized spins are defined via
5 e =38 /e (5.110)
q 7 5 7 5/
where, in comparing with (5.67), we have the relation
- d
c=bc. (5.111)
It follows by the previous arguments that at a fixed point the Fourier spin
rescaling factor is related to the exponent n via

FapldF2 oMz (5.112)

Of course, other critical exponents must come from an analysis of the fixed point

spectrum.

Naturally one cannot, in general, implement this momentum shell transformation
exactly., Nor can one be necessarily assured of smoothness, locality and aptness.
However, in the same way that the one-dimensional Ising model can be treated exactly
by the decimation or a block spin renormalization group - thus constituting an
analogue to the quantum mechanical "particle in the box" problem - so can Gaussian
models, as described in Sec. 4.7, be treated exactly by the momentum shell
transformation. One might, indeed, regard the Gaussian model as the "hydrogen atom"
of critical phenomena: unfortunately, however, in itself it is of distinctly less
direct physical relevance than the hydrogen atom. Even so, as we shall show in the
next section, a solution of the Gaussian model via the momentum shell
renormalization group provides a foundation on which can be built a systematic

expansion procedure for solving more realistic and challenging models!
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6. Dimensionality Expansions

On the face of it, the Wilson momentum space renormalization group seems to
suffer from the same afflictions as the previously-described real-space
renormalization groups; but it turns out to have an overwhelming advantage in that
the unavoidable approximations can now be made in a systematic and controlled way.
It has thus proved possible to make many useful, novel, and incisive calculations
with the momentum shell integration technique and, even 1in rather low orders of

approximation, quite accurate numerical results have been obtained.

As explained, the momentum shell renormalization group requires the use of
continuous spins with, say, n-components so that ; = (S(U)) -1.2 with
- < s(U)< o, At first sight this precludes fis apﬁliczgi;n’.é;,Ziscrete spin
systems, like the spin 1/2 Ising model, or to systems with fixed length spins like
the classical Heisenberg model with, say, [;xl = 1., However, this view proves too
naive since, via a Kac-Bubbard-Stratonovich transformation, such models can be
transformed exactly into thermodynamically equivalent continuous spin models with
definite spin weighting functions of the general sort discussed in Sec. 4.7. How
this works is explained in Appendix A. Here we will assume that a continuous spin
model is given and we start by transforming it into a Fourier space representation

suitable for application of the momentum shell procedure.

6.1 Transformation of the Hamiltonian

Following (4.44) we consider the total reduced Hamiltonian expressed in real

space variables as

— > >
K= - H L GomgT =), W), (6.1)

X ~

where the interaction Hamiltonian (or, for true spins, the "exchange” Hamiltonian)

is given by
+ 1 \ > >
Hie =5 L) 3%y IS (6.2)

while the site vectors x range over a d-dimensional hyper-cubic lattice of

spacing a. The single-spin weighting function is expanded as
w(®) =232 + 530 TR0+ (6.3)

It is worth recalling at this point that, as mentioned in Sec. 4.7 and demonstrated
in Appendix A, the discrete variable spin % Ising model and the classical, fixed-
length, n-vector models can all be cast exactly in the form of continuous spin
models as considered here with no approximation. Now we introduce momentum space
variables ;S via (5.103) with the inverse relation (5.101). It 1is then

straightforward to transform (6.1) into the form
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J— 1 1 A ~ A
# ='§‘ﬁ§[1-1((g)]sg°s_ﬂ
‘;1_3222(; cs ) (s t8 ) F e, (6.4)
N 4; 97 83 4 A 13 44

where the wave vectors appearing in the multiple sums are restricted by
g tg +g +g =0,Q, (6.5)
1 2 3 4

for the fourth order term, and similarly in higher orders, where @ 1s any reciprocal
lattice vector. The interactions now appear via the Fourler transform
- igex  J(x)
1 -R(g) =1 —zzje (6.6)

X kBT

~

If the couplings are of reasonably short range it is possible to expand K(g) in a
power series in g in which, for symmetry reasons the linear term vanishes and the

quadratic term is proportional to Iglz. The result can be written in the form

~ T-T -
1 - K@) = =2 + £ R r2e% + 0(gh, (6.7)
B

where the mean field critical temperature, TO, has been introduced via

KTy = 3(0) =EX 3, (6.8)

while R0 measures the range of the interactions.

Of course we will be interested in the thermodynamic limit N » «. The
wavevector sums then become integrals and, to simplify formulae, we will employ the

shorthand notation

-d d

a dq _

—_ =] . (6.9
8 ; /(Zn)d /g

A rescaling of the spin variables by the substitution

. > T y1/2 1
s =0 | ——— (6.10)
1 1 (TOJ R ad/2
0
transforms iE into the more convenient standard form

— 1 2, > >

= - = (r +eq”) 0 0 (6.11)
“ Zfs. 1 9
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with
9, +9,+8,+9,=0, (6.12)
which is known as the Landau-Ginzburg-Wilson (LGW) reduced Hamiltonian or as a
field-theoretic Hamiltonian (or "action"). The coefficient e has been introduced in

the quadratic term but, at this stage, it is simply equal to unity. The leading

coefficient, r, now stands in for the temperature since one has

T-T t
r = g -2, (6.13)
ToRo  Ro

where t, measures the deviation from mean field criticality. Finally, the
coefficient of the fourth order term becomes
d-4

~cT 2 a
0=z (6.14)
To (Ro/a)4

which reveals, for the first time, how the deviation in dimensionality

€ =4 ~d, (6.15)

arises naturally. Note that "umklapp” processes, with Q # 0, have been ignored, q[‘,

q6, ... terms have been dropped and sixth and higher order terms 1in ¢_ have been
neglected: in the end one can (and should) return to check that all of these
contributions represent irrelevant variables in the domain of interest. As
usual, ﬁ can be regarded as a point, (r,e,u,v, ...) in the space of Hamiltonians

where v represents the coefficient of the sixth order terms and so on.

6.2 Computing with continuous spins

Since we have continuous spin variables, computing the trace of the Boltzmann
factor involves multiple integrals over the spins as indicated in (5.104) and

(5.105). The general Hamiltonian may be written
1{=}(2—u1{4—v4{6+..., (6.16)

where the first term is quadratic in the sx (and, hence, in the; and 3 ), while

the second is quartic, and so on. If the higher order terms could be dropped,

leaving only a quadratic or "free-field” Hamiltonian, the Boltzmann

factor exp(1_{,2) would decompose 1into a product of Gaussian functions of the
>

individual o variables. The trace integrations would then be trivial! The most

obvious way of handling the higher order terms i1s thus to treat them as a
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perturbation and to attempt an expansion of the free energy in powers of u, v,

etc. Confining ourselves to the quartic term we would then expand as

H,+uH # _ _
e 2 4=e 2(1—u¥{4+—1—uzft42

71 + ee), (6.17)

which represents a Gaussian function times polynomials in the o . One 1is now
confronted by various combinations of products of integrals, all of the same basic
type, namely,
1 2.1 u,2
® —=(r + o
[ y (T +ed)] Sl o - 1

k
do’” e =
q2 )(k+1)/2

(6.18)
-0 q q (l‘"e

which integrate out as shown, I being a constant which vanishes for k odd.

Since the wavevectors, g, form a quasicontinuum, the products referred to
become infinite products in the thermodynamic limit and the process of taking the
logarithm of the overall trace to obtain an expression for the free energy, thus

yields momentum integrals of the form
d
(@ = [—— (6.19)
k 2.k/2
(r+q") /

If we procede straight ahead in a perturbation theoretic spirit we now confront

a major problem, namely, the so—called infra-red divergences. In the absence of the

perturbation we have a Gaussian model which becomes critical as r + 0. With the
quartic term present we actualy expect the critical point to be depressed to
negative r but, in any case, if we want to study the critical region we must at
least consider r » 0. However, in that 1imit all the integrals will diverge for
large enough k owing to the singularity of the integrand as q + O (whence the
terminology “infra-red”). Specifically, counting powers of momentum shows
that k(d) diverges as k + 0 whenever d < k. Since even the leading term in
(6.17) involves k = 4 we see that the naive perturbation method fails immediately
for 4 < 4!

The Wilson approach circumvents this basic problem by never actually
integrating over momenta beneath the reduced cutoff qA/b (see Fig, 5.8). Thus no

divergences are encountered.

6.3 Implementation of momentum shell renormalization

In order to implement Wilson's momentum shell renormalization group in a

perturbative manner we split the original Hamiltonian (6.11) in the form

=R+ R, -], (6.20)
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_< — —
where # ~ includes all those parts of # which contain only spins, 3;, X ; is the
Gaussian, free-field or quadratic part of the total Hamiltonian with spins ?I> with
momenta lying in the outer shell (see Fig. 5.8). Finally ui_64 consists of all the

>
remaining terms which involve spins -c;; (as well as, in general, some O;).
The trace operation

= < 2D
o H (3 , 07)
TrN_N,{e }, (6.21)

which we want to carry out, can be expressed conveniently in a perturbation series

i1f we make use of the notation

P
Try_yr{Xe }
<Xy = —— (6.22)
24 #,
TrN—N' {e }

which represents averaging with the free-field Hamiltonian over only the higher
momentum fluctuations, i.e., those with g in the shell. Now the renormalized

Hamiltonian can be written

N s " (6.23)
cg:} OQ'

Notice first that the factor e‘“ commutes with the trace operation since it
involves only spins 3<. Then, using the notation (6.22), one readily establishes
the expansion .

= >

A' =17+ 1 (e (e )

+10 (- u (R D3 RDDS + 0]

’

> >
o o'
Sﬁi g
1’—6>
= [1,_(<+ 1n (Tr>{e 2 1 - u<—;z4> >>
1 2 = >.2 ~ >\2 3
t30 (R D - KA row, (6.24)
o =>cq,
which we have performed to order u2. We may now set about calculating more

explicitly the recursion relations
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Rr(r,e,u, vee),

r' =
e' = Re(r,e,u, ree)s (6.25)
u' = Ru(r,e,u, ceed,

to successive powers of u. (We will neglect the constant term since it cannot enter
the recursion relations for r, e, u, etc. and cannot play a role in determining
critical exponents. However, it would be needed for studying the full free
energy.) The details of the derivation are presented more fully in Appendix B. In

the lowest orders one finds just

' o= b+ 20 () +0 (D)), (6.26)
e = b9 2le 420 ( ) +o0 (uz)], (6.27)
w o= 1 -gu () + 0 (D). (6.28)

~

The origin of the factors c here is easy to understand. The spin rescaling
(5.110) introduces a factor of :: for each unrenormalized spin component ou, and so
r' and e', which are associated with the ouoli terms in ;(/ R acquirg factors
of ::2. Likewise u, which is associated with the quartic term, acquires a
factor ::4. The factors of b come from the spatial rescaling (5.109). Since the

momentum integrals in (6.11) transform as

d
f (r + eqz)X.\,_—?ﬁ)_d dgq 3 [r+e (q'/b)2]X... s (6.29)
g (2n)
the expression for r' acquires a factor of b_d, and that for e' a factor b 9472,
Similarly, since there are integrations over three different momenta involved in the

34 enters for u. The reader should check these

quartic spin term, a factor of
statements carefully: although they involve only dimensional analysis they turn out

to be a most crucial ingredient!

Now it 1is clear that the choice of an overall scale factor remains at our
disposal [as used in writing (6.10)]. This freedom can be used to fix one of the
parameters: following (6.11) we will choose to maintain the constraint (or

normalization)

e' =e = 1. (6.30)

2

The reason for this choice 1is that the ¢ term (or, in real space, the gradient

squared term) is the one that sets the physical length scales. It follows that the
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spin rescaling factors are determined (to leading order) by

c2 = bd+2 and c2 = c2/b2d = b-d+2. (6.31)

If we find a nontrivial fixed point under these conditions it must, via (5.112) or
(5.73), mean that

n =0+ 0(u). (6.32)

The other two recursion relations then give us, in leading i.e., zeroth order, the

results
r' = b°r, (6.33)
€
u' = b u=>bu (6.34)
The appearance of the factor b° in this last equation is a vital feature. Note that

it simply reflects the canonical dimensions of u (in terms of lengths) as revealed
in (6.14).

6.4 The Gaussian fixed point

The only fixed point that exists in the zeroth order approximation developed
above is the Gaussian fixed point given by

* g 6.3
rG=0,uG—. (6.35)

With u = 0 the recursion relations are now diagonal as they stand, and the Gaussian

elgenvalues are evidently

AEA=b,so>\l=).E=2, (6.36)
and

A =b,s X =c¢, (6.37)

We see that the parameter u changes from being irrelevant at large d to being

relevant at the border-line dimensionality € = 0, i.e., d = 4. Thus for d > 4 the

quartic spin terms prove to be irrelevant, and u + 0 under renormalization. The
first, relevant eigenvalue must clearly be identified as the thermal eigenvalue.
Through (5.38) or (5.96) we tlius find
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V=3, @> s, (6.38)

which is the classical value! At d = 4 we see that u is marginal and, to this
order, does not shift under renormalization. Finally, u is relevant for d < 4 and

flows away from the Gaussian fixed point. The crucial question is: "Where to?"

Before answering that question, for which we must study the recursion relations
in higher order, note that we may still consider the full scaling form (5.90) for

the free energy around the Gaussian fixed point. Evidently, crossover away from

Gaussian) critical behavior {(for which all other exponents also prove to be

classical) 1s controlled by the scaled combination

>

u/r¢u with ¢ =—>‘—111-=%e. (6.39)
But notice now, from (6.13) and (6.14), that both r and u depend inversely on the
range of the forces RO. It follows that the range enters in the combination
ad/Rodtoe/z. Hence, if Ro/a is large the Gaussian fixed point should describe the
critical point (which will then look classical) wuntil Rote/Zd/a becomes small.
Since the exponent here is comparatively small (being 1/6 for d = 3) the crossover
to nonclassical behavior may take place rather slowly. The exponent we have found23
for the long range crossover agrees with that following from the Ginzburg criterion

for the validity of classical theory.zl'_27

Its small value serves to explain, for
example, why the BCS theory of superconductivity, which is a classical or mean field
theory, works so well in practice; the ratio Ro/a is there measured by TF/Tc’ where
TF is the Fermi temperature and Tc is the superconducting transition temperature.
(0f course the BCS theory is quantum—mechanical in nature: the word "classical”
here, as elsewhere, refers only to the neglect of fluctuations in the statistical

mechanical treatment.)

6.5 The renormalization group to order €

If we are to obtain useful results for d < 4, the unstable flow from the
Gaussian fixed point must, for at least one direction of flow, terminate at some new
nontrivial fixed point. Since (6.34), the zeroth order recursion relation for u, is
linear this is impossible unless we carry the perturbation calculation explicitly to
at least the next order. To do this, a diagrammatic formulation, modeled on field
theory, is helpful as sketched in Appendix B: the requisite analysis serves to fill
the blanks in (6.26) to (6.28) and yields,

y _2,-d > 1 2
r' = ¢b "{r + 4u (nt2) —+ 0 (u)], (6.40)

2
g T
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L 2,-d-2

e' = b [1+0+0 (u)], (6.41)

and

>
_ "~4.-3d _1 1
u' =¢'b “u [1 5 u.8(n+8)J —3

g (r+q7)

+0 (ud)]. (6.42)

We see from the second relation that in order to maintain e' = e = 1, we must set

- 2
C2 - bd+2+0(u )’ (6.43)

This implies that 1if there is a nontrivial fixed point at some u = u # 0, then the

critical point decay exponent satisfies
*
n = o(u™%). (6.44)

Although this is not an explicit formula it gives us some understanding of why n is
so small in most physical systems relative to the deviations of other exponents from

their classical values.

Now if we substitute with (6.43) in (6.42) the prefactor b® appears again. Let

us, then, invoke the idea of continuous dimensionality and enquire as to what

happens if € = 4 ~ d is small! First we can write
€ 2
b =1+4+¢€ 1Inb + 0(e7). (6.45)

Then, keeping only terms linear in € and u, the recursion relation for u can be

rewritten as

w' - u=ule Inb -4 (n48) u/>——lﬁ], (6.46)
g (r+a")
where the integral is now to be evaluated at d = 4, Evidently this recursion

relation has a new fixed point at u = u* « ¢/(n+8). Since, by supposition, € is
small, u* is also small and therefore we can neglect the O(u2) corrections since, in
the neighborhood of this fixed point they will be of order 82. This is the crux of
the €-expansion idea: by expanding in powers of € we may utilize the field-
theoretic perturbation theory in powers of u in a systematic way. We rely on the
renormalization group framework since although the initial, physical value of u may
well be 'large', i.e., of order unity, the flow of the critical trajectory to the

fixed point allows us to calculate only for u small, of order .

Clearly the integrals require a little further thought. Note, first, that if

we approximate the momentum shell by a hypersphere (instead of using a hypercube) we
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have

> q ~
z [ A qud Liq, (6.47)
q q,/b

where the area of the unit hypersphere is, as before,
c, = (mc, = nd/zlr(%d). (6.48)

Since the gamma function 1is an analytic function of its argument, we certainly can
see that any spherically symmetric integrals, such as involved here, can be extended
to continuous dimension. (As indicated in Appendix C one can even extend hypercubic
lattices to continuous d.) Accepting the hyperspherical approximation we can
perform both the needed integrals in the critical region, i.e., for small r. One
finds

> q 3
f %‘[A _l_szi_q_ + o(e,r),
q (r+q”) qA/b 8t q

= Kzlnb + 0(e,r), (6.49)
with K, = 1/8112 and, similarly,
> 1 -2 2
f 5 = Kl(l—b ) - K2 r 1Inb + O(e,r"). (6.50)
g (r+q")

The constant K has the value qA2/16n2 in the spherical approximation but its
actual value proves to be immaterial as regards all universal quantities; conversely
the value of K, in these two equations is independent of the approximation, as is

easily seen by more careful analysis.

We can now write the recursion relations correct to relative order €, u and ur

as

£ = br [1-4(x+2)K,u Inb] + 4(n+2)K1(b2—1)u, (6.51)

u+u Ilnb [e - 4(n+8)K2u]. (6.52)

Before analyzing these relations it is worth noting that they can be cast in
differential form, as in (5.75) to (5.77), by putting

b= e = 1482 + 0822y, (6.53)

and taking the limit 62 + 0. Thus one obtains
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dr

i [2—4(n+2)K2u]r + 8(n+2)Klu, (6.54)
= ule - 4(ne8)K, ul. (6.55)

6.6 The n-vector fixed point

Now we can investigate the new fixed point.28 From (6.52) or (6.55) we have

2

* € _n7e
T K, T (wi8) (6.56)

which 1is, of course, only correct to order €. Then from (6.51) or (6.54) we find

K
* 1 (n+2
ro=- K, n+8)€’ (6.57)

where the ratio KI/K2 has the nonuniversal value % qA2 in the spherical

approximation. Evidently this new fixed point “breaks off" from the Gaussian fixed
point as the dimensionality falls below the borderline d = 4. (Actually, it exists
also for 4 > 4 but at negative u* where it 1s umstable and plays no role
since u > 0 is needed if the partition function is to be well-defined, at least in
the absence of any higher order stabilizing terms.) It is easy to determine the
flows in the (r,u) plane near the fixed points. Their appearance for € > 0, i.e.,
d < 4 1s shown in Fig. 6.1.

To determine the critical exponents and test the new fixed point for its
stability we must linearize about (r*, u*). If we work with the discrete recursion

relations (6.51) and (6.52), we may write

* *
Ar =r-r and Au=u-=~u, (6.58)
and so obtain the matrix form
2 n+2 2
Ar| _|b (1 oi8 © 1nb) 4(n+2)K1(b -1) Ar . (6.59)
Au 0 1 - € 1nb Au

Note that K, has cancelled out! The eigenvalues follows at once as

n+2
2 +—=¢€
2 n+2 n+8
Al b (1 m € 1nb) b N (6.60)
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n-vector
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‘_————"""‘G-\\\

critical
manifold

rto
Gaussian
fixed point
Fig. 6.1 Sketch of the renormalization group flows in the (r,u) plane for small

e = 4 - (. Note that the critical manifold (or trajectory) is
straight only to order €.
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Ay=1-¢ lnb= b °, (6.61)
so that we have
_ n+2 2
Xlz)\é —2-m€+0(€ ), (6.62)
2
Au = - + 0(e7). (6.63)

From the last result we see that u represents an irrelevant variable about the new
fixed point when € > 0: in other words this fixed point is "stable” when d < 4 and
hence "controls"” the flow in place of the Gaussian fixed point (see Fig. 6.1) which,
as we found, is now unstable. [Strictly we should say "stable (or unstable) on the
critical manifold"” but the restriction is left unstated in practical terminology

since the expected, relevant, unstable directions are always understood.)

Finally, we may use the renormalization group eigenvalues to compute the

critical exponents. Thus for the correlation length we find from (5.96)

L
M

n+2

2
T(nt8) e + 0(e”). (6.64)

1
v o= —7"‘
If we recall our result for the correlation decay exponent, namely,

no=0(u?) =0+ o(e?), (6.65)

we may use a scaling relation (which may be verified independently by more detailed
calculations) to find

=<
]

(2-n)v = (2 + 0(eD) /A,

n+2

2
m)— £ + O(E ). (6.66)

=1+

Likewise the hyperscaling relations yield o from 2 - a = dv and

B = %(d-2+n)v
(6.67)
1 3 2
=7 T T(arey © T OCED:.

The other thermodynamic exponents follow similarly. In addition we obtain something
new, namely, the leading correction-to-scaling exponent [see (5.93) et seq.] which

is associated with u and hence given by
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6 =-¢ =--"=23x¢+ 0(). (6.68)
1

Historically, the first theoretical predictions for the value of 8 come from the

renormalization group € expansion.

6.7 Some numerics

It is natural to enquire how well, if at all, the € expansion works! To
answer, recall first that the limit n + « should reproduce the spherical model (see
Sec. 4.6). The exact results for the spherical model include B = 1/2 which
certainly agrees with (6.67) and, more interestingly,

2 1 1 2.1 .3
Y ﬁ— 1+2€ "'4 € +8 € + ..., (6.69)
which confirms (6.66) precisely! In this 1limit we see, in fact, that the ¢

expansions for the exponents represent convergent power series with a radius of

convergence €, = 2.

For finite n it seems more likely that the € expansion is only asymptotic (but,
probably, "Borrel summable"). Nevertheless, we may, optimistically, hope that € = 1
(for d = 3) 1is relatively "small"” in that it is only halfway to the undoubted
breakdown around €., = 2. This optimism turns out to be surprisingly well
justified. Indeed, even the first order expansions yield values in much better
agreement with bulk (d=3)-dimensional experiments than does classical theory. Thus
from (6.66) and (6.67) we find

1 .
lg = 1.67,  while v, . = 1.24,

while B =~ 0,32 - 0.33.
expt

¥(d =3, n=1)

[

[=)]

B(d =3, n=1)=

W]~
-

In second order the results are even more encouraging. Thus from

2
o = sy e - A8 2y o, (6.70)
4(n+8)
one obtains
for a (d=3) = 0.08, -0.02, and -0.10,
n = 1 2, and 3,

»

respectively, which correlates well with the observed values

aexpt = 0,11, -0.02, and -0.14.
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The trends with n are clearly reproduced and the divergence of the specific heat
for n » 2, but not for n < 2, is also predicted.

By working harder one can calculate further terms in the expansion. Thus

correct to fourth order one knows29

(n+2)e? (-n2456n+272)
n = 3 {1+ 5 €
2(n+8) 4(n+8)
N [(-5n4-230n2+1121m2+l7920n+46144 | 285(3)(5m22) | 2
16(n+8)2 (n+8)
3
+ 0(e™)}, (6.71)

which is interesting because of the appearance of the Riemann zeta

function g (8) = 2: n ° in fourth order. All the other exponents are now also known

30

to this order. At this stage, however, one does not obtain better numerical

results if one merely truncates the expansion: however, with suitable methods of

30

summation rather satisfactory results are obtained which, for the most part,

appear to be accurate to within two or three parts in the third decimal place!

6.8 Further developments in brief

Having explained the concepts of scaling and universality, and having laid the
foundations of renormalization group theory, these lectures must end. In a more
extended course we would, at this point, proceed to survey some of the many
significant applications of renormalization group theory. First we might
demonstrate the appearance of factors like In t to special powers at the borderline
dimensionality. Then, following the historical developments, we might consider the

31

effect of long range forces™  with a spin coupling decaying as

JR) ~ 1R as R+ =, (6.72)

with ¢ > 0. These are somewhat artificial but for o < 2 we would discover new
critical behavior with a new borderline dimensionality at d = 20 < 4 about which we

could construct a modified e-expansion in powers of €5 = 20-d.

Next it would be logical to examine the crossover from, say, Heisenberg (n=3)
critical behavior to Ising (n=1) or XY (n=2) behavior induced by anisotropy in the
spin-spin couplings and, hence, in the quadratic part of the LGW Hamiltonian. This

could lead to a discussion of bicritical points as observed in many antiferro-
32

magnets. Spin anisotropies of higher symmetry (induced physially by coupling to

the lattice) in particular those entering as cubic symmetry breaking terms 1in the
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quartic spin terms, can lead to quite new sorts of critical behavior: so also do

long-range forces of dipole-dipole character which must be examined for real

ferromagnets,33 although for n> 2 one finds that the numerical values of the
exponents hardly change! For uniaxial, Ising-like dipolar ferromagnets, on the
other hand, a striking new phenomenon occurs: the critical fluctuations at low

momenta are suppressed and the borderline dimensionality drops from d=4 to
d=3.34’35 Thus, except for subtle logarithmic correction factors, classical theory

becomes correct for a real bulk system!

A borderline dimensionality d=3 arises also in the description of tricritical

points,36 which is accomplished within a single-component (n=1) model by allowing
the coefficients of the s4 term to become negative but, as is needed for stability,
retaining a term - vs6 with v > 0. Tricritical points are observed in multi-

component fluid mixtures, in antiferromagnets, in superfluid helium three-four

mixtures, etc.

Then one would want to describe the expansions in powers of 1/n developed by

37
e

Ab (without explicit reference to the renormalization group) and those about the

lower borderline dimensionality, putting d=2+¢, devised to Polyakov.38 The
39-41

Kosterlitz-Thouless theory of XY-like or n=2 systems at the borderline

dimensionality d=2, which describes thin superfluid helium films, and the subsequent
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theories of two-dimensional melting would be tempting
topics -— and so on! Even then, we would not have touched on the development and
application of real space renormalization group t:echniques44 including the versatile
approximate renormalization group scheme of 1'1.'l.gda11'5 and Kadanoff.46 No mention

would have been made of dynamical critical phenomerm"7

and the application of
renormalization groups in that context. Nor would we have discussed methods for
calculating equations of state, or correlation functions, or crossover scaling

48,49 50

functions, or have described Wilson's method for solving the Kondo problem,

or applications to polymers, to liquid crystals, and more.

It is evident that to present even a sketchy account of all these topics would
require much more time and space. Indeed, our task would grow to resemble that of
giving a full account of the applications of quantum mechanics! Truly the
renormalization group approach, and the associated ideas of scaling and
universality, have become basic tools of the condensed matter theorist and are
constantly being applied to new and more challenging problems. Happily, however,
for the reader who wishes to enquire further there are now a selection of reviews
and text books at various levels in which to browse and dig deeper. Some of these
have already been mentioned in passing but for convenience these and a few more have
been gathered together in the Bibliography. Note that the Bibliography makes no
claim to completeness: indeed, we should add that in these lectures we have been
somewhat cavalier in mentioning individual scientists and in making reference to the

original literature. Accordingly, apologies are offered here to any who feel



116

unjustifiably unmentioned or otherwise slighted. The reader, however, should have
no difficulty in entering the literature through the sources cited in the
Bibliography: please do so with best wishes for stimulating study and fruitful

discovery!
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APPENDIX A The Kac-Hubbard-Stratonovich Transformation

The Kac-Hubbard-Stratonovich transformation is a way of turning one model into
another. This device has played an increasingly valuable role in the theory of
critical phenomena. The main theoretical factor suggesting that various different
models might be expected to transform into one-another is that of universality. To
belong to the same universality class different models must, somehow, be
mathematically equivalent, at least in their critical regions, even though they have

quite different physical interpretations and contrasting mathematical formulations.

To illustrate how the transformation is carried out we will consider the
simplest example, namely, a spin % Ising model; however, the approach to be
described can be readily extended. (The interested reader should work through the

case of the fixed-length n-vector model.)

Consider the general Ising model partition function

Z (k) = Tr2 {exp [ § X, 0.0 ]}, (A1)
N N (1, ¥ 13

where the interactions satisfy

(with K,, = 0), (A2)

K,. = Jij/kBT =K, i

ij ji’
and the sum in (Al) runs over all distinct pairs (i,j). The Ising spins o; in this
expression can take on only the two values +1, and so the operation of taking the

trace over any spin means

m’ = % . (A3)
o=%l1
The factor of 1/2 is incorporated in order to normalize the trace, i.e., so
that Tr {1} = 1. The aim now {s to turn (Al) into a form which looks somewhat

similar but involves a new set of continuous spin variables, 84 instead of the

discrete 0y- The result which we will obtain is

f (K) [
ZNQK) =e 0 j/[ 1ﬁ.dsi exp [-E: Oi.sis.] exp}E:w(si)], (A4)
- i=] (0 4 4 1
where fO(K) is a smooth, analytic function of K and just provides a background free
energy with (in general) no interesting critical behavior. The integrations are
performed over all the continuous spin variables, 84» of which there are as many as
there were original Ising spins; the limits for each integration are — and +». The
spin weighting function comes out to be
4

2 1
_ﬁ Si + ... . (A5)

- -1 2 __1 -
-w(si) = In(cosh si) 2 Oiisi = > (0ii l)si
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A weighting function is, of course, necessary because without it the integrals would
diverge: in fact, Qii’ which will be defined below, must be positive and
sufficiently large. Our object now is to derive equations relating the original
interactions Kij to the new spin-spin interactions, _Qij’ and provide a
justification for the particular form assumed by the weighting function w(si). (The
fixed-length n-vector model yields a different but qualitatively similar set of
weighting functions depending on n.)

A general reason for going over to continuous spin variables is that they are
easier to deal with mathematically. In particular, in order to carry out the
spatial Fourier transformations on the set of spin variables, which play such a
vital role in the renormalization group €-expansion theory, the spins have to be

continuous, unbounded variables.

For simplicity of exposition we will consider the fully ferromagnetic case

Kij = Kji >0 (Kii = 0). If we then make use of the inequality
1 2 1 2 1 2
3'(01 + cj) 3% +-§ oj + uiaj =1+ cioj >0, (A6)

we can rewrite the interactions as

W=

2: Pijoioj’ (A7)

z 1 1
K,, 0,0, = —=NP_ +=
15 “1°4 2 02 L &

1,3)

where the symmetric, N X N matrix

P=[p,.]=PI+K=][P

otk o‘sij +Kij], (A8)

Pij

will be positive definite if Py 1s chosen positive and sufficiently large:
specifically, by (A6) it suffices to choose

> .
P, > max i Ky, ] (49)
i L
T
Ifg" = [01, ceey UN] is a row vector and 0 the corresponding (transposed) column
vector, we can thus rewrite the partition function as
“T™ o 38 EE
ZN(K) =e Try {e 1. (A10)

Now consider another quadratic form in N continuous variables Yi» namely,

N N
Q(y) = E z Oi.yiyj, (All)
i=1 =1 I
where Q = [Qij] is a symmetric, positive definite matrix: As such, Q may be

diagonalized by an orthogonal transformation with matrix 0. Explicitly, in terms of
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the new variables
x=9% (A12)
the quadratic form becomes
Q(y) = :,1 Ax ", (A13)

where the Ar (r=1, ..., N) are the real, positive eigenvalues of Q. It follows

similarly that the determinant of Q is given by
N
lal =T[Ar. (A14)
r=1
The partition—-function-like expression

1 T
bt N _7XQX
I(Q = dy e y (Al15)

may now be evaluated by changing variables from y to x and noticing that the
Jacobian of the transformation is +1 since 0 is orthogonal. The integrals are then

just Gaussian and we obtain
N 1 2 N
© -2 x N/2
1(Q) =T[/ xe 2T T -11 ,/(f—“) -G (A16)
r=1%-= r=1 r J|g|

Next let us make a simple shift in the variables y according to

y=s+GQ' with y =g +d7q ", (A17)

where s represents a new set of variables, which will eventually be identified as
the continuous spin variables, while the g here represent only fixed shift

parameters! In terms of the new variables the quadratic form Q. becomes

N
Qy) =s°gs + s +o's + oTq Ly = gTqs + 2 Es o, + 0'q la. (A18)
~ ~ o~ ~ ~ ~ ~N o~ ~ e~ i=1 i1 ~ ~ o~
If we now choose the matrix Q so that
-1
=2 =1/(Pl +K), (A19)

we see quickly how (Al15) and (Al6) apply to the problem in hand since we obtain the
identity
1T

N
-8 Pg (™
2~ A~ N 1 T
I(Q =e / d’s exp [_75 Qs - iE=lsioi] s

~—00
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N/2
e, 1@ =F2 " _ V2 T (A20)
|8l
Note that in the first line, the spin variables oi appear like nonuniform or random
external fields acting wupon the s variables. If we solve for the factor

involving P and substitute in (Al0) we can write the result as
1
e— 2 NPO 1 2 %5101
{j d s exp[ Z O'ij ij 0 1::0115i e . (A21)

Note that the diagonal terms of the expression % §T9§ have been separated off while

what remains has been written as a sum over pairs of spins (i,j).
At this point we make the crucial observation that the trace operation on
the 0, commutes with the integration over the 8y and affects only the last

i
exponential factor in (A21). To perform the trace we use the simple result

[+ -s,0 -s +s
r i{e 1 1} = %—(e i, e i) = cosh s, (A22)
so that, finally, we obtain
e,
N
ZN(K) N/2 j- aVs exp [ -} Qijsis' -7 C%Qiisf—ln cosh si)]_ (A23)
(zn)“ fp| 1,5 I

This is clearly in the anticipated form (A4) with the spin weighting function given
by (A5) while the new interactions, -Qij’ etc. follow from (Al9) and (A8). Note
that because P is positive definite by construction, so is Q; it then follows,
since ln cosh s varies only as |s| for large s, that the Qii coefficients are

positive and sufficiently large to ensure covergence of the integrals over the 84-

We have thus achieved an exact transformation of the discrete spin Ising model
with couplings, Kij’ into a continuous spin model with new couplings, _Qij’ defined
via the inverse matrix (Pol + 5)_1. It is clearly of interest to gain some idea of
the nature of these new interactions. To that end, let us suppose that K describes
only nearest neighbor ferromagnetic couplings. A little thought then shows
that 32 describes next-nearest neighbor couplings (plus some self-coupling),

that 53 describes third-neighbor couplings (plus some further first neighbor
couplings) and so on. Thus the identity

2
“P,°g = Bl +K-P K +P K -..., (A24)

which is valid when Py satisfies (A9), shows that the couplings —Qi. are, in first
approximation, the same as the Kij but scaled by a factor PO_ . In higher
approximation second-neighbor antiferromagnetic couplings appear but they are weaker

by a factor I/PO, and so on. Thus the new couplings are no longer of pure nearest-
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neighbor character: however, they are of 'short range' in the sense that they decay
exponentially with distance (and, evidently, they are oscillatory in sign although

predominantly ferromagnetic in effect).

If the lattice is translationally invariant it is advantageous, as seen in Sec.

~

6.1, etc., to transform to continuous Fourier space spin variables, s . The

couplings are then directly expressed, as in (6.4), in terms of the Fourier

transform
- ig-z
Qq) = ;e Wp)  with QG - x) T Q. (425)
This in turn 1is related to the corresponding transform K(g) of Kij = K(l(i - gj)
through
. » . K(g)-K(Q)
-Q(g) = = + - e . (A26)

ey P S
Py + K(g) Py +K(Q [P+ K(Q)]

This form is illuminating since in the case of predominantly ferromagnetic couplings
of the o spins one has, for rapidly decaying interactions in a large system,

- > 2 2 4

K(g) = K(®[1 - Ry q° + 0(q)], (A27)
where K(0) > 0, while the (real) length Ry measures the range of the interactions.
By substitution in (A26) we see that the couplings of the s spins are likewise
ferromagnetic with a comparable finite range. Finally, note that in the

thermodynamic limit one has

dg 1
q,, = QO = e, (A28)
(21) PO + K(g)

which is necessarily positive as required for a sensible weighting factor.

APPENDIX B Details of the c-expansion calculation

In this appendix we examine the derivation of the recursion relations (6.26)-
(6.27) and (6.40)-(6.42) for the perturbation-theoretic expansion of the Wilson
momentum shell renormalization group near d=4 dimensions and introduce the
diagrammatic language that facilitates the caluclations. We are concerned here with
the LGW reduced Hamiltonian (6.4) which we rewrite, as in (6.11), in the form

n

n
iz S E} (r + qu) L E: s'ets Vg v’ (B1)
2 |, .2 9 -9 21 4 3 943 9
gu=l 9,/9,74; p,v=1 1 2 3 4

with the wavevectors restricted by
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31+32+53+34=0, (B2)

so that 'umklapp' processes are neglected. Likewise, we suppose that the sixth and
higher order terms may be neglected initially. The validity of both these
approximations, to leading order in €, may be checked by computing their effects by
the same techniques. However, it is important to note that even if such terms are
rigorously absent in the initial, physical Hamiltonian they may be generated and
normally will be generated, in the process of successive renormalization. The

2 term will be constrained throughout (by spin rescaling) to

coefficient e of the q
be equal to unity. Thus KM 1is, effectively, determined only by the two parameters

r and u.

As discussed in the main text, the first step is to split up # as follows

H = H +;¢2—uifz. (83)

—/
Then we must compute the renormalized Hamiltonian, H , which is given to second
order in u by
7

>
7-7"—*{;{<+1n(Tr> e 2

D -ud &L,

1 2 = 2 4°
+5ut (%D >>-<J{4>> H'"}ag‘—'}%" (B4)

Let us start by examining the lower order terms. First, note that # < is of the
same basic form as the original LGW Hamiltonian except that the momentum integrals
are limited to the inner region, <, of momentum space which contains only N' = N/hd
spins. However, the spatial rescaling restores the original domain of integration

through the transformations

9= g'/b: / / =/"("/b)'b'd/. (85)
(2myd (2m) q'

where uninflected momentum integrals run over the full zone. Recalling the spin

> ~ —
rescaling, os=) c 3;1,, we see that the quadratic part of ¢ < transforms as

<
1 2> 0+ _ 1 E T
--5/'9 (r + eq )Gg o_s— 2/ﬂ'b (r + eq' b )c og, olg,

= -2 [ [P + (28 2eyq 2], 5, L, (B6)
2[4 g' g

so that, ignoring possible contributions from higher order terms, etc., the
parameters r and e are simply renormalized by factors czb'-c1 and czb-d—z,

respectively. Notice that the momenta, g', and spins, §r , in (B6) are really
g
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'dummy variables', in the sense that they are to be integrated over, so we may
actually drop all the primes in the final expression. Evidently the quartic term

similarly generates a leading renormalization factor c4b_3d for u.

In the second term in (B4) the term exp( & ;) depends only on spins 0>, in the
outer zone and so when the operation 'I‘r> is applied to it, the result is just a
constant contribution which can be ignored for our present purposes since it cannot
further affect other interactions. (Nevertheless, 1f we were concerned to calculate
the free energy itself, we would have to retain this constant term in ') This
completes the calculation of the recursion relations to zeroth order in u: see
(6.26) to (6.28).

The evaluation of the first order term, u <?‘Z>>, requires closer
attention. First note that in the expression for 1—44, which for finite N is just
the multiple sum,

-d En
- > a 3 > n M v v
H = (%) E ¢ o o o, (B7)
LNt g szz'\g wov=1 91 92 943
at least one of the four momentum labels 91> 9> 93 OT q, = ~4; ~9, “43 must lie in
the outer region, >. We must then evaluate the momentum shell average
= >
> o> o2
_S T {# ) e }
I -

Tr>{ e ¥z }

’ (B8)

vie Vv

where # ; can similarly be written as a sum, namely,

n
-d
—>__1a% o 2, u b
Ho=-3 % 2;1 (r+eq”) og o . (B9)

the momenta being all restricted to the outer zone. The trace operation has the

explicit form
> gl
> S| ﬂ'} do¥, (B10)
gul= 4

which signifies a multiple integral over all the spin components o with momenta in
the outer region, >. In the thermodynamic limit, N + «, this operation becomes a
functional integral. However, we may avoid this concept and the question of its
proper definition by keeping N finite and doing the n(N-N') integrals over all
the o > components before taking the thermodynamic limit. (Note that in the spatial
rescaling steps in (B5) and (B6) it was advantageous to take the thermodynamic
limit, as we did implicitly, at an early stage.)

Each term in (B7) can be processed separately through (B8) and the results then

v v .
added together. Consider the typical term o of o o . If all four of the gj lie

4 % 93 4,
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in the > zone then the result will be a constant and hence is of no further direct
interest to us here (although it contributes to the constant term in ji'). If
either one or three of the Sj lie in the > zone the result must vanish. To see this
note that the integrals involved in (B8) have the symmetric Gaussian form shown in
(6.18) and so vanish by symmetry if an odd power of o" 1s contributed by ZZZ. (See
further below.) At least one of the c> integrals must be odd in the case posed.
Thus the only terms that need be considered are those where two of the Sj are equal
in magnitude but opposite in sign and both lie in the > zone, with the associated
spin component indices being the same. This generates a term

cuot = [Re(ou)]2 + [Im(ou)lz. The other two ¢., then belong to the inner zone and
will, perforce, also be equal in magnitude a;L opposite 1in sign; their associated
spin component indices, v, will likewise match. Taking into account all possible

combinations that satisfy these criteria, leads to
<—>> (a_d)3 < > —i {<U u v v >
H = {— 211 ¢ o o O_
47> N Yg Zg; =1 PR P N N
< >
Y P Y
+ + <o A §
<3> BN 3( s<> 10,9 ﬂ>>> v

H B Vv
* <o~‘1<09> £ 3>>> w + <oy s Sl< 'ﬂ< >>> Wy

+ (B11)
<i N g< -g> :>> uv
Now all the spin variables commute. Further, the spins o€ are not affected by the
Tr> operation and can thus be removed from under the angular brackets. In addition,

because of the equivalence of the different components for each spin we have
n
vV Vv
}: ] =n oo (B12)
&= < g -s>> < 4 ~s1>>’
and hence find that

H_u
g o, (B13)
15_9,

50T

= > a3 >, vV <
<Ry = (557 [amwe) ¢ 9g.9mg N

N > = q

where we have dropped the < subscripts on g since they are no longer essential.
Note that the combinatorial factor (2n+4) is of central importance to the final

answers!

The next step 1s to calculate <§v >> It 1is equal to a product of
integrals over all the 0>, divided by a simiiar product. Cancellation occurs for

all these integrals except for those over 0; and o_3 ; hence the result is
> >
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-d
vV .,V Vv Vv lra 2, v v vV
/j do’ do Oq 0- exp[- E(T)(r+eq>)(oQ o, +a  a )]

35 9 b 4 45 9
;625 S = > >R> = — > > > . (B14)
> > v v 1l ca 2,, v Vv v v
do” do~  exp[- 5 (=—)(rteq)(c_ o +0 o )]
/,/ 3 9 z (57 288y T8y 8
The integration over pairs of complex conjugate spins ¢ and o = (av )* is
LN EOSIE

carried out by making use of the equivalence

/ / du_i1 / / d(Reu )d(Imc Y. (B15)

By this means we arrive at a product of two separate Gaussian integrals over real

variables divided by two other similar integrals: all are readily evaluated and
yleld

d

<o D N (B16)
4 (rteq™)

Substituting back into (Bl3), 1letting N + <« and replacing the momentum sums by

integrals yields

> <
—-> _ 1 >
KH Dy = 2(n+2)/ ———z—/s 5q'%" (B17)

g (r+eq”)

Finally, momentum and spin rescaling introduce a factor czb_fl as discussed

earlier. Bearing in mind the factor -u associated with <J?Z>> in (B4) and the
factor -1/2 in the definition of the quadratic part of 12 , we see that to first
order in u, the renormalized Hamiltonian has modified values, r' and e', of r and e

given by the recursion relations

. >
b4+ 4u(n+2)/ —l—z— + o(ud)], (B18)
q (r+eq”)

vy 2 [ r 040 )], (819)

just as stated in (6.40) and (6.41).

The rest of the calculation proceeds in a similar fashion, with intermediate
algebraic expressions of the type displayed in (Bll) becoming considerably more
complex, However, the combinatorial problem of deciding just which terms can
contribute is greatly simplified by the use of graphical or diagramatic notation.
We define, first, the free inverse "propagator™ by

- ~ U ]
(63”17t = 8, (rteq?) = —p—. (820)

This carries both a momentum and a spin component index, and serves to represent the
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quadratic or "free field” part of the total Hamiltonian. In field-theoretic
language r represents the "bare mass”. To represent the quartic part of the

Hamiltonian we introduce the

q; 3 Vv
four-point vertex = >.< . (B21)
¥ qy v

This has four incoming lines which carry momentum and spin component indices uw, u, Vv

and Vv corresponding to the term o o ov av in (Bl). Momentum is conserved
'through' a vertex in accord with t:he1 coznd13t104n (B2). Each vertex also carries a

“coupling constant” factor u (= ua) .

The process of calculating the renormalized (or "dressed") propagator can now

be represented graphically as

gH S)v

I R
) = G )+u[(s“}.....0)+(0.....{)

(B22)

qu
) + (Z}(Z) + (N) + ( """\‘)] + o(u?).

qx

The first order diagrams, here, have been arranged in the same order as the

corresponding terms in (Bll) to facilitate comparison. Evidently they correspond
simply to all possible ways of joing up two "legs” of the four-point vertex with
matching spin components and momenta in order to leave a propagator—like term. The
rules that must be adhered to in constructing the Integrals associated with the
allowed diagrams are as follows: Each vertex line is accompanied by a factor u.
Internal lines carry a propagator factor Go(g) and (in this renormalization group
application) imply integration over the outer zone, >. If an "internal line" (i.e.,
one for which g is to be integrated) forms a closed loop then its spin index 1is
"free” and can be summed over to yield a factor n. In higher orders of the
perturbation theory there is a factor of 1/m! arising from the expansion of the
exponential as in (B4). Diagrams that decompose into disconnected parts, {i.e.,
"separated” or "unlinked” diagrams factorize and then cancell when 1" is

computed. (This is an example of the "linked cluster theorem”).

The diagrammatic expansion for the renormalized vertex itself is thus found to

be
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g r g5V g% 453V 4 ¢ qa 43 Vv
(Beee )t = (Dol )o 3] Braeee e ) + (D )+ ..
¢ 9,V o8 9,V 2 g, ¥ S'O‘Q' 9V @

8 (diagrams) x n (free spin components)

F.

+(%v) + e
L v

n

32 (diagrams) of weight 1

n v v

+(Deveeenn & va )+ .] + o) (823)
n v

32 (diagrams) of weight 1

Note that diagrams such as
b

g q'
q

51

with an “articulation” 1line or “cut bond” cannot arise, since momentum

conservation would require that g (in <) = - g' (in >) which is impossible.

The two internal 1lines in the two-vertex diagrams yield, on integration, a

factor

> 1 1
/ / 3 R with g + q' = q; + PR (B24)
g Jg' (rt+eq”) (rteq'™)

A little reflection shows that the renormalized vertex has, 1in fact, become gq-

dependent in that it no longer carries only a constant coupling constant factor, u,
but rather involves a kernel u4( 9> 95 33). However, we may expand this kernel in
powers of the Sj and associate the coupling constant u with uy (0,0,0). Likewise
then, the renormalized coupling constant u' 1is to be associated with u'4(0,0,0).
Consequently we can put 9 " % ;=();o—;hat g = -q' and the factor for the intermal

) .

lines thus becomes simply /(r+eq After allowing for spin and spatial

rescaling, the recursion relation for u that follows is seen to be

>

S R I 64)/ —L—+ oDy, (B25)
q (r+eq”)

in agreement with (6.42). Note that the combinatorial factor (8n+24) = 8(n+8)
directly represents the breakdown of the diagrams in (B24). With practice one
learns how to write down such combinatorial factors by inspection for such simple

diagrams as here, and by fairly rapid analysis for more complex diagrams like those
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z and e3 terms. Reference to the c€-expansions

that enter in calculation of the €
(6.64), etc. shows that it is just these combinatorial factors that determine the n

and € dependence of the various exponents!

The discovery of a q-dependence in the renormalized vertex 1is typical of how
new terms are generated on renormalization. It indicates that, in principle, such

qz, q4, vee 04-terms should have been included in the original Hamiltonian, along

2 factor

with qo, qz, q4, ...66 terms and so on. However, on renormalization each q
would gain an extra renormalization factor b—z, etc., so that one sees that such
terms represent, at least near d=4, successively more irrelevant critical
operators. Nonetheless, it is clear that care and thought are required: blind
calculation may lead to a correct answer but an awareness of the general structure
of the renormalization group process is a necessary guide if pitfalls are to be

avoided!

We saw 1in (B19) that there is no first order contribution to the
renormalization of the coefficient e which determines the decay exponent n. It is
worthwhile recording that the required leading correction comes from the second

order propagator diagrams

(e O 4) + (o)

1é6n + 32

which yield the recursion relation (with e = 1)

e' = b [l + 16 (at2) I v?ln b+ 0(u)] , (B26)
where
b /> />
I=ln liﬁ“b/ / I N (B27)
b 9 Jq' 474" (qg"+q'")

This recursion relation then yields n correct to order e? as quoted in (6.71). Thus
one need not go to third order in u to find n to 0(82) although this is necessary

for the other exponents.

APPENDIX C Dimensionality as a Continuous Variable

In the (e=4-d)-expansion for critical exponents the spatial dimensionality, d,
is treated as a continuously variable parameter. One way of giving definite meaning
to this procedure 1is based on the observation that the only place that

dimensionality enters into the calculations is in performing various integrals which
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are of the formf ddqf(g) where, in the simplest case, the integrand, f(g), is

actually spherically symmetric and therefore a function only of q2

rather than of
the individual components of q. When d has a standard integral value the simplest
way of doing this type of integral is to transform to hyperspherical coordinates.
The integrand depends only on the radial component, and so the integration can be
performed immediately over the angular coordinates. Thus, as mentioned in the text

of Sec. 6.5, one obtains

/d"q £(a%) = cd[ £(a*)a%laq, (c1)
0

where the area of a unit d-sphere is given, as in the text, by

c, = 242 dgy. (c2)
d 2

The gamma function, I‘(%d), 1s a well-defined analytic function of its argument so
that (Cl) is meaningful mathematically even when d 1is nonintegral. Thus the
extension to arbitrary (even complex!) values of d is straightforward for fumctions

which are spherically symmetric.

At the next stage one encounters integrals which also involve scalar products
such as g * p, where p is some reference momentum. Such integrals can be dealt with

by the formula

© T
/ddq £a%, g'p) = Cd—l[ qd'ldq/ (s100)%7% 46 £(q%, pacosd). (C3)
0 0

52

More generally, following Wilson one only needs the following properties of

general d-dimensional integrals:

(a) Linearity: /ddq [£,(g) + £,(Q)] = /ddq £,(g) + /ddq £,(0), (C4)

(b) Translation Invariance: /ddq f(g +p) = /ddq f(q), (C5)

(c) Scaling: /ddq £(bg) = b9 /ddq £(q), (c6)
4 -q* __a/2

(d) Normalization: dqe 9 =g . (c7)

Then, by way of illustration, if one needs an integral such as
2 2
(g* p1) (g°Ry)
d 1 2
= c8
I,(p;s ) qu 3 (c8)
r +gq

one first uses the identity
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L 2
—12 =/ e-(r +a)s ds (c9)
0

to reduce the problem to the Gaussian-type integral

7

d 2 2 -g
I, (p;» Dy38) = j{d q (gp;)" (g°py) e ., (c10)
But this can be obtained by differentiating the generating function

d -sq” + a'Lioypy
Io(a;s) = dgqe , (cl11)

with respect to o; and a, twice and setting all the a; to zero. On the other hand
the generating function may be evaluated for general d, using (C4) to (C7), simply
as:

Io(u;s) = s_d/2 ﬂd/z

2
expl( ] o, p,)"/4s]. (c12)
{ 1A
These considerations suffice for field-theoretic applications and hence for the
formal developments of €-expansions. One may, however, be concerned about the use
of a lattice cut off such as enters in, say, the exact solution of the spherical
model. If one has nearest neighbor couplings on a hypercubic 1lattice one then
encounters d-fold integrals like
m d8 T db d
e = Lo =2 2+ ] cose ™l (c13)
2n 2n i
- - j=1
However, by using (C9) and the integral expression for the Bessel function Jy(x)

this can be transformed to
1D,y = / [Jo(s)]de_zsds, (C14)
0

which 1is again well-defined for general d. The d-dependent critical exponents
obtained for the spherical model this way agree precisely (to the orders of €

available) with the € expansion expressions evaluated with n + », (see sec. 4.6).

One may discuss the continuation of dimensionality for lattice models more
generally. It 1is natural to restrict attention to hypercubic lattices which a
moment's thought shows have a coordination number 2d. This statement, of course,
immediately extends to nonintegral values of d!. To see how to proceed further,
consider, to be concrete, the susceptibility of a spin 1/2 Ising model with nearest
neighbor coupling of strength J. The susceptibility may be expressed in terms of

the spin-spin correlation functions (sosR> between sites O and R as

~ o~

~ ~

X(T) = ) <agsgds (c15)
R

~
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where, as usual, the angular brackets denote the statistical expectation defined

here by

_ Ksis: _ Ks,s
> =27V Z (ACs) (D-)e MY Tle Y3, (e
{s,=t1} 3 {s =t1} (11)
the sums running over all spin states of the lattice. In the high temperature
1imit, K = J/kBT + 0, one can, as pointed out in Sec. 4.5, expand the exponential
factors in powers of K as

Ks.s
e ij=1+I(ss +—1- Kzsis§+... . (c17)

173 21!
Each power of K in the full expansion of (Cl7) is clearly associated with a nearest
neighbor 1lattice bond. When calculating the susceptibility an extra pair of
spins, So and SR, will appear in the expression for the numerator of (Cl16). The
resulting expansion 1n terms of multiple spin products must be summed over all
possible spin configurations. The contribution of any given product of spins may
then be evaluated by using the identity

e

s=tl

1, for k even, (C18)
0, for k odd.

Finally, by collecting up similar terms one sees that the expansion for the
susceptibility can be written for any lattice in the diagrammatic form
3

Y=1+al[,/]1(+a2 2N | K2+a3K [~ 1

* (e, (0148, JIAD R (c19)

The coefficients a; = 1, a,, aj, etc. depend on the topology of the associated
diagram, representing bonds on the lattice, but are independent of the lattice
structure (or dimensionality) which, in turn, is embodied only in the values

ascribed to the graph embedding constants, [—], [~"™\J], ete. (The reader should

go through the derivation of the first few terms to see how this works (See also
Sec. 4.5).

Now, more explicitly, [,~] denotes the number of bonds per lattice site. In a
d-dimensional hypercubic lattice, this is evidently [.] =% (2d) = d, bearing in
mind that each nearest-neighbor bond is shared between two lattice sites. 1In a
similar way, [«"“S] denotes the number of chains of length two bonds (per lattice
site) where successive bonds of the chain must not lie on top of one another: since
there are % (2d) choices per site for the first bond and (2d-1) remaining choices
for placing the second bond at one end of the first bond, we obtain [\ = d(2d-1),
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Likewise, the square yields [[:J ] = 2d(d-1), and so on. Evaluation at d=3 then
yields the series quoted in (4.19).

For completeness we digress a moment to recall that the Ising series presented
in (4.19) is given in terms of the variable

v=tanhK=K—%K3+..., (€20)

rather than in powers of K directly. The usefulness of this variable, in fact,
arises directly from the diagrammatic or graphical expansion technique: thus, for
Ising variables, for which Sisj can take only the two values +1 or -1, it is simpler
to replace the infinite expansion (Cl17) by the two-term identity

Ksis
e 3. (cosh K) [I + vsisj], (c21)

which is easily checked. 1In making expansions of (Cl16) in powers of v, each bond
now appears only once, with weight v, rather than multiply with weights K, Kz, K3,

... as entailed in the use of (Cl7).

To return to the general theme, it should now be clear that even the most
complicated dlagram entering in a graphical expansion will have embedding constants
or weights that are just polynomials in the dimensionality d. It follows that each
term in the high temperature expansion of X(T) can be analytically continued to
arbitrary values of d. Thus, at least while the series converges, the

susceptibility itself can also be defined for continuous dimensionality.

The same procedure works for all other properties. This lattice definition and
the prescription of introducing continuous d through various integrals do not
obviously agree in general (and no such proofs have been presented). Wherever they
have been tested, however, the different prescriptions appear to coincide and, in
particular, it is reasonable to expect that they will all yield the same results in
the critical region.

APPENDIX D Hyperscaling and Dangerous Irrelevant Variables

Consider the hyperscaling relation dv = 2-a, This relation was obtained in

Sec. 5.5.4 from the renormalization of the correlation length according to

-V

ELR ] =w®[R'], withg ~¢ ™, (p1)

which merely represents the basic rescaling of lengths, and of the free energy

according to

= v der ooy o 2 D2
fl# ] =b “f[ & '], with fsmg_ t< . (p2)
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The question is: "How can the arguments go wrong, as the breakdown of hyperscaling
in large dimensionalities implies must happen?”. There are, in fact, various
mechanisms by which hyperscaling can fail. To explain the most likely mechanism,
which does not actually violate the basic structure of the renormalization group

theory53 let us recapitulate the argument for hyperscaling.

As seen in Sec. 5.5, near a fixed point the free energy depends on a number of
scaling fields, E1> Bg» sees in terms of which it should scale asymptotically in the
form

A, A
-d 1 2
£(g,,8y5++4) = b £(b "g, b Tg,y, oee)e (p3)

If we make the standard choice and identification

M
b~ = I/g1 = 1/t, (D4)

we obtain

d/A

g g
1 2 3
f(gl,gZ, ces) = £(1, —j;7j;3 —7;7XI, ees)

t t

(D5)

The natural example to consider is provided by the simplest continuous spin
ferromagnet where g, =~ H and AZ/AI = A, while g3 = u represents the coefficient of
the quartic spin term [see Sec. 6.1] with A3/A1 = ¢3 Z ¢. More generally, however,
we need not specify the nature of u. Then we have

d/x

f(t,H,u) = t 1

H u
Yo(t—A, F), with Yo(y,z) f(l,Y,Z,O,O, "’)’ (D6)

where, for simplicity, we now ignore all further variables which we thus assume are

"harmless” irrelevant variables.

The scaling exponent ¢ may, in principle, be positive, negative or zero. If it
is positive then u 1is actually a relevant variable and its flow wunder
renormalization is away from the fixed point selected. One is then dealing with
some sort of multicritical situation which is not pertinant to the present issue.
On the other hand, if ¢ is negative u is formally irrelevant and on approach to the
critical point, one has

o]

= ut +0 as t > 0. (D7)

u
&
Therefore however large u was initially, the scaled combination u/t¢ becomes
arbitrarily small asymptotically close to the critical point, and so, formally, one

has



(2, (08)
as argued in Sec. 5.5.4. On making the identification
2 -a= d/Al, (D9)

and using the general result v = 1/)\1 [see (5.96)] we arrive at the hyperscaling
relation dv = 2 - a. FEvidently the asymptotic scaling function 1s given by

¥(y) = Yy(y,0). (D10)

Now this analysis relies implicitly on the assumption that
Yo(y,O) = f(1,y,0, ...) has a well-defined value. It may happen, however, that the
full function Yo(y,z) actually diverges when z » 0. Note that the fact that u is an
irrelevant variable in no way excludes this possibility! To examine the likely
consequences of such a situation let us postulate a simple power law divergence of

the form

¥, (y,2) ~ W(Z') as z > O+ with u > O. (p11)
z

An irrelevant variable, u, giving rise to this type of behavior is characterized as

a dangerous irrelevant variable. Substituting this assumption into (D6) and letting

ut:M>| + 0 as t > 0 now yields

d

/A CRYSENT I
PR IW(EA—)/uutuMINt H
t

(=), (D12)

where ?(y) = w(y)/u“ evidently represents a new asymptotic scaling function.
Interpretation of this new behavior in terms of the standard thermodynamic exponents

(still accepting v = l/Al) ylelds the modified relation
2 -a=4dav -uldl. (p13)

This clearly represents a breakdown of the original hyperscaling relation! Notice,
nevertheless, that the renormalization group framework has been preserved intact:
the only flaw in the original argument was a failure to recognize and allow for
possible singular behavior of the scaling function.

But how far-fetched 1is the idea of a scaling function diverging as in (D11)?
The answer is "Not at all!". 1Indeed, when u represents the coefficient of the sl'
term in a continuous spin model, just such a divergence is found when one calculates

the form of the free energy scaling function (for nonzero but small u) above four
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dimensions. Since the us4

term with u > 0 is essential for the convergence of the
partition function below the mean field critical temperature a divergence as u + 0
is hardly very surprising. Nevertheless, the actual behavior is, in fact, a little
more subtle even than supposed in (DI1). What one finds, first, are the
renormalization group eigenvalues

).=2,).=—;d+1,andk=4—d, (D14)

1 2 3

which pertain to the Gaussian fixed point studied in Sec. 6.4 which 1s stable for
d > 4 since A3 = Au and hence,

6 = A /A, = --12-(d - 4), (D15)

are then negative. The standard renormalization group exponent identifications

yield v = 1/A1 1, which is the expected classical value, but also

T2

A
d 1 2 1 1
2_a=_=—id’andA=X_=_d+—

s (D16)
1 1 4 2

neither of which correspond to the classical values, @ = 0 and A = 3/2. However,
the scaling function Yo(y,z) entering (D6) does behave in a singular manner when
z+ 0: specifically one finds

1
Yo(y,Z) =% wo(y z%), . (D17)

where Wb(w) is a well-behaved function. This resembles the postulate (D11) with =l

and so, via (D13), yields the 'operative' or observed critical exponent
1 1
2-u=d\)—u|¢|=3d--f(d—4)=2. (D18)

Thus we obtain @ = 0 which is now in accord with the classical predictions (and, of

course, violates hyperscaling).

Evidently, then, u is a dangerous irrelevant variable at the Gaussian fixed
point when d > 4. Further, however, u, in the guise of the scaled variable
z = ut|¢|, also enters as a factor in the argument of the scaling function Yo+ This
argument thus becomes
4 EY
w=yz%=-T2-/—)q(uix €|¢|)=%f, (p19)

where now the operative scaling exponent for the ordering field is seen to be

s

(a-4) = % (p20)

N[o—-

1 -1 1
_i|¢|‘4d+ 4

>

1
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This contrasts sharply with (D15) but agrees with the classical prediction!

The moral of this story is that the standard scaling relations for critical
exponents depend, in their derivation, on assumptions, usually left tacit, about the
nonsingular or nonvanishing behavior of various scaling functions and their
arguments. In many cases these assumptions are valid and may be confirmed by
explicit calculation (or other knowledge) but in certain circumstances they may
fail, in which case an exponent relation may change its form. Other nontrivial
cases of dangerous irrelevant variables are known so that the phenomenon, although

not common, is not truly exceptiomal.
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1. Historical Introduction

The fact that the same substance may exist in different 'phases' which show
discontinuous transitions into each other has always been a fascination to scientists.
In fact, the difference between different phases of the same substance was felt more
significant than the difference between different substances. The 'four elements'
certainly characterize phases rather than substances, and their difference was
thought to be due to different forms of the 'atoms'. The discovery of the critical

point! (T Andrews)

©
n
<] =

(a) P (b)

Fig. 1.1 : Projections of the ppT surface for a liquid-gas system. (a) Isothermal
cross-sections. (b) Vapour pressure curve (coexistence line).

was a great surprise and increased the fascination in phase transitions: The exis=
tence of a continuous path for changing one phase into the other was incompatible
with the concept of different molecules for different phases, and the appearance of
a phase transition was interpreted to arise from a shift of the balance between

attractive and repulsive properties of the molecules with temperature.

In the course of time, other critical points were discovered: Critical points in
ferromagnets® (J Hopkinson), which behaved remarkably similarly to the liquid-gas
critical point (apart from the symmetry between H and -H which has no counterpart

in the liquid-gas system).
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Fig. 1.2: Projections of the HMT surface for a ferromagnetic system.
(a) Isothermal cross-sections. (b} Coexistence line in HT plane.

A wide variety of other physical systems showing critical points include:

Binary 1iquid mixtures

Binary alloys

Antiferromagnets

Ferroelectrics and crystals with structural phase transitions
Liquid crystals

Superconductors

Superfluids

These systems show a number of interesting phase diagrams, some of which will be

discussed during this course.

2. Classical Theory of the Critical Point

2,1 Basic Assumption of Classical Theory

In 1873 J D van der Waals® gave an equation of state
(p+a/v?)(v-b) = RT , (2.1)

which when combined with the Maxwell construction described a liquid-gas system
both above and below the critical point. In 1907 P Heiss* did the same for the

ferromagnet,
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Fig. 2.1 : Classical prediction of isotherms in pp plane for a liquid-gas system

Fig. 2.2 : Classical prediction for isotherms in MH plane for a ferromagnet.

M/M = L(u (H+AM)/RT); L(x) = coth(x) - (2.2)

|
.

These equations of state lead to the prediction of a universal scaling behaviour
close to the critical point, known as the 'law of corresponding states'. This be-
haviour does not depend on the details of the above equations of state, but rests

on one basic hypothesis:

The two phases at T < Tc can be connected by a theoretical construction of a con-
tinuous set of states, such that the forces (p, H) are analytic but non-monotonous
functions of the system variables (v, M) and temperature T ('van der Waals Toops')

(dotted Tlines in Figs. 2.1 and 2.2).
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The discontinuity on the coexistence line and the singularities at the critical
point arise solely from the {nwersion of these analytic functions and the Maxwell

construction.

Thus p(v,T) and M(H,T) are assumed to be analytic functions in both arguments, which

satisfy
CH -
av av :
pCTC pCTC
2
%% ’ . 3% -0, (2.3)
H=0,T, aMm? | H = 0,7,

at the critical point. Thus, the leading terms of the Taylor expansion at the

critical point are given by

p-p. = a(T-TC)(v-vC) + b(vc-v)3 + c(T-TC),

(2.4)
H= a(T-T M + bM3 .
From this expansion one easily obtains the behaviour on the coexistence Line
pliq = pgas and H = 0,
1
_ ~ _TYz.
lo=p | » M~ (T-T)%; (2.5)

the behaviour of the .{sothewmal compressibility K = —(l/v)(av/ap)T and the .{sotheumal

susceptibility X :(aM/aH)T along the coexistence line and its continuation

-1
KoX = C,|T-TI™ L ¢ =2C, (2.6)

where the factor C_ is twice as large above T as the factor C_ below T ; and the

behaviour on the critical isotherm T = Tes

p-b. ~ (pp)? » H~ M, (2.7)

where we have used the molar density p = 1/v instead of the molar volume v. In
modern language, one expresses these results in terms of 'critical exponents'

B, Y, &6 defined by
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. ~ (T .T\B

lo=pcl » M~ (T-T)"

KX~ 1117, (2.8)
5

P-pe ~ (p-pc)” s H~ M,

whence g = 1/2 , y = 1, § = 3 for the classical theory.

2.2 Thermodynamic Description of a System

2.2.1 System Variables and Conjugate Forces

A state of the system is described by a set of system variables Q:

For fLattice models, an n-component variable QK is associated with every lattice
site £ = 1,2,...N. For continuum models, the states are described by n-component

densities Q(x), x € Rd.

With each system variable Qi or Q(x) we associate a conjugate force Fz or F(x)

respectively:

System Q F n

Liquid-gas o U 1

Ferromagnet M H 3

Ferroelectric P E 3

Quadrupolar Q F 5

(e.g. Tiquid-crystal) | (quadrupole | (field gradient)
moment)

Examples of Q, F and n for a number of physical systems are given above {(u is the

chemical potential).

For the ferromagnetic and ferroelectric systems in anisotropic cases, only the com=
ponents along the easy axis (n = 1 for the Ising model) or easy planes (n = 2 for

the XY model) need be considered.
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2.2.2 Thermodynamic Potential

We shall consider a system in a heat bath at temperature T. For given values
of the system variables and T, the Hefmholfz free energy F({Q}),T) yields the thermal

and caloric equations of state:

%gfz = Fp(ion,T) L, & - s (2.9)

Note that we have used {Q} to denote the variables Ql""’Qe""QN' The second
derivatives of F yield the nesponse functions, in particular the isothermal reci=
procal susceptibility matrix

oF

-1_(£) _ 32 F (2.10)
Xee' = \90Q,. /T T 3Q,30Q,, :
and the heat capacity at QK = Q = constant,
2
€ = T(%%) --12F (2.11)
{Q} aT?

Assuming that the equation of state has a unique inverse, i.e. Qz = QZ({F},T), one
obtains the Gibbs potential G({F},T) for given values for the forces and temperature

by means of a Legendre transformation
G({F},T) = F({Q}({F},T),T) - %FK‘ QK({F},T) . (2.12)

This transformation yields the equations of state in the form

3G _ 3G _

-ﬁz = 'Qﬂ({F},T), ET = 'S({F}:T)' (2'13)
1t is convenient to define a potential

o({Q},{F},T) =F({Q},T) - EFK'QK (2.14)

depending both on the system variables and the forces by including the interaction

term 'XFK’QK of the system with the external forces. This potential is a minimum
L

at thermodynamic equilibrium, i.e.

&({Q},{F},T) = minimum , (2.15)
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at fixed {F} and T, the minimum condition yielding the thermal equation of state.

The minimum value of & is just the Gibbs potential G({F},T).

One may use this technique of Legendre transformations in order to eliminate
irrelevant variables or to re-introduce variables of interest ('deflating or in=
flating the thermodynamic potential'). In the case of continuous systems, sums over
£ must be replaced by integrals over a continuous variable x, and partial derivatives

by functional derivatives.

2.2.3 Properties of the Thermodynamic Potential

In order that the thermal equation of state has a unique inverse {except on the
coexistence line), F and therefore ¢ must be convex gunctions of the configuration.
Necessary conditions for convexity are that the susceptibility x is non-negative

definite and that the specific heat CQ = 0.

It then follows that the Gibbs potential is a continuous function of {F} and T. In
the Ehrenfest classification of phase transitions, if at least one first derivative
of the appropriate thermodynamic potential is discontinuous for certain values of
{F}and T, then it is said that a phase transition of first order occurs at these
values: For the Tiquid-gas system both the molar density p =3G/5u and the entropy
S =-3G/3T are discontinuous across the coexistence line (TAS is the Tatent heat),
whereas for the ferromagnet the magnetization M = 3G/3H is discontinuous but

S = -3G/3T is continuous across the coexistence line. If all the first deriva=
tives are continuous, and at least one of the second derivatives is discontinuous,
then the phase transition is said to be a second order transition: Along the co=
existence line for the Tiquid-gas and ferromagnet, three second derivatives are
discontinuous at Tc' This Ehrenfest scheme has not proved very useful, and a modern
classification distinguishes first order phase transitions as discontinuous, and

all higher order phase transitions as continuous.

Why does temperature play a special role? One needs a coordinate in parameter
space which varies along the coexistence line. Temperature is acceptable for all

phase transitions for which the coexistence line has a finite slope (3F/3T) coex at Tc'
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2.3 The Landau Potential

We define Q and F such that F = 0 on the coexistence line and Q = 0 in the high
temperature phase on the continuation of the coexistence line.

3

1/’...' /
/¢ T 7 %

Fig. 2.3 : Equation of state for T < Tc' Solid curve is the true equation of state.

The flat portion F = 0 of the true equation of state between the two values Q:(T)
and Q(T) characterizing the two coexisting phases gives rise to a flat portion

F(Q,T) =F(Qi,2,T) of the Helmholtz free energy.

]

Fig. 2.4 : Helmholtz free energy for T < Tc' Solid curve corresponds to the true
equation of state.

The assumption of an analytic van der Waals loop connecting the two phases

Q:(T), Q2(T) is equivalent to the assumption that the two branches of the free
energy for Q < Q;(T) and Q > Q2(T) are parts of an analytic function F(Q,T). The
non-monotonic character of the van der Waals loop is reflected in the non-convexity

of this function. We can thus formulate the basic assumption of the Landau Theory:
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There exists a thermodynamic potential ¢(Q,F,T), the Landau potential, which is an
analytic function of its arguments, but below Tc is a non-monotonous function of

Q, whose convex cover is the true thermodynamic potential.

For the simplest case of a system described by a single variable Q, with n = 1, the
leading tefms of the equation of state
F=afT-T)Q* +bQ" , b>0, (2.16)
yield the leading terms of the Landau potential for unifoun states (Qz = Q = constant)
% = [%oc(T-TC)Q2 + }bQ* - FQI V. (2.17)

We next consider the case of non-uniform states: Q(x). The existence of a surface
energy between two uniform phases (a surface tension in the liquid-gas system and
domain-wall energy in the ferromagnet) shows that there is an energy associated
with spatial change. In a continuum model, the free energy density will depend on
the gradient vQ. Since terms linear in vQ vanish by partial integration, the lead=
ing term for slow variations will be quadratic in vQ. Thus the simplest model
Landau potential for a system described by a single continuous variable Q(x) is

given by
o =j'{§a02 + 3bQ* + 3c(vQ)? - F{x)Q(x)} ddx, a(T) = on(T-Tc), b>0, c>0. (2.18)
Introducing the Fourier amplitude

Q(x) =/% 20, R (2.19)
q

in the linear and quadratic forms yields
o = z{3(a+cq?) |0.]% - F.Q_.} + bfQ* d%. (2.20)
q q q°-q

From the expression one may read off immediately the zero-field reciprocal

susceptibility above TC,

- 2
x te 22, (2.21)
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whence

X =1 . . (2.22)
9 a+cq?

This expression is valid for small q. Similar results are obtained for n > 1 above
TC and for n = 1 below Tc' In the case of a multi-component system, one has to dis=
tinquish below T.the susceptibilities parallel (lI) and perpendicular (L) to Q. Only

X” follows the above behaviour, whereas XJ_diverges as q »~ 0, in the isotropic case.

It must be emphasized again that there is no empirical basis for the assumption of
the existence of an analytical Landau potential. In fact, for a finite system, the
thermodynamic potential will be analytic, but will be a convex function of Q and

will not have any Landau hump. This can be seen by the following simple argument:

Fﬁ 1x)

4 Q &__J =Q
\ %
_— T

(a) ‘ (b)
Fig. 2.5 : Analytic behaviour of a finite system. (a) Equation of state.

(b) Helmholtz free energy.

A state with an equal distribution over the two phases yielding @ = 0 has a higher
entropy, its thermodynamic potential is therefore s1ightly lower than that of

the pure phases. Only in the thermodynamic 1imit dc2s one obtain a sharp transition
and a flat portion of F (Q). Such finite size effects give rise to the phenomenon

of superparamagnetism of small magnetic particles.

We should therefore be prepared for deviations from the Landau theory discussed in

other lectures of this course.
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2.4 Fluctuations

The thermodynamic variables Qewe have used in the previous Sections are statistical

averages over the fluctuating quantities Qz. We define the fluctuations cSQZ by

6£=Q£+6Q£ ’ (2

where

Qp =<Qp>,<80Q,>=0 . (2.

23)

24)

The ﬁz may be considered either the true microscopic quantities, or one may assume

that some 'coarse-graining' (averaging over short-wavelength fluctuations) has

already been carried out.

0f experimental interest is the tensor of equal time correlaticns

SL@' = <5Q£6Q£!> = <Q£Qzl>' QKQE! . (.

In a uniform phase, Szﬂ. depends only on RZK‘ = RZ"RK on account of the Tlattice

translation symmetry, that is

S, = S(R,,.) . (2.

ul

The correlation between the fluctuations of the Fourier components

1 -ig.R
8Q =—=18Q,¢ L (2.
a mr t
is given by
-1 -1(Q.Ry+q'.Ry,) (2.
<5Qq§Qq| >=q LZ@' SU,' e L £ .

For a uniform phase, this reduces to

- . 2.
<<SquQq.> Sqd(q+q) , (

where

25)

26)

27)

28)

29)

.30)
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is called the static structure facton. It has, apart from a delta function, the
significance of a mean square fluctuation of the Fourier components ('fluctuation
strength'), and it determines the total cross section for the scattering of light

(X-rays) and particles (neutrons) from the fluctuations.

It is important to note that the equal time correlation and the static structure
factor can be calculated from thermodynamic quantities by making use of the fluctua=

tion theorem of statistical mechanics. For a classical system

S, = kKTX,,, . (2.31)

e’ L
Thus, the divergent behaviour of the susceptibility near T. gives rise to the
occurrence of 'caitical fluctuations'. In Landau theory, one obtains from the

behaviour of the susceptibility above Te (for small q) the Ornstein-Zernike

behaviour

S, = —1—, a=a(l-T) . (2.32)

9 atcq?

Fourier inversion yields the asymptotic behaviour of the correlation function for

large RKK' s
o1 -KR, 1
SKE' E__—(d—l)/Z e e, T Tc’ (2.33)
al
where
K2 = % = % (T-T) (2.34)

and k = 1/ has the significance of a reciprocal conrelation Length &. Thus we
Tearn the important fact that the correlation Tength diverges at the critical point

as
g(T) ~ (T-1) ™ (2.35)
where, in Landau theory, the critical exponent v has the value v = 1/2. At the

critical point, where the correlation length is infinite, the correlations decay

according to the power law



~ 1 :
s ——, (2.36)

RKK'
One defines a critical exponent n by

1

S ~ o
ul
Rppr

. ~ ~27N
d-24m ¢ Sq 7~ @ s (2.37)

which, in Landau theory, has the value n = 0. The above considerations show that
the critical behaviour of the fluctuations is notf caused by the fluctuations 8Q,

themselves becoming large, but rather by the correlation range diverging for T ~ TC.

We can make use of the above results in order to demonstrate an internal inconsis=
tency of the Landau theory in less than four dimensions: From the analyticity of
the thermodynamic potential it follows that the heat capacity, given by
Cq = -T iz_f (2.38)
aT
is finite at T = TC + , and the heat capacity has a finite jump at TC. In other

words the critical exponent defined by
Gy~ (T-1)7 (2.39)

has the value o = 0. On the other hand, the heat capacity may also be obtained as
the temperature derivative of the internal energy. Now, considering the case of

bilinear interactions, i.e. interactions of the form

-3 I vV, 0,0, (2.40)
28 YI AN AV
the interaction contribution to the internal energy may be written
E1'nt -3 1 Vopr SZZ' =-zvS . (2.41)
A q q-9

Consider now the contribution from small q values (|q|<;q0) such that Vg may be

taken as a constant and Sq given by the Ornstein-Zernike form. Then
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« -3 { 1 -i}. (2.42)
q
lal <q,

We replace this sum over q by the integral

%
AE~ [ KT ¢F3yq (2.43)
0 k2+q2

and after a change of variable, & = gq/k. we obtain

o a/x 4o
Y
o 1+g7

AE £ . (2.44)

Consider first the case d < 4. As T > Tots the integral takes on a finite con=

stant value, whence AE diverges as

A ~ &2~ (e )WL (2.45)
and
¢y ~ (-T2 (2.46)

The exponent o = 2-d/2 is less than zero and therefore in disagreement with the

Landau theory. For the case d > 4 (T+TC+) the leading term in the integral
-d/2+2

diverges as (T-TC) » whence

AE ~T-To (2.47)
and

CQ ~ constant . (2.48)

Thus we obtain a result o = 0 which is consistent with Landau theory.

2.5 Validity Condition of Landau Theory

One should distinguish carefully between two potentials used in phase transition

theory : One is the thermodynamic Landau potential @ used in the previous Sections
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which is a function of the average quantities Qz. The other, often called the
Landau-Ginsburg-Wilson potential, is a distribution potential & for the fluctuating

quantities QZ in the sense that the statistical distribution is given by

PULQI.T) = 7 expl-go((8).(F),T)1 (2.49)
where
({0}, {FY.T) = F({Q1,T) - £ F,Q, . (2.50)
£
If the Qewere the true microscopic coordinates then ¢ would be the Hamiltonian, and
would be independent of T. But we consider the case that some coarse-graining

(averaging over short wavelength components) has already been carried out, in which

case the distribution potential becomes explicitly T-dependent.

How are the two potentials related? The Gibbs potential G({F},T) is given by

~N
1

exp[-gG({F},T)]

[ exp[-88({0},{F},T)1D0 , (2.51)

and the average quantities Qp are found from

_ 3G
Qz == 5}?2 ({F}aT)

NN =

I @y expl-8({Q},{F},T)IDQ , (2.52)

which may be inverted to yield FK({Q},T). Legendre transformation yields the

Helmholtz free energy
F({Q},T) = G({F({G},T)},T) + 2F,({Q},T).0, (2.53)
£
and thus the Landau potential (without the hump!)
o({Q},{F},T) = F ({Q},T) - 2F,.0, . (2.54)
£
In a compact notation we can write

exp[-82({Q},{F},T)] = S exp[-Bd({Q},{F},T)1DQ, (2.55)



187

0, expl-Bo({Q},{F},T)] = S Q, expl-B3((Q), (FLTIIOY . (2.56)

The important fact to realize is that the distribution potential @ will be an
analytic function with a Landau hump at Tow temperatures. This just expresses the
fact that the distribution will peak at the values + Q in the low temperature phase.
We thus assume a Landau-type form for § and ask under what conditions can the above
phase-space integral be evaluated by saddle-point integration, i.e. when can the
integral be replaced by the maximum value of the integrand®. If this condition is
satisfied, then the thermodynamic potential at equilibrium is indeed given by the

minimum of the analytic function d, i.e. ® can be taken as the Landau potential.

We consider specifically an n-component continuum model in zero field

B({01,7) = f13a0% + g5 b(@)7 + pe(v)d% (2.57)
where (Vf))2 is defined as
A)2 n SN2 d n 360‘2
(vQ)* = R L . (5;;) , (2.58)

and the n- dependence of the quadratic term has been arranged such that a meaningful

1imit (n » =) exists. We assume T > TC and introduce new variables

C 2 mal & .
=/. s = S, 2.59
x=/i5 ¢ 0= /o (2.59)
such that the integral in the exponent becomes independent of the parameters except

for an overall constant Q. Thus

8o = 06(S,T) ,

©-

—_

w

—

~—
Il

= 78 + 332 + 579 d% (2.60)

2-d/2  d/2
Q=D C
— T

such that

exp[-80]1 =J [ expl-08(3)IDS (2.61)
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where J is the Jacobian. The saddle-point integration is justified, i.e.

we may write

8(Q,,,) ~é9 33, = o0 (2.62)

€q

-

where So and Qo are the saddle point coordinates, provided

Q> 1 . (2.63)

It is easy to see that this condition is equivalent to the Ginsbung condition

<8Q2><< QOZ, where QO(T) is the value of Q at a temperature ~ T - 2(T-Tc) .
Let us first consider some special cases for which @ >> 1

(a) b~ 0 : Gaussian model. (Undefined at temperatures below Tc).
(b) ¢ » = : The interaction range g « cé becomes infinite,

(c) n >« : Equivalent to the spherical model.

Now let us consider the case we are really interested in, namely the case of
ondinany phase transitions. In this case, b, ¢ and n are finite, but

a« IT-TC| ~0 as T~ T +. Thus
Qaal d/2 »{2 ford$ 4, (2.64)

and we see that Landau theory is correct for d > 4, but for d < 4 Landau theory
breaks down close to Te- In the displacive £imit, when T. = 0, then the presence

of the T in the denominator Q means that

Reald/2 +{2 fordS2 . (2.65)
In this case we see that Landau theory breaks down close to T. only for d < 2.
It should be noted that the validity condition @ >> 1 only shows that

) = 9(Q,) (2.66)

eq 0

2(Q

but does not guarantee that all exponents are given by the Landau values. In

particular, in the n - «» case, the exponents require special consideration.
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3. Symmetry Aspects

3.1 Symmetry Group of a Phase

Consider state changes occurring on a path in F-T space along the coexistence line,

continued beyond the critical point.

Fig. 3.1 : Continuation of the coexistence Tine.

A1l states of one phase have the same symmetry :
Symmetry group G of the phase.

Symmetry group is the set of those transformations permuting like atoms, which

are equivalent to combinations of translations, rotations and reflections.
What is the symmetry of states along this path?

In general the symmetry above the critical point is characterized by a symmetry
group GH of the high phase, and below the critical point by a symmetry group GL

of the low phase. We make the following important distinction :

(1) Symmetry-conserving transition : GL = GH, for example the liquid-gas system.
(2) Symmetry-breaking transition : GL - GH’ for example the ferromagnet.

Most of the Landau theory is concerned with symmetry breaking transitions.

3.2 Landau Criteria for Symmetry-Breaking 2nd Order Phase Transition

For symmetry-breaking transitions one may derive a set of criteria for the occurrence
of a 2nd order phase transition. Landau theory restricts the number of possibilities:

Given a crystal with a certain symmetry Landau theory tells us which transitions
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can not occur by 2nd order phase transition.

For our purpose we will exclude the so called elastic phase transitions, that is
the Q's should not be elastic strains because this requires special consideration.
Further, for a symmetry-breaking transition, the Q's should not contain a fully
symmetric part, i.e. they should transform according to a representation which does

not contain the unit representation Alg' For simplicity we will consider only the

F = 0 case. In this case the Landau expansion is
o({Q},T) =0 (T) + % a Ty Qpeyr +oveens (3.1)
0 2 I AP Y ADY

where Q is a vector and the QZA are components, A denotes e.g. the x, y or z
components, and £ stands for the lattice site. Note that there is no Tinear term in
this expansion because ¢ is symmetric under Gy. The H-phase is locally stable

(stable for small deviations) if the second-order terms are positive definite.

Now, we are interested in the point of 'marginal stability' at Tc' We find the
point of marginal stability by diagonalizing the quadratic form in the Landau
expansion. This is where the crystal symmetry helps us. The translation symmetry

alone can be used to unscramble the spatial part by going over to Fourier components.

2({Q},T) = ¢ (T) + Q (3.2)

(S

I g (MO

q,)\)\l 'q>‘l

g
We can diagonalize further by making use of the irreducible representation Fq of the

'small group’

o({Q),T) = o (T) +3 = a (M zlogr yI*, (3.3)
» ,Y ,q’ RO k) .

where Qq Ty transforms according to the irreducible space group representation

T = {q*,Fq}, having dimension n. We have now diagonalized the quadratic form.

We next want to test the stability of the H-phase. The H-phase is stable as long

as all the a

qr are positive. Thus a candidate for TC is that value of T for which

mina _ (T.)=0. (3.4)

qr (T¢)
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We assume that at TC only one of the coefficients becomes zero. If more coefficients
simultaneously become zero then we have a multicritical point (see Aharony's Tlecture,

this volume).

The 18t landau crniterion states that at TC the H-phase is marginally stable against

a mode which transforms as an irreducible representation # the unit representation

Alg of GH. This mode is called the 'order parameter'. The dimension of I' is n (the
number of components of the order parameter). We note the following special cases:
electric
(1) g=o0 : 'ferro' magnetic transition.
distortive
(2) gq=13K : ‘antiferro' transition.

(K is the reciprocal lattice site)
If the value of q is general then there may be an incommensurate phase.
A second cnitenion, due to Lifshitz® (1941), is stability against slow spatial
changes to the order parameter. The order parameter is allowed to vary slowly in
space, qu(x). This caused some confusion in the literature, e.g. Dimmock’ and

Kaplan® (1964), and was eventually cleared up by Dzyaloshinsky® (1964) and by Goshen,

Mukamel and Shtrikman'® (1974). Let us consider the gq-dependence of ar viz.

ar = aqu + b(q-qo) + c(q-qo)2 + o . (3.5)

The linear and quadratic terms give rise to Lifshitz invariants of 1lst and 2nd order

in & respectively. If b # 0 then aq cannot be a minimum of aq.
0
'y
aqT
T >
q, q

Fig. 3.2 : The curve of aqr at T = TC showing a minimum at Up-
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The Lifshitz condition says that b = 0, i.e. no lst order Lifshitz invariant exists,
on account of symmetry:

2
[Fopl antisymmetric T vector (3.6)

Note that the coefficient b may not only vanish because of symmetry, but could also
vanish accidentially at Tc‘ Then the system may have a type of phase transition
such that q = q(T), q(Tc) = qy- This is a non-Landau transition and required special

consideration.

'The Lifshitz criterion yields important restrictions for phase transitions into

phases with constant q.

If the 2nd criterion is satisfied we must Took at the sign of the quadratic term:

If ¢ > 0 this is a candidate for a second order phase transition,

The thind criterion, due to Landau, is obtained by keeping only the order parameter

coordinate, and eliminating all other qu by minimization,

- 2, 1 (a)
2(Q) (DO +3a, 5 |QY| t E': "y a‘3 vy QY QYIQY|'

YY'y
+31z a, Q0QQ + .... . (3.7}

For a 2nd order phase transition a, =0, i.e. no 3rd Landau invariant exists because

of symmetry:

3
[FopJ symmetric ? Alg (3.8)

Necessary conditions for Landau transitijons are thus

(1) Mina_ . (T

qr =0;0

C) r transforms as T + Alg'

q

(2) No 1st order Lifshitz invariants; coefficient of the 2nd order Lifshitz
invariant > 0.
(3) No 3rd order Landau invariants; coefficient of the 4th order Landau

invariant > 0.
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If a, = 0 this leads to a tricritical phase transition (see Aharony's lecture),

Note:

The 3rd criterion is always satisfied for a phase transition from a para=

magnetic to magnetically ordered state on account of time reversal symmetry.

Symmetry of the L-phase = symmetry of equilibrium value of Q in the n-dimensional

order parameter space, determined (in the case of n > 1) by the form of the 4th

order invariants and the sign of the a,'s.

The Towest possible symmetry is given

by the 'kernel' of the representation I' = {q,rq} = subgroup which leaves each vector

Q of the order parameter space invariant,

one of the symmetry directions, then the symmetry is higher.

If the equilibrium value of Q is along

For example:

GH = cubic group, q = 0, Fq vector representation: Qx’ Qy, Qz‘ Two 4th order

invariants:

&

a(l) >0 ,a(Z) <0

4 b

asl) >0, aEZ) <0

ce ) @ e ez el e ap)

(3.9)

: QI cubic axis, tetragonal phase (e.g. Fe)

: Q |l body diagonal, trigonal phase (e.g. Ni)

3.3 Critical Points of Symmetry-Conserving Transition

We all know of a symmetry-conserving transition from the Tiquid-gas model.
we now argue that this model is a special case.

symmetric order parameter Q (every element of the G group leaves Q invariant).

However,

Consider the case of a fully

An

example is the ferroelectric KH, PO, (KDP) in an applied electric field.

p

symmetry
breaking

critical
point

symmetry
e— conserving

[ )

/

P

(a)
Fig. 3.3 : (a) Coexistence line.
KH2POu

1

2

(b)

(b) Polarization curve for the ferroelectric

P is a fully symmetric coordinate.
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This substance has been studied by Courtens and Gammon''. Whenever there is a fully
symmetric coordinate Q (in this case the polarization P) there is a linear coupling
to the symmetric part of the strain tensor, i.e. the polarization P gives rise to a

fully symmetric uniform strain,
e =gP , (3.10)

and the fluctuations Pq give rise to acoustic mode coordinates Qq = §Pq. For KDP
four of the six components of the strain tensor €yx? Eyy’ €55 and Exy are fully
symmetric.

Now let us eliminate the polarization P and express the potential in terms of the

strain tensor and the acoustic mode coordinates Qq. We write the Landau potential

®=32C (Tle.e , +13 ) ci(T)qﬂQle2 N (3.11)

v AVARY, q#0,>\

where va is the tensor of the isothermal elastic constants and cA(T) is the

isothermal sound velocity. We now diagonalize the elastic energy to obtain

- 2
®etastic © iz Cn(T)e s (3.12)

where Cn are the eigenvalues of CAA‘ . At T-= TC the smallest eigenvalue of the

fully symmetric part is zero,
(T =0. (3.13)

The critical point of symmetry-conserving transition is always an elastic

|

The important point to realize is that none of the isothermal sound velocities =

instability.

becomes zero at Tc’ i.e. only the unifomm part becomes unstabfe. This is due to the
fact that no acoustic wave can be formed from a fully symmetric strain. A strain
tensor from which an acoustic wave may be formed is called a 'wave strain'. A wave
strain has the form ¢ = 3(ab+ba) , al b . It can be shown that the symmetry-break=
ing eigenspace of the elastic tensor always contains a wave strain, but a fully

symmetric eigenspace does not. Therefore, a symmetry-breaking elastic transition
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is always associated with a zero sound velocity ¢ given by

2 _ Csymm—br (M)

pC , (3.14)

but a symmetry-conserving transition is not: In the case of a symmetry-conserving
transition, contributions always occur from some non-vanishing eigenvalues
6
pct = a,Cy(T) + I aC,(T) s (3.15)
n=2

not all a, = 0. This behaviour is related to the fact that there are six components
of uniform strain but only three acoustic modes at q # 0. Thus, not every elastic
instability can be associated with an acoustic mode. Thus, near the critical point
only one term of the thermodynamic potential becomes zero and all the q # 0 terms
stay at a finite positive value. This means that there are no critical fluctuations,

and Landau theory is exact.

Why does one have critical behaviour for the liquid-gas transition? There is no
shear elasticity, and only one elastic constant, namely the bulk modulus, is non-

zero. In this special case the isothermal sound velocity is given by

(3.16)

» _ cbulk
pc® = G4

where C$U]k is the isothermal bulk modulus. Thus, the isothermal sound velocity

goes to zero as C$U]k + 0, and this is the reason for the occurrence of critical

fluctuations in this system.

4, Mean-Field Approximation

4.1 Variational Formulation of Equilibrium Statistical Mechanics

The task of statistical mechanics is to derive the thermodynamic potential from a

microscop%c model Hamiltonian., Let
H({Q,P}) = H, - z Qp-Fp (4.1)

where éﬂ are the microscopic coordinates and é& are the canonical momenta. The



166
statistical distribution in phase space T is
o({Q,P}) : S pdr =1, dr = DQDP . (4.2)
This distribution determines the average value
<y>=fypd (4.3)
of any phase function y({Q,P}) . We define the free energy functional

® [pl = <H> + kT<&np>

]

S(Ho + kTpdnp)dr , (4.4)
with the property that for a system in equilibrium at temperature T

¢ [p] = minimum under fodr =1 . (4.5)
Explicitly

8§(®-2p) = S(H + kT&np + kT - A)Spdl = 0 , (4.6)
where X is a Lagrange parameter.

This condition yields the equilibrium distribution o

eq’
Peq ~ T i I Vo (4.7)
and the Gibbs potential
G = lpg] = -kT2nZ . (4.8)

For a classical system one can separate the kinetic and configuration part of the

Hamiltonian
H = Hkinetic (tP3) + Hconﬁ'g e, (4.9)
and as a consequence peq factorizes

Peq = Pkinetic ({ﬁ})pconfig SUBRE (4.10)
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The kinetic energy part is trivial to deal with, so in practice one is left only

with the configuration part. In this case dr - DQ .

For a classical spin system there is no kinetic energy part. The complete Hamiltonian
consists only of the configurational part : H = H config”
In a quantum mechanical system then H,p are operators. The description above remains
valid if we replace the phase space integral by the trace

fdr - trace . (4.11)

4.2 Mean Field Approximation by Variational Ansatz

Consider a model system for which H consists of a single-particle part and a

bilinear interaction part
H=ZH, Q) -3 T vy0 Q0,0 » (4.12)
P JAN 4 o IS AN AV 2
where
F. (4.13)

The problem is to evaluate the partition function. In the absence of interactions

we have
p=np£ ’ p£=-—e . (4.14)

The idea of the mean field approximation is to minimize the functional ¢[p], not

for arbitrary statistical densities, but for the product distribution

-

= Q (4.15)
p E pz( /e) .

That is we disregard correlations between different sites.
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X
minimum

Fig. 4.1 : Schematic diagram showing the set of all possible p. The true

minimum of ® will be outside the subset E 0p -

Let us put this Ansatz into the functional

@[Epzl = i I(HKDZ + kszﬂnpﬂ)dQK

-3 z v ' QQ [} (4'16)
2 o0 ITANR AYS
and minimize under the constraints
prdQK =1, fézpkdéﬂ =Qp . (4.17)

The hope is that the minimum of this functional will not lie too far away from the

true minimum given by all possible p. We write
8(9 = T dppp = 2 6,Q,0p)
P 2L ¢ L34

Lf(H, + KTmp, + kT = 2, - ¢ZQZ)6pEdQ£ =0, (4.18)
L
where AZ and ¢, are Lagrange parameters. This yields the distribution

-1 expl-B(H, - %02)] s Z, = Jexpl-B(H, - %Qz)] df)/Z ) (4.19)

P
Lty
and the average coordinates

. db,

Qp = <Qp> = 3(552) = B£(¢£ + Fﬂ) . (4.20)

This last equation is the single particle equation of state, with the external force

Fz replaced by ¢£ + Fﬂ.

Now we assume we can calculate all the single particle properties. Thus we can

calculate the Lagrange parameter ¢, from the inverse
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o =B, (Q,) - F, . (4.21)

We also want to know what is the value of the functional ¢ at the minimum. We find

d = E {<H£> + kT[eB(<H£> - ¢£Q£) - in ZKI}
= % z VL@' Q/@Qﬂl . (4.32)
Thus
e({Q},T) = i ®£(Q£’T) -2%' b Vep! QKQl' s (4.23)

where the single particle potential for a given Q, = <Q£> is

9,(QpsT) = - KT &n Z, + 6,Q, . (4.24)
We can write this in the form

eXp[-B%] = fexp{—B[Hli -9, (0, - QZ)”sz . (4.25)

The complete thermodynamic equilibrium is found by minimizing this potential & with

respect to the Q's. Taking the derivative

ey i’
-—B—QE—_ g-Qz[.VL Z£+¢£+sz£ N (4.26)
and using the fact that
3 3nz, 239, 30,
L = . —= = —= .
we obtain
20
z
552 = bp - (4.28)
Thus, at thermodynamic equilibrium the Lagrange parameters have the simple
interpretation
- mo|l
bp = %. Vep! sz = FZ s (4.29)

where F%?l is the mean molecular field. This is the reason for the name 'molecular
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field theory'. After replacing ) by F?Ol, we can write the equation of state

1
Qp = B(Fp +Fp) . (4.30)
L mol
Q Folos vq=oQ
T < TC
T>T.
o™

Fig. 4.2 : Solution of the self-consistency equation.

The mechanism to get self-consistent solutions to this equation is to look for the

mol

point where the 1ine of F = vQ intersects the equation of state.

The reciprocal susceptibility is the second derivative of the thermodynamic potential

Xpp = T 1.31)

8! QKBQK. * ( N
We obtain

Xgpr = X5 g (Q)8gpr = Vppr (4.32)

where X ¢ is the single particle susceptibility coming from the second derivative
of the single particle potential ®,. Thus we obtain Dysons equation for the
susceptibility

qu = XS,Z Gul + XS"@ Eu Vuu X£||£| (4.33)

Although the correlations between different sites are disregarded, one obtains an
approximation for the equal-time correlation functions by using the fluctuation

theorem

s (4.34)

7 = kTXul
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4.3 Mean Field Approximation from Linearization of Fluctuations

An alternative derivation of the molecular-field equations is obtained in the

following way:

Each particle responds with a single-particle equation of state B to the sum of an
external field F, and the tawe interaction field F'EO].

£
_—V ‘\ -
0
T .
><"u' O
F Q, =B(F, + I V,, Q)
¢, 5, 0, R AT T
~—_ a ‘/ + 6QS,£

Fig. 4.3 : System response to the external field and the interaction field

We assume that the response B is not affected by fluctuations of F%O], i.e. that

the system responds linearly to its own fluctuations, QE = Q2 + GQZ :

Qz = B(Fz + El Val Qzl) s (435)
g = %0 Ve S * 8 p - (4.36)

One may use this picture to derive the mean field equations and equations for the

fluctuations. The single particle fluctuation theorem

Ss,z = <GQS,K> =kTXs o s (4.37)
implies the fluctuation theorem for the coupled system

SKZ' = <8Qp6Q, > = kTXKﬁ' . (4.38)

In this model the mean field approximation becomes consistent with the fluctuation

theorem.

4.4 Results of Mean Field Approximation for a Uniform System

Consider the H-phase, all atoms equal so that we can replace all Xs g = Xg - Then
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L VppKpmpi o (4.39)

Xppr = Xs8ppr + Xs o

Take the Fourier transform and solve for

X (T) a
Xq = W . ( . 0)
X —
Y
Yq

Fig. 4.4 : Feedback system.

Because of feedback there is a critical temperature at which the denominator

becomes zero. The type of instability is determined by max vq = vq
0

Vags (T = 1 (4.41)

|
ae

(@ " (b)
Fig. 4.5 : Three cases where vq is a maximum.
(a) At Gy = 0 : ferro. (b) At q, = $K : antiferro. (c) At 9 inside

Brillouin zone (BZ) : incommensurate phase.

Three cases are considered in Fig. 4.5. Let us consider the ferro-case in a little

more detail. For small q we expand

- - ga2 =
Vg = Vo aq® , VOXS(TC) =1. (4.42)

The single particle susceptibility becomes

1
Xq = . (4.43)
TG M) - vl +og?
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This is the Ornstein-Zernike form. This yields the thermodynamic potential

o = 230G (1) - vl +ag?}[Qgl” + b,

Q (4.44)
] L

which for small values of Q, s Just the Landau potential (2.20).

5. Introduction to Driven Systems

What do we mean by driven systems? A system is coupled to several external baths.

system

+

T

Fig. 5.1 : System coupled to external baths.

The feature that distinguishes a driven system from an equilibrium system is that
even in the steady state there are fluxes going througH the system. We will assume
only stationary driven systems, i.e. the baths are time independent. In such a
stationary driven system there is always dissipation, and in order to dump heat

generated in the system one of the boxes must be a temperature bath.

5.1 Representative Examples

Let us consider a few representative examples. The first example is the Rayleigh-

Bénarnd Lnstability.

v

T + AT 4

[ A /
(a)
Fig. 5.2 : Rayleigh-Bénard instability.

The instability arises whenever a horizontal layer of fluid with positive coefficient

of volume expansion is heated from below. If the fluid is heated only a 1ittle then
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the heat is transported by conduction (Fig. 5.2(a)). The reason the hot fluid does
not rise is due to competition between viscosity and buoyancy in the fluid. But,

if the system is driven hard enough then at some AT it becomes unstable and the hot
fluid indeed rises: the driving force overcomes the frictional forces in the fluid.
The heat is now transported by convection rolls (Fig. 5.2(b)). By driving the system
harder these rolls begin to oscillate. This is a time-dependent state. If the

system is driven even harder then the motion finally becomes turbulent.

A second example is the Taylon instability.

O

N

(a)
Fig. 5.3 : Taylor instability.

Rotating the inner cylinder gives a transverse momentum to the fluid. The fast
moving fluid on the inside of the cylinder wants to move outward because of centri=
fugal forces, and replace the slow layer at the outside. If the inner cylinder is
rotated slowly then there is ordinary Couette flow, where angular momentum fed into
the fluid from the inner cylinder is transported outside by viscosity (Fig. 5.3(a)).
At a critical rotation speed the system becomes unstable and stationary annular
convection cells transport this momentum (Fig. 5.3(b)). For faster rotation an
instability occurs against oscillations, and finally a transition to turbulent

motion.

Other examples are the fLasen: pump the system and at the laser threshold there is a
transition to an oscillating state, and at higher pumping rate another transition to
a pulsing state; also autocatalytic chemical reactions: fix the chemical potential

and the system goes into a state of oscillatory motion.
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As a final example we consider the current instability that occurs in certain

semiconductors: I‘

\ dynamic
v:

Fig. 5.4 : Current-voltage characteristic of a semiconductor showing bulk
negative differential conductivity.

The differential conductivity becomes negative at high electric fields. A well
known example is the Gunn .{nstabifity in GaAs. A uniform current state with negative
differential conductivity is unstable against the build-up of charge density

fluctuation:

- SE

|
+4+++

Fig. 5.5 : Stability of charge density fluctuation.
The Coulomb force induces an electric field SE which drives an additional current
8J = oSE . (5.1)

This current enhances the original charge fluctuations when ¢ < 0 until the process
is counter-balanced by carrier diffusion. It was found that in a non-uniform state
a high-field domain travels through the sample with the drift velocity of the

carriers. V“ n ‘

=1

, (b)
Fig. 5.6 : Travelling dipole domain in a semiconductor. (a) Potential
distribution. (b) Carrier density.
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Only when the dipole domain arrives at the anode is a new dipole domain created at

the cathode.

5.2 Symmetry Breaking

We recall that symmetry is an important feature for phase transitions in equilibrium
systems. The symmetries we have been considering so far have been spatial symmetries:
symmetries under translation, rotation and reflection, and in the case of magnetic
systems also time-reversal symmetry. In driven non-equilibrium systems, not only
these symmetries but also symmetry under Zime transfations may be spontaneously

broken at an instability, leading to time-dependent (non-stationary) states under
stationary driving conditions. (We have seen in the above examples that the driven
system may develop such a time dependence.) From the symmetry point of view this is
the new feature of driven systems. Because of this feature the structures that
appear in driven systems are sometimes called 'dynamic structures', although it

should be borne in mind that some of these structures are not dynamic.

For the case of one space dimension the following types of situations can arise:

Iy 3

t'/ tly t

Y

(a) % by * (c) %

Fig. 5.7 : Examples of time-dependent structures. (a) Travelling waves.

(b) Standing waves on a flow. (c) Doubly periodic waves.
Travelling waves (Fig. 5.7(a))
¢ = flq(x-ut)l , f(&+2m) = f(&) , (5.2)

standing waves on a moving fluid (Fig 5.7(b))
¢ = Flg(x-ut), wtl ,

F(§+21Tm) = F(E,n+2'n) = F(Em) ’ (53)
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and doubly periodic waves (Fig. 5.7(c))
¢ = Flg (x-u,t) , q,(x-u,t)] . (5.4)

We will concentrate on the first case, where one finds as a function of time at a
fixed point in space a periodic pattern, and at a fixed time a periodic structure in
space, but one still has translation symmetry along the direction x-ut = const. This

is the simplest case of a 'dynamical structure'.

NOTE The term 'process' is often used to describe the whole function ¢(t) while the
term 'state' denotes the field ¢(t) at a fixed time. We shall continue to use the

term 'state' to describe both.

6. Description of Driven Systems

6.1 The Time Evolution Equation and Main Problem

The state at a given time t is described by a set of fields
o(t) = {o (r,t)} . (6.1)

We are given a set of parameters o = {an} which can be externally controlled, and

we want to know how the system moves. We assume that the change in time is given by
the values of the fields and values of the control parameters at that given time.
Such a locality in time is based on the existence of different time scales for the
macrovariables and eliminated microvariables. In order to eliminate memory effects
the state space is chosen to be sufficiently large that all sfow variables are

included. The time evolution equation of the fields is of the form

o(t) = Blo(t),al (6.2)

together with appropriate boundary conditions, where B is a non-Linear functional.
We assume that B is contracting, namely that in the course of time a volume in

phase space will become smaller. We want to consider a homogeneous (uniform) system
where B is invariant against translations in space and time. Usually B is a partial

differential operator acting on the fields ¢n(r,t) .
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The main problem is to find what would correspond in the equilibrium system to the
stable 'states': such states are called attractors. What is an attractor? If the
system is already on an attractor it will stay on the attractor for all later times.

If the system is close to an attractor it will approach the attractor.

We recall that in equilibrium systems, for a given set of control parameters, the
thermodynamic equilibrium state is usually uniquely defined, except at special

points o in control space, namely at the coexistence lines, where different phases
coexist. This is not true for the bifurcation theory of driven systems. For certain
types of the functional B there exists a whole range of a-values where different

states can coexist and are simultaneously stable.
The task is:

(1) Find solutions of the non-linear equation (6.2).

(2) Test the stability of these solutions.

If both these problems are solved, then we have found the attractors. The problem
is that it is not possible, in general, to solve the non-linear equation explicitly.

Nevertheless, it is still possible to say quite a lot about the first instability.
6.1.1 Examples

In order to illustrate the structure of the time evolution equation we now consider

a few examples. The first exampie is taken from hydrodynamics. The state
o(t) = {p{r,t), v(r,t), T(r,t)} (6.3)

is described by the density field p(r,t), velocity field v(r,t), and temperature
field T(r,t). The time evofution of these fields is described by a continuity

equation
6 =-9.(0v) , (6.4)

the Navier-Stokes equation
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V= -v.Vv - %Vp(p,T) +v:Wv+g , (6.5)

and the heat conduction equation

T = -v.0T + KV2T - —
, pC

v

(6.6)

Here the pressure p(p,T) is given by the equation of state, v is the kinematic viscosity
tensor , <y is the specific heat, and ¥ is the heat conductivity. The choice of
control variable depends on the problem under consideration. For the Rayleigh-

Bénard problem a suitable control parameter is the Rayfeigh number

A
Ra = ( o VAT

o > (6.7)

which is a dimensionless quantity describing the temperature difference ATO across

the fluid. Here o is the coefficient of volume expansion and £ is the thickness of

the layer. In the Taylor problem a suitable choice is the Reynofds numben

Re = v s (6.8)

o]

<les

where Vo is the velocity of the fluid at the inner boundary. For both examples the

type of behaviour also depends strongly on the Prandtl number

Pr=2, (6.9)

alc

The next example is the fLasex. In the rotating wave approximation the state
¢(t) = {o(r,t), P(r,t), E(r,t)} (6.10)

is described by the inversion o(r,t) of the medium, and complex amplitudes for the

polarization P(r,t) and electric field E(r,t). The time evolution equations are
o = v (0-0,) + &l (EPT-E*P) (6.11)

. 3 2
p=-yp -3 g, (6.12)

3E . . Y
—3—X+'I-2—€—P.

™
It

-kE - ¢ (6.13)
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Here Yﬂ and Y, are relaxation rates for the inversion and polarization respectively,
k describes the cavity losses, M is a dipole matrix element of the laser transition,
e is the dielectric constant, and c¢ the velocity of light in the medium. The controf

variablfe is the pump parameter Oy

A further example is that of chemical reactions where the set of fields has as many
components as there are concentrations <, in the system. These concentrations

represent the state variables

¢o(t) = {c (rit)} . (6.14)
The time evolution equations are

¢, =R ({ch,fu}) + D¥c, » (6.15)

where Ra are the reaction rates and Da the diffusion constants. In this case the

contrhol parameters are those chemical potentials My that can be fixed externally.
The last example is electronic conduction. The state
¢(t) = {n(r,t), p(r,t), w(r,t), E(r,t), B(r,t)} (6.16)

is described by the carrier density n(r,t), mean carrier momentum p(r,t), mean
carrier energy w(r,t), and the Maxwell fields E(r,t) and B(r,t). T.ime evolution is

described by the equation of continuity

n+v.inv) =0, (6.17)
the equation of momentum balance

P+ V.Up + %—V.H = eb. (E-vxB) - P (6.18)

and energy balance

. 1
W V. S VLT = eviE - yw(w—wo) R (6.19)

and Maxwells equations



B+VxE

]
o
-
<3
w

I
o

eLE - VxB = - env , eLV.E = e(n-nD) . (6.20)

Here the velocity v, the electronic stress tensor II, effective acceleration tensor
b, the energy flow vector &, and relaxation rates Yp and Y for momentum and energy
must be given for each model as functionals of the state ¢. The equilibrium energy
Wos the Tattice dielectric constant L and donor density np are given constants.

The control parameter is the externally applied field Eo‘

6.1.2 Comparison with Equilibrium System

We consider the motion of the fields ¢(t) as a flow B[o(t)] in state space. In the
case of systems close to equilibrium this flow is a gradient flow of the Landau

potential F,
Bl¢] = -A%FIM s (6.21)

where A is positive definite. We can make the following comparison between

equilibrium systems and driven systems:

Equilibrium Non-equiTibrium
statics F{4] = min Blgo] =0
dynamics : ¢ = —AV¢FI¢] ¢ = Blg]

We may eliminate fast variables by the procedure of adiabatic elimination. This
procedure has been termed by Haken!? as 'slaving': the slow variables sfave the
fast variables. Of course the system will have fast motion due to fluctuations,

but the coupled motion follows that of the slow variables.
6.1.3 Model Systems

By the adiabatic elimination principle it is always possible to eliminate a sufficient
number of components of the field so that, as in Landau theory, one can start a
systematic investigation of various model systems. Here we present a few examples

classified under the name of time-dependent Ginsburg-Landau equations. The simplest
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case is the equation for a one-component (n = 1) field
o =ad - - - Vo o, (6.22)

where ¢, denotes a spatial derivative of the field . This equation mey be applied
to the study of current instabilities. The above equation has no internal symmetry,
i.e. there is no transformation which can be applied to the field ¢ that will leave

the equation unchanged. Other examples are an equation with reflection symmetry

$>=-¢(n=1),

o =ab - 0% - vo +o (6.23)
and an equation for a complex field (n = 2) with continuous symmetry ¢ - e1w¢ ,

¢ =ad - [6]% - vo, + o » (6.24)

which may be used to discuss hydrodynamic instabilities and the laser transition.

The particular applications we shall discuss will be concerned with these three

types of equations.

6.2 Linear Response of Driven Systems

One may study the response of the system to dynamical test §ields fEXt(t). The

time evolution of the perturbed system is
(t) = Blo(t),al + X1 . (6.25)

We are interested in that part of the response which is linear in the test forces.

For the Tinear response ¢(t) = ¢0(t) + 8¢(t) one finds
86(t) = ~Llo, (t) . lss(t) + 5 (t) (6.26)
where

L=-38 . (6.27)

This response to dynamic perturbations gives valuable information on the dynamics

of the system.
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The linear response of the system to fext has the form
t ext !
So(t) = [ x(t,t*)f " (tr)dt’ (6.28)
where the dynamic susceptibility x(t,t') is determined by the operator equation
% x(tat') + LIg (1) ,al.x(t,t') = 6(t-t').1 . (6.29)

In the steady state, % is independent of time, and x(t) depends only on the time

difference 1 = t-t'. The equation can be analysed by a Fourier transformation

x{(t) = 2—11; fx(w)e_iwtdm . (6.30)
and in Fourier space we obtain the result

x(®) = {-iw.l + Llg,al} . (6.31)

6.3 Fluctuations in Driven Systems

In any system there occur fluctuations about the deterministic motion. So far we
have disregarded the effects of such fluctuations: The theory we have described is
on the same level as Landau theory for equilibrium systems. We know, from equili=
brium systems, that Landau theory breaks down close to a transition (if the dimen=

sionality is too low). We must expect the same thing to happen for driven systems.

The inclusion of stochastic Langevin forces should be a good starting point for the
investigation of the fluctuations, in the same way as the thermodynamic Landau
potential is a good starting point for the renormalization group. We need at least

an approximate description of the stfochastic nature of the process ¢(t) .

6.3.1 Stochastic Description

Fluctuations about the deterministic state can be described by adding 4fochastic

§ields f(t) (Langevin forces), to the time evolution equation,

() = BIo(t),al + F(t) . (6.32)
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By definition the stochastic field has a zero average
<f(x,t)> = 0 . (6.33)

We assume that the stochastic properties of the fields f(t) are determined by the

correlation matrix

<Fx,B) (X5t')> = C(x,x' )6 (t-t") . (6.34)
The problem is to calculate the stochastic properties of the field fluctuations

86(x,t) = ¢(x,t) - <o (x,t)> (6.35)
and in particular the time-dependent correlation function

S(xt,x't') = <66 (x,t)8a (x5t )> . (6.36)

For a detailed investigation of the stochastic behaviour it may be convenient to

introduce a probability distribution P[¢,t] in state space. Its time evolution is

described by a functional Fokker-Planck equation

-

ap $ $
gt 6281 = - 55 Bloal - D. &) Plost] . (6.37)

6.3.2 Linear Theory of Fluctuations

In an equilibrium system the fluctuation-dissipation theorem provides a relationship
between the correlation function and the linear response: Given the linear response
function one can calculate the correlation function. This result is not applicable
to driven systems. In general it is not possible to predict the correlation function

from a linear response of the system,

We have seen in equilibrium systems that a way to derive the mean {ield approximation
is to linearize the response of the system to its own fluctuations. The same approxi=
mation can also be applied to driven systems. We shall assume that the fluctuations
are small enough that the response of the system can be treated in Tinear response
theory. This is known as the nandom phase approximation (RPA). Although the

quantitative validity of this approximationbreaks down in the vicinity of an
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instability, it is still expected to give a qualitatively correct picture of the

fluctuation phenomena.
The linear responmse 8¢(t) to the stochastic forces f(t) is
8¢(t) = fx(t,t")f (t')dt" (6.38)

where y(t,t') is the dynamic susceptibility. The time-dependent correlation function

can be written
S(t,t') = sy(t,t”).e.yx(trt')dt” . (6.39)

For the case of a steady state this operator depends only on the time difference

T = t-t' . In Fourier space
S(w) = y(w).Coyx{w) (6.40)

Thus, in the RPA the linear-response operator y(w) also determines the behaviour

of the fluctuation spectrum.

7. Bifurcation from the Steady State

We now consider instabilities in the system. When does a system become unstable?
What other state does the system go into after it goes through an instability?

This situation is described by bifurcation theony.

7.1 Discrete Systems

In this section we consider a system with a set of discrete variables

¢ = {dyaeenntyd o (7.1)

An example of a bifurcating system is the van der Pol cscillator. This system has
two degrees of freedom: The state ¢ = {x,p} where the position x and momentum p

satisfy the equations

X=p,

(a-bx?)p - %wéx . (7.2)

T
1
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—o x

(a) (b)
Fig. 7.1 : (a) o < 0 : the point x 0 is an attractor.

(b) « > 0 : the point x

n
n

0 is a repeller.

For o < 0 this system has ordinary damping andthe point x = p = 0 is a stable point.
There is a critical point at ag = 0, and for a > 0 the system has negative damping

for x2 < o/b and positive damping for x* > o/b. We therefore expect a stable

Timit cycle at x = V a/b .
7.1.1 Stability Limit
We assume that B[0O,a] = 0 such that

$=0 (7.3)

is a steady state. In order to determine the linear dynamic stability of this

solution, we study the equation of motion of a small perturbation 6¢e—1wt,

[L(a) - fwlls¢ =0, L = -V¢B . (7.4)

This represents a linear eigenvalue problem which determines the normal modes
¢ne'1“’nt of the natural motion about the stationary state with eigenfrequencies
wn(a). The eigenvalue w with the largest Im w, corresponds to the least stable mode.
If Im w < 0 then all modes will decay in time, and ¢ = 0 is an attractor. If

Im w1> 0 then the mode ¢1 grows in time, and ¢ = 0 is not an attractor. Thus, the
stability 1imit of the phase ¢ = 0 occurs at a critical value e of the control

parameter determined by the condition

Imw (a) =0 . (7.5)
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I (a) (b)
Fig. 7.2 : Undamping of normal modes. (a) Soft mode. (b) Hard mode.

Such undamping of a normal mode can occur either for w (o) along the imaginary axis

(Fig. 7.2(a)),

Re w (a.) = 0 : Soft mode instability, (7.6)
or for a pair of oscillating modes with non-vanishing real part (Fig. 7.2(b)),

Re w (a;) # 0": Hard mode instability. (7.7)
Since we can write the susceptibility

x(w,0) = [L{a) - iw.117", (7.8)

it follows that the undamping of a normal mode leads to a divergence of the linear

response function at o = o . In the RPA the dynamic structure factor
S{w,a) = x*(w,a).c(a).x(w,o) (7.9)

gives rise to a divergence of the fluctuation spectrum.

2n S(w) £n S(w)
g

™ ey
-~
-

o w

(@ ° (b)
Fig. 7.3 : Critical fluctuations. (a) Soft-mode instability. (b) Hard-mode
instability.



188

Because of the reality of ¢ the eigenvalues An = iw, are either neal, or they occur

in complex conjugate pairs.

7.1.2 Bifurcation from the Steady State

We now describe what happens on going through the instability. We always assume
that the steady state is stable for a < G and unstable for a > a .

(1) A, =iw, fis real

It is assumed that ¢ can be expanded in a complete set of eigenvectors wn ,

L/ (7.10)

nn

¢=1¢
n

At the transition point it is the amplitude that goes with the eigenvector v,
(the unstable mode) which does not decay. We assume that p = [¢,]| can be used as

an expansion parameter. Expanding to higher order in o gives

o= gt i a(k)pk > Oy = ‘22 ¢r(,k)pk >
B - 8l0) 4 : plklgk Lo (0 4y (KK (7.11)
k

It is the basis of any bifurcation theory that one must find the right expansion
parameter, and in every case this expansion parameter is the amplitude of the norm

of the unstable mode. (One does not use o - o,. as the expansion parameter.)

o

The result of the analysis is as follows:

b1

Fig. 7.4 : Exchange of stability at o = Og »

The attractor ¢ = 0 is stable up to the transition o = o and then becomes unstable

above the transition. From the expansion one finds another stationary state that is
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unstable below the transition and becomes stable above the transition ('exchange

of stability'}).

(2) A, , are complex conjugates

We write

Ax,z = A(a)iiwo(a) . (7.12)

In this case the two eigenvectors are v, and v, = wt . In state space, the undamped

mode at a = o has the form
. 0 . 0
o(t) = Awle'mot + A*wzem’ot . (7.13)

We assume that the bifurcating solution is also a periodic function of time and

expand this function in a Fourier series

o(t) =T oy irwt o =0 . (7.14)
n 3

Again the amplitude of the first Fourier component

6, , = oe'? (7.15)

b

can be used as an expansion parameter. Expanding to higher order in o,

- (k) k (k) k
o= a. + E o 0 , wo w. + E wo o,
B=2% B(k)pk s W= Wy + 3 w(k)pk .
k k
- (k) k
¢n = ﬁ ¢n p . (7.16)

The results of this analysis are known as the 'Hopf bifurcation'. In the case
wg # 0 ('hard-mode instability') the bifurcating solution is for small a - a. a
circle in state space known as the Limit cycle, which is traversed with frequency

w There are only two possibilities:

0
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Re ¢; § Re ¢,

Gc

Fig. 7.5 : Hopf bifurcation at a = Q. (a) Stable limit cycle for a > o..
(b) Unstable limit cycle for o < -

Either there is a stable Timit cycle for o > a. (normal bifurcation, Fig. 7.5(a})),
or there is an unstable limit cycle for a < . (inverted bifurcation, Fig. 7.5(b)).

For the case of an inverted bifurcation there must occur at ac a discontinuous trans-

ition to another state.

In the case wg = 0 ('soft-mode instability') there is either a normal or an inverted

bifurcation into a new steady state.

7.2 Continuous Systems

Following Ref. 13 we now consider a system described by a set of (macroscopic)

fields
o(t) = {6, (X:t)5einpp (X8} (7.17)
in one space dimension.

7.2.1 Stability of the Uniform Steady State

We consider a continuous system. The uniform steady state ¢ is a solution of the

non-linear equation
B[¢S,u] =0. (7.18)

The dynamic stability of the uniform state ¢S is determined by the behaviour of

small perturbations 8¢(t). Because of spatial and temporal translational invariance,
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these perturbations are plane waves

_ -1 (wt-gx) (7.19)
s00,t) = ¢, €
This leads to the linear eigenvalue problem
[Lq(a) - 1w.1].6¢q’w =0 . (7.20)

The solution of this equation gives the normal modes with eigenvalues wv(Q) belonging

to the real wave vector q.

The eigenvalue wl(q,a) with the Jargest Im wv(q,a) determines the most weakly

damped mode. The stability limit is given by

Im wl(qc,ac) =0, (7.21)
and the type of instability is determined by Re wl(qc,ac) :

Re wl(qc,ac = 0 : Soft-mode instability, (7.22)

Re ml(qc,ac) # 0 : Hard-mode instability. (7.23)
Here qc is the wave vector of the critical mode.

Im w, (Qso‘)ﬂ

q(o)

’l
qbl / - qb2
\./\/ -
/ L \q \ a

C o > Q
’ C
o = O¢

<
[¢3 Ol.c

Fig. 7.6 : Behaviour wl(q,a) close to the stability limit a = e For o > . all
modes with wave vectors between 4, and 9, have become undamped.

After passing the stability Timit, there occurs continuous undamping of more and

more modes. What is different from the discrete case is that these modes form a

continuous spectrum as a function of the wave vector q.
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c b2 q
Fig. 7.7 : Bifurcation line o = op(q) giving the control parameter o at which the
mode q becomes undamped.

Setting Im wl(q,a) = 0 one obtains the bifurcation Line giving the values of o = ab(q)
of the control parameter where the mode with wave vector q becomes undamped. A1l

undamped modes are candidates for the new steady state.

7.2.2 Primary Bifurcations of Travelling Wave States from the Steady State

We now consider the problem of determining which states the system may assume after
passing through the stability limit. We shall consider the special case of travelling

wave (TW) states ¢T(£) that depend on space and time in the combination £ = x-ut .

For a > a., more and more modes become unstable along the bifurcation line ab(qb) R

Im wl(qb,ocb) =0, (7.24)
with frequency

Re w1(qb’ab) Sy . (7.25)
Each undamped mode gives rise to the bifurcation of a periodic travelling wave

07(8), d(E+Ay) = 4(8), Ay = 2n/qy . (7.26)
Assuming that we have a solution or to the equation of motion

W1 45l

uge T + B ¢T,a] =0, (7.27)

what can we say about its stability properties? We first expand such a solution

into its Fourier series

67(8) = o + 2 o, €M (7.28)
n
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For real fields ¢, = ¢¥ .

We want to follow how such a state bifurcates out of the uniform state ¢S. We use

the amplitude

A= o] (7.29)
to expand
6, = = olKIAk
k
o —ocb+Z (k)Ak,A—Ab s
k
u=y o+ u(fak (7.30)

To the Towest order in the expansion parameter A, ¢, satisfies the linear eigenvalue

equation
[qu (¢g @) - fugy.1l9, =0 . (7.31)
Thus the period Ab = 21T/qb and the pulse velocity Up at the bifurcation are given by
Im w(aysop) = 0, (7.32)

Re w(qy,ay,) =wy(ap) = upqy . (7.33)

Expansion to higher powers of A at constant A = Ab yields a power series for a - s
u - and higher Fourier coefficients ¢n of the TW state. The type of bifurcation

is determined by the Teading term of ¢ - O >
1
a - ay = Pl /8 (7.34)

which defines a bifurcation exponent 1/8. The sign of w(ab) determines the type of

bifurcation
¥(o) > 0 : normal bifurcation , (7.25)

w(ab) < 0 : inverted bifurcation . (7.36)
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Note that w(ab) may change sign at a particular a, -

A
ap}

OLC OLbl ()Lb2 (!.b3 ¢4
Fig. 7.8 : Amplitude Aqb along the path A (see Fig. 7.7). An example is shown in
which the bifurcation of periodic TW states changes from inverted to normal as o

increases

7.2.3 Stability of TW States

We now test the linear stability of the TW state ¢T(g) against small perturbations

S§¢(£,t). We seek solutions of the form

86(E5t) = 86, (£)e ™", (7.37)
leading to the eigenvalue problem

(LIop(E).a) = u gpd -80,(8) = A6, (€) (7.36)
The stability of the TW state is determined by the spectrum of

{Ll67(E) ] - a‘?g . (7.39)

The state ¢T(g) is stable if Re X > 0 for all modes except the Goldstone mode.
We now give some methods for investigating the spectrum of {L[¢T(g)]— u é%}

(1) Breaking of Translational Symmetry

The non-uniform states ¢T(E) are states of broken translational symmetry. A set of

equivalent states ¢§“)(E)isgenerated by translations. The infinitesimal translation

represents a Goldstone Mode (GM)
3¢T(i)

b = E (7.40)
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with eigenvalue A = 0 .

(2) Periodicity of TW State

The operator L[¢T(g)] has at least the symmetry of the TW state o - The operator L
is invariant under the discrete group {TA} , and possibly even under the higher group
{TA/m} of translations nA/m. The eigenvalues An(q) are multivalued functions of the

reduced wave vector over the Brillouin zone -mn/A < q < mm/A.

(3) Zero-Amplitude Spectrum

At the bifurcation, the spectrum A (q) is determined by the spectrum of wp{q) of the

uniform state at o = ap by
Apla@) > -1 lwy(Q) - ugl as A0, (7.41)

where E = q + k and ¢ is a reciprocal lattice vector. A1l small-amplitude solutions

with ap > o are unstable at the bifurcation.

(4) Noncrossing Rules

No crossing of eigenvalues can occur in the BZ for modes of the same symmetry.

(5) Perturbation Theory

The curvature of the eigenvalue X(q) near a symmetry point may be obtained fromk.p

perturbation theory.

7.2.4 Secondary Bifurcation from TW States

Consider a stable TW state ¢;(£). Bifurcation from this state is called secondary
bifurcation. Whenever Re xn(q) = 0 for some q = q,, there will occur secondary

bifurcation of a doubly periodic state
¢, (x=u t, x-u,t) , (7.42)

where

9, (A5 £,4h,) = ¢,(E,4 E,) . (7.43)
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Here A, and u, at the bifurcation are determined by
Ay =2n/qy » (7,44)
Uy, = u, + Im An(qb)/q2b . (7.45)

The same type of argument may be repeated for doubly periodic states leading to
tertiary bifurcation of triply periodic states, etc. Under what conditions a bifur=
cation of a strongly non-periodic state may occur is discussed in a later section

on the onset of turbulence.
7.2.5 Examples

We now illustrate the general considerations given above by three specific examples

taken from Section 6.1.3.

(1) Field Equation Without Internal Symmetry

We first study the field equation
0 =ab -0 (-v0) - vo, + ¢, - (7.46)

Such an equation has an application to current instabilities in semiconductors
where ¢ =excess field, o «total current through the sample, and v is the drift

velocity of the carriers.

For simplicity, we consider the case y = 0. This will leave the field equation
invariant under the transformation ¢ »~ a -¢ , but this symmetry will have no con=
sequences. The equation has a uniform stationary solution b = 0, with normal mode

frequencies

g = VA * ia - iq? , (7.47)

and a bifurcation line o = q2 .
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>

q
Fig. 7.9 : Bifurcation Tine for time-dependent Ginsburg-Landau equation.

We find that for ap # 0 there is a normal bifurcation (B = }) of a periodic TW state
travelling with velocity u = v , while for q, =0 there is a normal bifurcation

(B = 1) of a uniform state ¢ = o and of a solitary wave with u = v (plus unstable
family with u # v). Now let us look at the stability spectrum. For the periodic

TW states, with period A = 2n/qb, the spectrum X = oy * q? of the zero-amplitude

Fig. 7.10 : Spectrum of unstable state {(broken 1ine) and of a periodic TW with
period A. Brillouin zone (BZ) has extension 2n/A, and Goldstone mode (GM) lies at

the centre of the BZ in the second-lowest band.

solution a = op contains two unstable bands (broken lines in Fig. 7.10). The
Goldstone mode occurs at q = 0, and thus the lowest band cannot cross to positive

values.
“ A1l periodic TW states are unstable, at least against part of the lowest band.

We next consider the stability of the solitary wave (A = »). The solitary state has

a discrete spectrum.

u The solitary state is unstable, but only against one discrete mode.



198

In the current-instability case, this instability can be removed by coupling the

sample to an external circuit with low impedance.

(2) Field equation with reflection symmetry

As a second example we consider the field equation

g=ap- ¢ - Ve +o ., (4.48)

with reflection symmetry ¢ - -¢ . For ap # 0 there is a normal bifurcation (B = %)
of periodic TW states with u = v, while for q = 0 there is a normal bifurcation

(B = %) of two uniform states ¢, =2 a, and two solitary waves with u = v.

Fig. 7.11 : Spectrum of unstable uniform state (broken line) and TW with period A.
The Brillouin zone (BZ) has extension 4n/A, and the Goldstone mode (GM) lies at
the boundary of the BZ and belongs to the lowest band.

The periodic TW states have the symmetry
¢T(£+A) = -9(8) . (7.49)

The BZ is (-2m/A, 2n/A), and the GM lies on the BZ boundary. The spectrum of the
zero-amplitude solution contains one unstable band. k.p-perturbation calculation

shows that:

H A1l periodic TW states are unstable, at least against part of the lowest band.
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stable

“¥

Fig. 7.12 : Bifurcation line.

The two solitary waves, on the other hand, are stable.

(3) Field Equation with Continuous Symmetry

The third example is the field equation

¢ = ad - [6]% - vo, + o,

(7.50)

which is invariant under the continuous group of rotations and reflections in the

complex ¢-plane. This equation describes with v = 0 the onset of convection in the

Rayleigh-Bé&nard instability, and with v = group velocity of electromagnetic waves

the onset of coherent laser action at the laser threshold.

Non-uniform TW states are expressed in terms of an amplitude R(£) and phase ¢(&),

sr(E) = R(g)e O(E)
where R and 6 are real. We find

Regg + (u-v)ReE + ZREGE =0,

- _ Ra2 _ R3 =
REE + (u v)Rg ReE +aR - R 0.

For u = v the first equation yields

J = R26E = constant.

There are two types of non-linear solutions, namely amplitude waves (J = 0):

(7.51)

(7.52)

(7.53)

(7.54)

waves

of constant phase, and phase waves (J # 0): waves of constant amplitude, and the

phase varies linearly with &,



R(E) = (a-k?)® , B(E) = kE + 8, (7.55)
For a given value of J,
J = k(o-k?) = RZ(a-R2)? | (7.56)

one finds two solutions, one with a small R and one with a large R.

unstable stable

\

o=

(32)
Fig. 7.13 : Phase portrait of the TW's.

These states describe rolls in the Bénard problem and coherent waves in the laser.
The stability analysis shows that for given J the solution with small R is unstable

and the solution for large R is stable (Fig. 7.13).

3. Onset of Turbulence

8.1 Hopf-Landau Picturel*.

We consider a system which as a function of the control variable o undergoes a
sequence of Hopf-type bifurcations (see Fig. 8.1), each bifurcation introducing a

new frequency @y (n=1,2,...) incommensurate with all previous ones.

—t—
—

o

o v

Fig. 8.1 : Sequences of Hopf bifurcations.
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Then, after k bifurcations one obtains a state

¢(t) = ¢k (wlt’ wzt, LR ] wkt) 3 (81)

which is a multiply periodic or almost periodic function of time. The function O

is periodic (with period 2m) in each of its arguments,

¢k(w1t+2nnl,...,wkt+2nnk) = ¢k(w1t,...,wkt) . (8.2)

By expanding o into a k-fold Fourier series, one obtains

wit) (8.3)

o(t) = z a (v ,...,vk)exp(—i;yJ 3

VeV J
which shows that the state ¢(t) contains the higher harmonics as well as the sum and
difference frequencies. As more frequencies enter, the motion looks more and more
irreqular. For the transition to turbulence, one obtains in this picture the sub=
Jective criterion: when is it no longer possible to resolve the motion into its

frequency components?

The flow described by ¢(t) takes place on a k-dimensional torus in phase space. It
is engodic (the flow covers the torus densely) but not mixing (an initial surface
element “"stays together"). The coefficients a contain phase factors depending on
the initial conditions. A quantity independent of the initial conditions is the

autocorrelation gunction

.
C(1) = lim 7 [ ¢"(t)o(t+r) dt
0

Tow

w.T) (8.4)

= by | (v e ) |* exp (—i;vJ ;

(IR ! 3
which is an almost periodic function of T. Its Fourier transform, the power
Specthum

$(w)

[l

[ € (1) exp (iwt) dr

we) (8.5)

- 2 i
= L | ak(vl,...,vk) |2 8w Ivsw

\)l...\)k J

consists of a dense but countable set of spectral lines at the harmonics and sum

and difference frequencies. Both properties - the almost periodic nature of C(tT)
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and the dense Tine spectrum of S{w) - are characteristic for an ergodic non-mixing
flow. For turbulent motion, however, one expects mixing behaviour, i.e. decay of
correlations and a continuous power spectrum, which cannot be obtained from the

Hopf-Landau picture.

8.2 The Lorenz Model

Lorenz!® studied a simplified model of the Bénard instability containing only three
variables, one velocity Fourier component x and two temperature Fourier components

y¥» z.  For these three variables, the truncated Navier-Stokes equations take the

form
x = o(y-x) »
y = -XxzHry-y ,
z = xy-bz . (8.6)

Here r is the Rayleigh number, ¢ is the Prandtl number, and b=8/3. An analysis of
this simple system of equations yields as a function of the control parameter r for

o>b+1 (see Fig. 8.2)

heat stationary non-periodic
conduction rolls flow

| |
1 T
r=1 r=r a=r

Fig. 8.2 : Bifurcation in the Lorenz model.

r<l : Heat conduction state, x=y=z=0 stable,
r=1 : normal bifurcation,

1<r<rT : stationary convection rolls,

X=ys= :[b(r-l)]i R z=r-1 stable ,

re = o(o+b+3)/(0-b-1) , (8.7)
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r=ry : inverted bifurcation |,

r>ryt nonperiodic behaviour .

From analogy with phase transitions in equilibrium systems one would have expected

that the initially unstable state bifurcating at re "bends over" and becomes stable

above a certain amplitude, giving rise to a first-order transition. But Lorenz

found by integrating the above equations on a computer a transition to a non-periodic

(chaotic) state. The region occupied by the non-periodic orbit has the form of a

surface consisting of an uncountable set (a "Cantor set") of sheets. In contra=

distinction to the known types of attractors: point attractor (stationary state),

limit cycle ¢ 1-torus (periodic state), k-torus {(multiply periodic state), this has

been called a strnange attractor.  The various attractors may be characterised by

the Lyapunov exponent A which describes the asymptotic behaviour of the distance

d ~ exp {At) between two initially close phase points for large t. One has

- for point attractors A<0 : The distance from the stationary point decreases
exponentially

- for k-tori A=0 : The distance between two phase points becomes asymptotically con=
stant or grows at most algebraically

- for strange attractors x>0 : A1l trajectories on the attractor diverge exponentially.
Therefore, there is not enough space on a single sheet or even on a countable
number of sheets; the attractor must be "folded over" an uncountable number of

times.

The exponential divergence of the trajectories leads to mixing behaviour on the
attractor, with decay of correlations and a continuous power spectrum. It there=
fore seems reasonable that the transition discovered by Lorenz marks the onset of
turbulence, although the chaotic behaviour occurs only with respect to time (and

not, as in true turbulence, also with respect to the spatial co-ordinates).

8.3 The Ruelle-Takens Picture

Ruelle and Takens!® showed that under fairly general conditions the Hopf-Landau

picture is structurally unstable : They proved that in every neighbourhood of a triply
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periodic state (a 3-torus) there is a strange attractor. Thus, a triply periodic

state will in general not exist over a finite interval of the control parameter.

In fact, already a doubly periodic state is not structurally stable : In every
neighbourhood of a doubly periodic state there is a periodic state in which the two
frequencies are "locked" in a rational ratio. But it should be noted that neither
of these statements says anything about the relative measure of multiply periodic
states, chaotic states or locked states on the o-axis, i.e. about the chance to have

one or the other state for a given value of a.

8.4 Period Doubling Sequences

Another transition to turbulence occurs through an infinite sequence of successive
period-doubling (i.e. subharmonic) bifurcations. This has been studied mostly for

finite-difference time-evolution equations of the form

Xpan = Tlxg 5 @) (8-8)
("maps of the interval"). Particularly well studied is the equation
Xppr = O Xg (l-xt) . (8.9)

It was found independently by Grossmann and Thomae'”, Feigenbaum'®, and Coullet and

Tresser!® that this sequence of bifurcations shows some remarkable regularities.

As function of the control parameter a, there occurs a sequence of bifurcation points

a <o <... accumulating at a_ (see Fig. 8.3). For the above example, o = 3.57.

[] 1 ~L..l
T ! !

I
OLl OLZ 01.3 a,

91-1-

I
1

o
(XZ (xl

Fig. 8.3: Bifurcation points accumulating at o .
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At 0=, the 2”“1—cyc1e becomes unstable, which gives rise to the bifurcation of a
Zn-cycle. One finds that asympototically for n » = the distances OOy form a
geometric sequence,

azo, ~ s, (8.10)
with

8§ = 4.669 ..., (8.11)

a universal number, independent of the details of the smooth function f.

For a>a_ one finds aperiodic ("chaotic”) behaviour characterised by a Lyapumov
exponent A>0 which varies for a -~ o as?’
(o) ~ (a—am)T , (8.12)
with
t=4n 2/fn § = 0.4498
(8.13)
The chaotic region a>a_ is interrupted by narrow windows with periodic behaviour and

other period-doubling sequences, (see Ref. 21).

For a given value o>a_, the chaotic orbits Xy (t=1,2,...) form a structure consisting
of 2" bands in which the Xy are dense, separated by 2”'1 gaps. The motion may be
viewed as a regular motion on a vak cycle, superimposed by an irregular motion
("periodic chaos")!?. At critical values &n the bands merge pairwise, such that

one obtains a chaotic period-doubling sequence &1>&2>... accumulating also at o

{see Fig. 8.3) and one finds asymptotically
-n

a-o_ ~ 6

o (8.14)

with the same value of § as above.

This behaviour as well as a number of scaling properties may be understood in terms
of a renormalisation-group transformation introduced by Feigenbaum!® and Collet and
Eckmann??.  Of particular interest is the scaling behaviour of a system under the

influence of an external noise source??’2%,

It turns out that the noise intensity
plays for the transition to turbulence a role which is quite analogous to that of a

symmetry—breaking field at an ordinary second-order phase transition.
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Such period-doubling sequences have been observed in actual systems showing a trans=

jtion to turbulence 2°%22%,

é.S Transition to Turbulence through Intermittency

We mention briefly a further type of transition to turbulence which has been
described by Pomeau and Manneville?7°2®,  Here, the motion consists of long periods
of regular flow interrupted by intermittent turbulent bursts of random duration.
This type is expected to occur when as a function of the control parameter a stable

and unstable fixed point collide.
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MULTICRITICAL POINTS

Amnon Aharony
Department of Physics and Astronomy, Tel Aviv University
Tel Aviv 69978, ISRAEL

I. GENERAL REVIEW: TRICRITICAL POINTS

Under simple circumstances, a phase transition is reached when the temperature,
T, approaches a special value, Tc’ keeping the ordering field H (e.g. the magnetic
field for a ferromagnet) equal to zero. In many cases, some additional parameters
{e.g. magnetic and electric fields, stresses, chemical potentials, etc.) can be
varied experimentally. This enlarges the dimensionality of the phase diagram (equal
to two when only T and H are available) and turns the transition point into a 1line
(or a surface) of such points. As one moves on this transition line (surface), one
may reach special points (lines) at which some properties of the transition change
abruptly.  Such points, which are called multicritical points, are the subject of
this series of lectures. We start with a qualitative review of several multicritical
points, and this lecture is devoted to tricritical points.

I.1. Dilute Annealed Magnets

Consider a Jattice of sites, {i}, which are either occupied by magnetic Ising
spins, {Si}’ with Si + 1, or empty. Assigning an "occupation" variable to each
site, ti’ so that ti 1 if the site is occupied and ti = 0 if the site is empty, the
total number of spins is given by N = Z t, (the sum is over all sites). The actual
spin at site i is thus tisi’ and the ndarest neighbor exchange interaction may be
written as J titj sisj. Working in the grand canonical ensemble, the partition func-
tion is

Z(T, h, u) = Tr Tr exp (- ) (1)
{S,=£1} {t.=0,1}
1 1
with
- BH=K § tit:S.S.+hJt.S. +eult., (2)
«ij> V9 1 i il

where u is the chemical potential, 1ij denotes nearest neighbors,

B = 1/kgT, K=8J, h=pu H (3)

(uo is the magnetic moment per spin). Note that the trace in Eq.(1) is also taken
over the occupation variables, {ti}' This reflects the assumption that the mixture
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(of magnetic and non-magnetic ions) is annealed, i.e. the ions are moving around and
reaching thermal equilibrium within the time scale of the relevant experiments.
We can now change the (dummy) variables Si and tos and definel

g, = t'i S. . (4)

Clearly, oy has the values +1, -1 or 0. The value zero is found for two values of
the original parameters, i.e. Si =1, t, = 0 and Si = -1 and ti = 0. Replacing
the trace over Si and t, by a trace over o4 thus requires an additional factor of 2
whenever o; = 0. Note also that t; = 012. Eq.(2) thus becomes

-BH =K J o 05 * hZo,i + Buzv.iz s (5)
<ij> J i }
and Eq.(1) is replaced by
Z(]’U.iz) -pH
I = r 2! e . (6)

) {01-=:t] »0}

The first factor, whose role is to preserve the total number of original states per
site, can simply be absorbed in the chemical potential,

Bu —> BY = By - &0 2 . (7)

Eq.(5) now represents a new Hamiltonian, for an Ising model with spin one (instead

of spin 1/2). This model was first discussed by Blume and Capel,2’3 to describe the
mixture of “He and 3He.  Although the order parameter of superfluid “He is a complex
number, represented by two components (n = 2, XY model) rather than by one (n =1,
Ising model), the qualitative results agree with many of the experimental observa-
tions.

We now set h = 0. For i — - = it is clear that Eq.(5) will always prefer the
values o; =% 1. The value o = 0 will never occur, and the problem reduces to that
of the spin-1/2 Ising model, exhibiting a second order continuous phase transition.
When y — «, all sites will have o = 0, and no magnetic properties will be observed
at any temperature. Consider now the limit of zero temperature, T = 0. In that
limit, there exists a competition between two ground states, one with oy = 0, i.e.

energy £ = 0, and the other with o, = 1 (or o = - 1), i.e. energy per site

E=- (%—J z + y) (z is the coordination number). Clearly, a first order transition
{(from |01| =1 to o, = 0) occurs at ¥ = - %—J z. By continuity, it is reasonable
to expect a line of first order transitions, beginning at T = 0, N=- %-J z, and

going to finite temperatures and lower values of ﬁ. On the other hand, a line of
second order transitions (at which <oy> decreases continuously towards zero) is ex-
pected for ﬁ — - =, A simple way by which these two lines might meet is illust-
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rated in Fig.1. The Tines meet at a special multicritical point, called the tri-
critical point.*

Fig.2 illustrates the origin of the name "tricritical": when the ordering field
H is non-zero and its magnitude is very large, there is no distinction between the
“ordered" and the "disordered" phases. However, at small values of H, the first
order line (shown in Fig.1) becomes a first order surface, which ends at a critical
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Fig.1.  Tricritical point in a dilute Fig.2.  Tricritical "wings".

magnet.

(second order) line. These two surfaces, for H > 0 and for H < 0 (called "tricriti-
cal wings") meet the first order H = 0 surface (separating <0;> > 0 from <o;> <0) at
a Tine of triple points, which ends at the tricritical point.

It should be noted that Fig.1 is not the only possible way by which the first
order and second order lines might meet. Fig.3 shows an alternative: the first
order line may end at a critical point, within the ordered phase, and the second
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order Tine then ends where it meets the first order line, at a "critical end point".

In fact, there exists an additional parameter, ug, which may be varied so that Fig.l
and Fig.3 become part of the same phase diagram: as function of ug, the line of
critical points and that of the critical end points meet at another multicritical
point, called the "critical point of fourth order" (Fig.4). Beyond that point there

appears a line of tricritical points. We shall return to these possibilities below.

[.2. Metamagnets

A simple antiferromagnet is described by a negative exchange interaction. For
a spin-1/2 nearest neighbor Ising model, the Hamiltonian may be written as

H==-J ) S

<ij>

1.SJ. - H g Si R (8)
with J < 0, Si =+ 1. On simple hypercubic lattices (e.g. the square lattice, see
Fig.5, or the simple cubic lattice), the exchange term in Eq.(8) prefers an anti-
ferromagnetic ground state, in which the spins alternate in sign, as illustrated in
Fig.5. A simple way to describe this state is
iq -,
s> = Me 01 (9)

with (for two dimensions)
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=G, 3 (10)
where a 1is the lattice constant. The

LA 2R R ' v spins are now divided into two interpenet-

rating sublattices, one with <Si> =M

and the other with <Si> =-mt. Mis

o ) 2 * i called the "staggered magnetization", and
serves as the antiferromagnetic order para-

meter.
L R SR B A S | Since {Si} are "dummy" variables in
the partition function, we may change vari-
Fig.5. Simple antiferromagnetic ables into
ground state. R
19T
oy =S; e s (1
and find that
7 = Tr exp (- gH) (12)
{o,=%1}
with
-ig -7
H=- |9 oo, ~u HYie © Vo . (13)
<§j> ij o 3 i

The first term now represents a ferromagnetic coupling between the oi's. However,
the magnetic field acting on o; now oscillates in sign, and H_i = H exp (iao-?i) is
called a "staggered field". When H = 0, the thermodynamics of Eq.{(8) is thus equi-
valent to that of Eq.(13), and one expects a regular continuous transition from the
disordered (paramagnetic) phase into the ordered (ferromagnetic or antiferromagnetic)
one.  Such a continuous transition may also be expected for small non-zero values
of H.

The second term in Eq.(8) favors a paramagnetic ordering, in which all S; are
equal to +1. This will certainly be the situation for sufficiently large values
of H.  There is thus a competition between the two terms in Eq.(8). This compe-
tition is also reflected in the two possible ground states at zero temperature:

.

either S, = e1 % and E = + l-J z or S. =1 and E = - l-J z - H
1= ’ 2 ’ i~ ? Ho M+

Clearly, a first order transition occurs at uoH = |J] z. As described before, the
first order line (which begins at T = 0, Yo H = |J| z) will usually meet the second
order line (which begins at H = 0) at a tricritical point, as illustrated in Fig.6.
Phase diagrams 1ike that of Fig.6 have been observed in systems like Fe 012,5 which
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are called "metamagnets". These are
somewhat different than the "“simple"
antiferromagnet described above, in
that they are spatially anisotropic:
the coupling between spins within two
dimensional layers is ferromagnetic,
while that between nearest neighbor
layers is antiferromagnetic. The
resulting ground state, illustrated in
Fig.7, may still be described by Eq.(9),
with (in three dimensions)

4, = (0,0, . (14)

The remainder of the above discussion,
which led to Fig.6, remains unchanged.

Note that although Fig.6 is simi-
lar to Fig.1, it is usually very diffi-
cult to realize Fig.2, since it is not
easy to create the ordering field for
the antiferromagnet, i.e. a staggered
field.®
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II. GENERAL REVIEW: LIFSHITZ AND BICRITICAL POINTS

An important element which led to the occurrence of the tricritical points des-
cribed in the first lecture is that of competition. As we shall see below, this is
a very general situation. We now describe two additional examples of multicritical

points.

[1.1.The Lifshitz Point

Consider a one dimensional array of spins, with ferromagnetic interactions be-
tween the nearest neighbors and with antiferromagnetic interactions between the next
nearest neighbors,

Homdp L SSim % 1 S (15)

with J; > 0, J, < 0.  The ground state will be ferromagnetic, S, =1, if J; > 2|J,{,
and will have the structure + + - - ++ - - + + if Jy <2 |J2|. At zero tempera-
ture, one expects a first order transition (as function of the ratio « = |J2|/J1,
which may be varied e.g. by pressure) at x = 1/2.  The antiferromagnetic structure
++ - -+ + - - is more complicated than that discussed in Sec. 1.2, but may still
be described by

<S> = My sin(ﬁh-?{) + M, cos(ﬁb-?i) . (16)
with 9 = n/(4a). A similar structure will result for three dimensional layered
systems, in which the spins within a layer are coupled ferromagnetically and those
in different layers are described by Eq.(15).7 [In that case a; = (%;, 0, 0)].

In general, one may consider an ordering of the form (16) with a general “wave
vector" 36. The ordering is commensurate with the underiying lattice when the com-
ponents of 36 are rational products of (w/a), as in the example given above, and
incommensurate otherwise. The number of components of the order pafameter which
describes the phase transition is determined by the number of independent values of
36 which represent degenerate different ordered phases. For an incommensurate
structure, this number may be as large as 48.8

In the example of the Hamiltonian (15), for Jy < 2|J2|, the ground state is
unique and commensurate with the lattice. However, it turns out that at finite
temperatures the vector 9, prefers to vary as function of temperature and of «.

For small values of «, the transition from the paramagnetic phase goes into a ferro-
magnetic phase, with ab = 0. However, beyond a special value of « the vector ao

(at the transition) begins to vary, continuously, gradually increasing in magnitude.
This special point has been called the Lifshitz point.? The ferromagnetic phase is

separated from the ("sinusoidal") phase by a first order line, connecting the point
T =0, xk =1/2 and the Lifshitz point (Fig.8).
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Rather than separating a
second order line from a first
order one, as done by the tric-
critical point, the Lifshitz

>

point separates two second order

) lines, into two distinct ordered

! | phases. Note that the order

it "
Sinusaei Ml ) . .
parameters which characterize

AWINS
et ! these two phases are different

> )
(fbo*’O\ ' [e.qg. M] and M2, Eq.(16), for
[ g, # 0, and the usual magnetiza-

- oy = € S Y e

A f“iht tion for 36 = 0]. Both order
parameters become degenerate at

t the Lifshitz point.
fe evomagnelic
"\\D&g

L O T R o II1.2. Bicritical Points

! Up to this point we have

discussed only Ising models, i.e.

T spins which are 1imited to one
Fig.8. Lifshitz Point. direction in (spin-) space. In

reality, all spins are three
dimensional.  When the interactions are isotropic, the Hamiltonian of ferromagnets
may be described by the Heisenberg model,

H=-3 7 (3, -3, . (7)

More generally, we may be interested in n-component spins.

Real crystals never obey to the jdealized Hamiltonian (17).  The coupling to
the lattice degrees of freedom usually breaks the rotational symmetry, and generates
easy axes along which the spins align. For example, a spatial uniaxial anisotropy
of the lattice may generate, via the spin-orbit coupling, a uniaxial anisotropy in
the spins, via single jon terms like

2

[ + (571 . (18)

BH, = i

a

| —

g 7 s -
1

| —

Similar terms may be generated experimentally by the application of uniaxial stress
(proportional to g). For g < 0, the Hamiltonian (18) prefers ordering of the spins
along the z-axis. For g > 0, it prefers ordering in the XY plane. At low tempera-
tures, this competition yields a first order "spin flop" transition at g = 0, at
which the magnetization rotates discontinuously by 90°.  The complete T-g phase dia-
gram is thus expected to have the qualitative shape shown in Fig.9: the ordering is
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along the z-axis for g < 0, and 1in
% the XY plane for g > 0. For very
A ) large |g|, the fluctuations in the
J transverse XY plane (when g < 0) are
<E>.L l—a‘lk J expected to be negligible. One may
A / trace over the x and y compon-
/ ents of the order parameter in the
/ .o partition function, and end up with
. . v / b {‘t\(;al an Ising model for Siz. The transi-
?y\“..gloY lai///// ‘O\“x ‘ tion for g < 0 is thus expected to
o AN exhibit critical properties charact-
\\ GT— eristic for the Ising (n = 1) model.
\ 2\ _ Similarly, the transition for g > 0
-‘> H . , ‘\ <S>‘0 is expected to exhibit XY (n = 2)
<S - axe \ critical behavior. The point at
\ which these two lines meet, at g = 0,
' is called the bicritical point.}0°1!
It is only at this point that one

—_—

Fig.9. Bicritical point. expects to observe the critical be-
havior of the "true" Heisenberg
{n = 3) model, Eq.(17).
In addition to the (quadratic) uniaxial anisotropy (18), real systems usually
also have higher order symmetry breaking interactions. In cubic systems, one ex-
pects the single ion cubic Hamiltonian

BH. =V ] E (s.% . (19)
i =

Such a term prefers ordering of the spins along cubic axes (e.g. [100]) if v < O,
and along cubic diagonals (e.g. [111]) if v > 0. One of our aims later in this
course will be to find out if such terms affect the asymptotic critical properties,
i.e. to see if isotropic Heisenberg systems differ from ones with cubic symmetry.

When both the uniaxial anisotropy, Eq.(18), and the cubic one, Eq.(19), arise
simultaneously, a competition between them may arise. Indeed, when v > 0 then
Eq.(19) prefers ordering along diagonals while Eq.(18) prefers ordering along axes.
The resulting phase diagram is shown in Fig.10: the flop 1line is now replaced by
two second order lines, and the multicritical point is now called a "tetracritical
M. nl2

In fact, one may show that the tetracritical and the bicritical point are the
same point, when viewed in a larger parameter space.l3 An example of this will be
shown below.

Some beautiful realizations of the phase diagrams involving bicritical points
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\L} have been observed in structural
/ phase transitions, which occur'5
! e.g. in SrTi0, and LaAz0,. °
/ Another realization, in which
/ these W?Yelgn fact first dis-
- / cussed, ° concerns aniso-
S~ / tropic antiferromagnets. Simi-

~ Tar to Eq.(8), consider now an
~ / anisotropic Heisenberg anti-

ferromagnet,

\
\
rd
— v

Ve \ 1 27 2
+79] (s 515" +

\ + (s -

Z
\ -uoH;si,wo,(zo)

Fig.10. Tetracritical point. As before, the last term com-
petes with the antiferromagnetic
coupling. Consider first the case g = 0. For any non-zero value of H it is clear

that the system gains energy by having the antiferromagnetic ordering perpendicular
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Fig.11.  Phase diagram for isotropic Fig.12. Phase diagram for aniso-

antiferromagnet. tropic antiferromagnet.
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to the uniform field, i.e. in the XY plane (plus a small paramagnetic component
parallel to the field). The resulting phase diagram is then shown in Fig.11. As
the field grows larger, the longitudinal paramagnetic component grows larger, and
finally there appears a second order transition into the paramagnetic phase, at
which the transverse antiferromagnetic order parameter approaches zero continuously
(even at T = 0).

The situation for g < 0 is shown in Fig.12.  For small values of H it still
pays to have the staggered magnetization along the z-axis. As some finite value of
H (=yg) the magnetic field term wins, and the spin flop transition occurs. As be-
fore, the spin flop Tine meets the two second order transitions at a bicritical
point.

It is interesting to study the phase diagram for the case in which the magnetic
field is not exactly aligned along the easy z-axis. Extending the phase diagram in
the transverse field direction, one ends up with F1'g.13.16 The spin flop line now
becomes a "shelf" within the ordered phase. Note that if the phase diagram is cut
along the surface of this "sheif", the cut looks 1ike Fig.10.  The "bicritical"
point thus becomes a "tetracritical" point.

It should thus be emphasized that there does not yet exist a systematic way of
naming the various multicritical points. Some of the existing names indeed depend
on the parameter subspace in which the particular points are being considered.

Finally, we comment that the phase diagrams of Figs.6 and 12 are to be expected

for anisotropic antiferromagnets in
the 1imits of large |g| and small
lg|, respectively. Intermediate
values of [gl may yield intermediate
Wy situatiggs, 1ike the one shown in
Fig.14. As |g| decreases, the
Tines of tricritical points and of
critical end points which occur in
Fig.14 approach each other. They
meet the line of bicritical points
hiccitical (from Fig.12, for varying g) at a
point new (higher order) multicritical
point.1 As |g| dincreases, the

P el
//I/t//”%/j;n;h}:-m§~

i

‘‘‘‘‘ 3 critical end point moves to lower

T temperatures, and finally the flopped

W phase disappears, leaving the phase
L diagram of Fig.6.

Fig.13.  Bicritical point for skew
magnetic field.



221

IERRERR \

Fig.14.  Phase diagram for anisotropic anti-
ferromagnet with intermediate
anisotropy.
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III. LANDAU THEORY: TRICRITICAL SCALING

The basic assumption of the Landau (Mean Field) theory is that the Helmholtz
free energy density A is an analytic function of the order parameter M, the temp-
erature T and any other variable. If we are not too far away from a second order
transition into the disordered phase, so that M s not too large, we may expand A

in powers of M,
_ 1 1
A=Ay tgh Mt A M+ 2 AM + Lo (21)

We included only even powers of M, assuming the symmetry M — - M (dictated by
time reversal symmetry for magnets). The actual value of M is determined by mini-
mizing A with respect to M, i.e. by the equation

A 3 5 -

WM A2 M+ A4 M+ A6 MY+ ..., = 0 . (22)
Clearly, if all the coefficients are positive then the only acceptable minimum is the
paramagnetic one, M = 0. If A2 < 0 and all other coefficients remain positive,

1

then we have two minima at M = + (- AZ/A4)’. Thus, a second order transition is
identified at the point A2 =0, (A4 > 0, A6 >0, . . .). Assuming that this transi-
tion occurs as a result of variation in temperature, we may thus write

A2 = 2, (T - Tc) s a, > 0. (23)
If the free energy is also a function of other (non-ordering) fields, e.g. the press-
ure or the chemical potential, then A2, and therefore TC will also depend on them.
Representing such a variable by g, we thus find a critical Tine in the T-g plane,

at T = Tc(g). At this transition we have

=T - T ()P, s = 12 . (24)

The shape of the function A(M), for A4 > 0 and for various values of T, is
illustrated in Fig.15. The single minimum which exists at M = 0 for T > Tc is
seen to split into two minima, which continuously move away from the origin as T
decreases below Tc‘ Va

Note that in the expression |Ml=|A2/A4| we have ignored the term with Ac, in
Eq.(22). However, a simple perturbation expansion shows that to leading order in
A6 one has

A, %

M| = "'\Z’ (1 +-;-A6 Ay / A42 o ) . (25)
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In this expansion, A6 always appears

in the combination AA,/A,%. Thus,
A A higher powers of A6 also imply higher
powers of A2' These do not affect

: the leading power, [A,|% which will

o be observed asymptotically close to
Tc' Terms involving A6 are thus
corrections to the asymptotic form.
They are important in determining

L how close to Tc does one have to go
, in order to observe this asymptotic
¢, .
behavior. It is useful to note
that in fact the solution of Eq.(22)
(truncated after AG) can always be
m written in the scaling form

1
z

Ay
M| = ]E] m o (AAL/AZ ). (26)

L

Fig.15.  A(M) for Ay > 0. As long as A, > 0, the function m(x)
is analytic in x, and may be expanded
in powers of it.

The situation becomes quite dif-
ferent when A4 < 0. The qualitative
shapes of the function A(M), assuming

\ A Rg > 0, are now shown in Fig.16. One
<=%o

now encounters two additional minima
(in addition to the one at M = 0),
which move downwards in energy as the
temperature is lowered. These minima
—_ T, reach the line A = 0 at a positive
>l value of A,, i.e. at a temperature
Ty > Te (g). For T < T,» these min-
ima have A < 0, and thus one expects
a discontinuous (first order) transi-
> tion from M = 0 into one of these
M other minima when T crosses To' To

find these new minima, we now solve
Eq.(22) without neglecting Ag. The
solutions are given by

. 2 i
Fig.16.  A(M) for A4 < 0. M- = [-A4i(A£-4A2A6)‘]/2A6. (27)
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The first order transition will actually take place when A(M) = 0. Solving this
equation together with Eq.(22) we find that To is given by

A 2
4 (28)

6

.3
Ay = 15

|

At the first order transition, the discontinuity (from M to zero) is
(a2 = - 3 2. (29)
Clearly, Eqgs.(28) and (29) apply only for Ay < 0. The point T = Tes Ay = 0 thus

separates the critical line from a first order 1ine, and may thus be identified as
the tricritical point. The two equations A2 = 0 and A4 = 0 clearly determine the

values of T and g at which this tricritical point will occur in the T-g plane.

Fig.17 shows the resulting phase diagram in the A2 - A4 plane: the critical
line is given by A2 =0, A4 > 0, and the first order line is the parabola given by
Eq.(28) for Ay < 0.

AR
Iy A
. p!
N é":—ly\o\ ovde
5 |
c\*defe,{ —_—
X g : A\'go(dei‘m\ 'o\‘i‘)
Ao *
Phice o Thase
.l .
y Tee TCP
f
W _ N
0 > \
\
Al \
\ - ,
Ve4)
\
fst ocdev \
) >T
Fig.17. Tricritical phase diagram, Fig.18. Tricritical phase diagram,
A, - A, plane. T - g plane.
2 4
At the tricritical point, Ay =0, Eq.(27) yields
Bt
|M| = |A2/A6| > Bt = 1/4 . (30)

One thus expects new critical exponents when one performs measurements near the tri-
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critical point! Note that Egs.(28) and (29) also define new critical exponents,
which may be generally written as °’

1% _
(Ty - Ty) = A . (31)

4

o —

woe (A 1 (32)
4 T
The exponent ¢ 1is called "the shift exponent".

We now make a few comments about scaling. Eq.(27) may be rewritten in the

form
A% A
M| = % Z\A—i%) . (33)
21" Ag
with
1
(x) = [- x+ (& —sign AT (34)

Clearly, m(0) = 1 for A, <0, and the result reduces to Eq.(30). Moreover,
for finite values of A4, the argument of m in Eq.(33) becomes very large as |A2| -+ 0.
For large x we have

M) = (2 0 (D) (35)

Substitution in Eq.(33) now recovers Eq.(25). Note also that Eqs.(33) and (26) are
related via

1

m(x) = % (/20x® @xhH . (36)

The function m(x) [or m(x)] thus servesto describe the crossover from Eq.(24) to
Eq.(30). The asymptotic tricritical behavior (30) will be observed only when the
variable in m in Eq.(33) is not too large, so that %(x) may be treated as a constant.
The condition is thus

Ay

s (37)
2|A, | g

There exists a parabola in the A2 - A4 plane, A2 « A42/A6, which separates between
the "tricritical" and the "critical" regimes. This parabola is aiso shown in Fig.17.
It is therefore clear that Eq.(30) will be observed along any experimental trajectory
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which does not approach the tricritical point tangentially to the lines T = To(g) or

T=T(g)!
%he fact that M depends on A4 only through the combination A4/(2|A2|%A6%) has
further consequences. Since the first order transitionat T = To(g) signals a singu-
Jarity in M, it must result from a singularity in the dependence of m on its vari-
able. Indeed, Eq.(28) tells us that m(x) has a singularity at x = (4/3)%.
Substituting Eq.(33) into Eq.(21), adding a magnetic field term -u HM, one

easily checks that A may be written in the scaling form

3/2 1/4
A, A, H Ag
" A s ) (38)
Ae 2|A, 1% A, A, |
Written with general exponents, this becomes
2-a n
Aslr-m) P oA, (39)
t b [
IT-Ttl |T—Tt|

with ap = 1/2 , ¢y = 1/2 , by = 5/4. The other tricritical exponents now follow
by scaling, 6, = 5, v, = 1, etc.  The "scaling field" § in Eq.(39) has been defined
to be proportional to A4. It is thus measured along the tangent to the critical
line at the tricritical point.

The exponent ¢ s called the "crossover exponent". As was explained before,
it determines the crossover between the tricritical and the critical regimes. In

most cases one has y = ¢.

As we did following Eq.(25), it is now easy to include AB’ A10, etc. in our dis-
cussion.  For example, A8 will always appear in the combination A8 AZ]/Z/ A63/2‘
Its contributions to thermodynamic singular functions will thus become negligible
when |A2| — 0, and will only represent corrections to the leading singularities.
In order to reach a point on the critical line one had to set H=0 and T = Tc(g),
i.e. two variables. The tricritical point is reached only after a third variable,
i.e. A4, is appropriately set equal to zero. One can now generalize the discussion,
and consider the situation when A6 changes sign. Straightforward algebra shows that
when A6 < 0 one arrives at the phase diagram shown in Fig.3. The point H=A2=A4=A6=O
(see Fig.4) is now a critical point of fourth order, because four variables have to
be set in order to reach it. One can now easily generalize our discussion, identify
the exponent By = 1/6, write scaling functions, etc. . The generalization to higher
order critical points is also obvious.

Finally, we consider the relevance of the above tricritical calculations to re-
alistic experimental systems. From the Ginzburg criterion,19 we should compare the
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fluctuation in the magnetization of a volume gd (¢ 1is the correlation length, given
in the Landau theory by £ « |T - TCI_V ., v =1/2), <M = Ed kTyx «|T- Tc|_dv—Y
to the square of the magnetization itself, M gZd T - Tcl28 = |T - TC|28'2d“

The fluctuations become important when <AM2> >> Mz, i.e. when
dv < vy + 28 , (40)

with the Landau values of v, y and 8. For the critical point, 2v =1y =28 =1 and
we have d < 4, For the tricritical point 28 = 1/2, and thus the upper critical
dimensionality is equal to three. The corrections to the theory described above,
due to fluctuations, at three dimensions, are expected to be very weak! As we shall
see below, these corrections involve only powers of log|T - Tt . Similarly, the
upper critical dimensionality for the critical point of fourth order is 8/3.
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IV. LANDAU THEORY: OTHER CASES

The general rule in the Landau theory is to expand the free energy density in
powers of the relevant order parameters. We now outline the derivation, within
this theory, of the bicritical and the Lifshitz point phase diagrams.

IV.1.Bicritical Point

Following the Hamiltonians of Egs.{17), (18) an?2(19), we may write (for an n-
component classical spin problem), to quartic order,

1 1 2 1
A=grg M2+ u (M e LoD - Lo M2+ e M2)] 4

+ v E My (41)

)

In order to conform with the notation in the 1iterature, we have now replaced A2 by
To and %A4 by u.

We now proceed to minimize A with respect to M. The direction of M enters
only into the last two terms in Eq.(41). As noted before, both of these terms pre-
fer ordering of ] along a cubic axis when v < 0. For g < 0 we thus have

A=;—(Y'o+9)M-|2+(U+V)M]“, (42)

and a second order transition is predicted to occur at rg =" 9s provided that
u+v>0. Similarly, for g > 0 we have e.g.

A= g (rg - S M2+ (u+v) b, (43)

and the continuous transition will occur at ro = g/(n-1) (withu + v > 0). This
yields the phase diagram of Fig.9. Generally, we may describe the two critical lines

by

TA9) - T = alglMY . (44)

Here we found ¢ =1 and A /A_==-1/(n-1) (the + and - signs stand for g > 0
and g < 0). Note that the line u = -v is tricritical. One must add sixth order
terms when u < -v.

In the case v > 0, the g and the v terms compete. In this case, we write

My = M cose, M, =M sine Mys voos M= Msinem (45)
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with

) AT (46)

The minimum with respect to m, yields mé = 1/(n-1). Eq.(41) now becomes

=1 -9y M2 4 n 2 2
A=m(rg-=30) M2 +uM +ﬂ-r9]—_T5-M cos26 +

+ v M* {cosks + E%T-sin“e} . (47)

Differentiating with respect to o and demanding that 3A/3s = 0, we find three sol-
utions,

(I) cose =0,
(II1)  cos28 = {1 - ng/4vM2)/n, (48)

(III) sine = 0.
Clearly, solution II is possible only if

- 4(n-1) WM2/n < g < 4vMZ/n . (49)

We now differentiate A with respect to M, and find that (3A/oM) = 0 if M = 0
(disordered phase) or if M has the following expressions corresponding to the above
three solutions:

(1) M2 == (g - =2) / [u+ v/(n-1)1 s
(11) M2=-}; ro / (u+v/m),
(I1) W2 = =g (rg+9) / (u+v). (50)

A study of the second derivatives of A now identifies the regions in the g - s

(or g = T) plane in which each solution represents the minimum. This finally yields
the phase diagram shown in Fig.10, with the two internal lines given by

ro =" (nu + v)g/v for g >0 and ro = {nu + v)g/(n-1)v for g < 0. Note that
these results apply only for {(nu + v) > 0. Some of the transitions become first

order for nu + v < 0, and the line nu + v = 0 is thus also tricritical.
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Within the context of the Landau theory, the exponents describing the order
parameters at all the transitions involved in the bicritical phase diagram are all
equal to g = 1/2. The crossover phenomena, which we saw in the tricritical situ-
ation, are therefore less striking. However, it is still instructive to convince
oneself that the free energy may be written in the general scaling form

2-a
ATgv) = (T-1) ° A (—o , —L0r), (51)

(1-1,) 9 (T-T

with (in the Landau theory) o ap =0, ¢ =1, ¢ =0, ”0

The situation for the an1sotrop1c ant1ferromagnet is more complicated. Since
the exchange term in Eq.(20) favors an antiferromagnetic ordering, we must use a
staggered magnetization, ﬂ*, as our order parameter. On the other hand, the magnetic
field H couples to the uniform magnetization, M. The appropriate Landau expansion
thus contains powers of Mm s Mi_, M, and My (% 1is along the magnetic field, and
A is perpendicular to it). The coupling between BT and M arises through bi-
quadratic terms, e.g. |M|2 |M”+|2 and (M-MT)2.  Non-zero values of H generate
non-zero values of M (=H). When these are substituted back into the free energy,
we end up with an expansion in powers of MI and Mi . The coefficients of (M: )2
and of (MTI_)2 are now shifted by amounts of order H2. Finally, this resulting
expansion can be brought exactly into the form (41) discussed above. The only
effect of the field is thus to move the axes, and to turn Fig.9 into Fig.12. Simi-
lar mappings are possible for all the bicritical situations.

IV.2.Lifshitz Point

The order parameter for an incommensurate phase is related to the Fourier compo-
nent of the magnetization at wave vector ab, e.g. Eq.(16). Denoting this component
by

iq.%
> _ 1 I
M (qo) = — ; e <Si> s (52)
the free energy may be written as
1 1
A=z A, (T, 3) |M(ao)|2 tghy |M(6°)|“ e (53)

In principle, we should consider a functional of all the M(ah)'s, and minimize with
respect to all of them. In writing Eq.563 we assumed that only one mode is import-
ant.

The crucial point concerning the Lifshitz point is now the dependence of A2 on
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ab. Expanding A2 in powers of the components of ab, for a uniaxially anisotropic
situation, we have

30 |2+ fq5, +. . (54)

J-I sl

= - 2

AZ aZ(T TC) * e“ qo,l e
If e, and e, are positive, then it is clear that 36 =0 is a minimum of A2 and
therefore of A. For e, , e, >0 we thus return to the usual ferromagnetic ord-
ering, with M(ab = 0) as the order parameter. If e < 0, then g, = 0 s no Tonger
a minimum. If |e“ | is not too large, an alternative minimum is now found at

= - e, /2f ao,ﬁ 0. (55)

2

qo 1]
Fixing 36 at the value given in Eq.(55), we now find a second order transition in
M(ab), which occurs at

(T - TC) = W . (56)

The free energy must thus be considered as a function of the two variables T and

ey - The borderline between the ferromagnetic phase and the incommensurate phase,

occurring at T = TC, e, = 0, may now be identified as the Lifshitz point (Fig.8).
Again, Eqs. (55) and (56) may be generalized as

By 1
Iqo’"l o« IK- KLI ’ sk=§ s (57)

(58)

|
n
»

1
-1 K-k Y,y

and the free energy can be shown to depend on e, only through the scaled variable

¢ . 1 !
e, /1T - TLI , with ¢ =y = 7
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V. RENORMALIZATION GROUP AND SCALING

The basic idea of the renormalization group is that short range effects are
irrelevant in the vicinity of a second order transition, where the correlation length
diverges. Given a Hamiltonian H, one thus divides the N degrees of freedom {Si}
of the problem into two groups: N/bd (b > 1) degrees of freedom, {S%}, which repre-
sent the (relatively) longer range features of the problem are kept, and the parti-
tion function trace is performed over the remaining ("short range") N(1-b'd) degrees
of freedom, {Si"}' The former N/bd degrees of freedom may for exgmp]e represent the
new "cell" spins, when the lattice is subdivided into "cells" of b~ spins. This is
used for real space renormalization group transformations. Alternatively, they
may represent the long-wavelength Fourier components of the spin variables, as used
in the momentum space renormalization group.

Irrespective of the details, the result of the above trace is that the partition
function is now represented as a trace only over the remaining N/bd degrees of free-

dom,

7= 1 M5 o o o ey (59)
185) 18518y

(We denote H = gH). Defining a new "Hamiltonian" via

A, {S:"} -H {S,' S."}
e VT o o o THLT , (60)
{S.ill}
we have
_;ﬁ
Z = Tr e . (61)
{Sil}

The nearest neighbor distance among the "new" spins {Sil} is larger, by a factor b,
from the original nearest neighbor distance. It is thus convenient to rescale all
distances in FH by a factor b. As we shall see below, one sometimes also rescales
the spin variables. The resulting Hamiltonian, A', defines the renormalization
group (RG) transformation,2l-2%

= R H . (62)

If one calculates the correlation length &', using H', then it is related to &
via

g' = g/b . (63)

Similarly, since the partition function and therefore the total free energy is un-
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changed, we have for the free energy density

F=0b0%F . (64)

A fixed point of (62) is defined as a Hamiltonian H* which satisfies

H* = RH* . (65)

Combining (63) with (65) it is clear that f* must have £ =0 or & =«, The
latter cases represent a critical point. We thus concentrate on the vicinity of
such fixed points. Setting the magnetic field (for a magnetic system) equal to
zero, and assuming that both H# and H' depend on a single variable, T and T',
resepctively, Eq.(62) has the form

T = f(T) . {66)

The fixed point, T*, is now given by the solution of T* = f(T*). Ignoring the tri-
vial case (& = 0), T* thus corresponds to & = =, i.e. T* represents the critical
point. Linearization of (66) about T* now yields

TV =T = TR (T-T%) . (67)
Combining this with Eq.(63), and with
E=A(T-T)7 , g =A(T -9 (68)

now yields

£1(T*) = bt , (69)

with At = 1/v.  The renormalization group recursion relation (66) thus determines
the exponent v!

In general, the Hamiltonian must be characterized by many parameters, 9, 9, -
After finding a (non-trivial) fixed point in this large parameter space,

g]*’ 92* ... , and linearizing about it, we have

b

g.il - 91'* = 3: L'ij (QJ - gj*) . (70)

Diagonalization of the matrix L will now yield new variables, {Ei}, which are
Tinear combinations of the (gi - gi*)'s, such that

As
§i' = a9 = b g (71)
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The "eigenvectors" 31 are now called "scaling fields".2* Note that the exponential
form A = b* is dictated by the semi group nature of the transformation.

There exist three types of eigenvalues: If Ay > 1 (Ai > 0), ai is called
"relevant". Clearly, Ei becomes larger under the iteration of the RG transform-
ation. If Ay < 1 (Ai < 0), Ei is called "irrelevant". Such variables decay
to zero under the RG transformation. Finally, if Ay = 1 (xi = 0) then ai is
"marginal". One must go to higher order (non linear) terms in Eq.(71) in order to
see how ai varies under the transformation.

Setting all the relevant variables equal to zero (and assuming there are no
marginal ones), the Hamiltonian will "flow" under the RG transformation towards the
fixed point. Since at the fixed point £ = =, we must have & = » for all the
points from which this point is reached. Thus, the surface on which the relevant
variables vanish is identified as the critical surface of the problem. Since all
the Hamiltonians on this surface flow to the same fixed point, all of them will have
the same critical exponents.

At a fixed point which describes an ordinary critical point we expect only two
relevant variables, i.e. the temperature t = (T - Tc)/Tc, with eigenvalue bxt, and
the ordering field h, with eigenvalue b*h, Ignoring all other variables, Eq.(64)
assumes the form

A A
Fit,h) = b4 Fb Pt,bMh) . (72)
Atz*
Repeating the transformation 2* times, until b t=t, = 0(1), Eq.(72) becomes
d/xt -Ah/xt
F(t, h) = (t/to) F(t ., h(t/t ) ) (73)
() ()
which is identical with the usual scaling form
F(t, h) = t&° £(h/t%), (74)
with 2-a = d/)\t =dv, A= )\h/kt.
The general form of Eq.(72) is
A A A
F(t, by ;) = b Fb Bt b " o T (75)
and thus (after 1* iterations)
]
F(t, h, {§;3) = 27 f( Ty (76)
i Y

with
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o5 = AN/a = vy (77)

95 [o51
If ai is irrelevant then ¢, < 0, and 81 t =g !

t > 0. Inmost cases, f 1is an analytic function of Ei near 81 +~ 0, and the

becomes very small as
main effect of Ei is to yield corrections to scaling, e.g.
We
Ft, 0, §;) = 27 [£(0, 0) + £1(0, 0) &, t '] , (78)

with wy = [¢.]. This was the effect of the variable A¢ near the Landau critical
behavior, see e.g. Eq.(25). In some special cases, f is singular in ﬁi. In
these cases, 81 will be called a "dangerous irrelevant variable".25 An example

was A4 in Eq.(26). In both cases, it suffices to know the behavior of f for small
n

g;-

If 31 is relevant, and is not equal to zero, then the Hamiltonian will “flow"
away from the fixed point. The fixed point is thus reached only if more than two

variables (t and h) are set at special values. Whenever there exist more than the
two basic relevant variables, the fixed point represents a multicritical point. In
Eq.(76), the combination Ei/t¢1 (with b > 0) now grows larger as t > 0. The

critical properties of the multicritical point will be expected to be observed only

for

¢
ai/t T w1 . (79)

The crossover exponent 95 thus determines the shape of the crossover region [see
also the discussion following Eq.(37)].

As 81 grows larger, the Hamiltonian flow sometimes goes to an alternative
(more "stable") fixed point, with different critical properties. The new critical
behavior, which implies a singularity of F at a finite value of t (t measures the
distance from the fixed point of the multicritical point), must now result from a
singularity of f as function of ai/t¢1. If f(0, y) is singular at y = Yos this
identifies the location of the new critical line at ai/tgi = Ygr i.e.

/v,

i -
t, =4, = ¢, . (80)

In some other cases, the flow never reaches a stable fixed point with an infinite
correlation length. In many cases this implies a first order transition, which
occurs on a line whose 3i-dependence is also given by Eq.(80). We shall return to
examples of this situation below.



236

VI. CONTINUOUS SPINS, WILSON'S RENORMALIZATION GROUP AND THE GAUSSIAN MODEL

In the remaining parts of these lectures we are going to limit ourselves to a
specific method of performing the renormalization group, i.e. the one performed in

momen tum space.

VI.1. Continuous Spin Model

The method is based on the continuous spin model, which may be written (in the
Ising case) as

-ﬁlsi}
7 - H( dsi)e . (81)
i
with the spins Si varying continuously in the range -« < Si <o, One usually
also performs a coarse graining of the space coordinates, so that Si is replaced
by a spin density S(X). For a simple Ising model, at zero magnetic field,
A {S(X)} is usually written as2!

7 {s{X)} = { a9 « {%-r S(X)2 + %—e (TS)2 4+ usSh+ ..... Yo, (82)

where the dots indicate higher powers of S or of VS, and where r is assumed to
be Tinear in the temperature.
The simplest justification of (82) is that it is a power series in S and in

¥S.  Such an expansion 1ies in the basis of all the Ginzburg-Landau theories.!®
A more direct derivation of (82) starts with a discrete Ising Hamiltonian,

Ko S. S. (83)

and then writes the partition function in the form

@

— _w(s‘) —
7 = T e = g ( ds; e ! ) . (84)
{51=t1} i

©

For the discrete Spin case, the weight function w(Si) is given by

-w(S.) -u(s,2-1)2
e 1=6(512-1)=21m/%e ! . (85)
U-roo
Keeping u finite now yields
= b 2
w(Si) u s, 2u S;% + const. . (86)
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Expanding Sj around S, Sj =S, + ?31-3 Syt e finally yields Eq.(82).2! A
third derivation of Eq.(82) is based on the Hubbard-Stratonovitch transformation.26
Generalizing Eq.(86), we shall write
1

= 5.2 4 '§ .6
w(s;) 5 S;2 + US40 (s,8) . (87)

Fourier transforming the spins,

> 1 -igeX 2 o 16-? >
Sx) =g le S, » S,=1)e S(x) (88)
3 q q 3
and defining
ig-x
- SRas ~ 2 [N
kK@= T e YKy=kO) -ed +0@) , (89)
>
X'IJ
we end up with Eq.(82), where
ro= 1-K(0) = 1-J3(0)/kT . (90)

In the Fourier transformed variables, changing sums intc integrals, Eq.(82) reads

— > ~ 2 ~ ~ ~ ~
H = %[ (r + eq?) |Sa| +u ( [ [ S_) S_* S_> S_) . ++..)(9])

>

where (+ denotes (21r)'d Jddq over the Brillouin zone of the system. For
q

simple cubic systems, this implies 0 < |q1| <Ay i=1,2, ..., dy with A = n/a
(a dis the lattice constant). The trace in the partition function is now done over

the new variables S+.
q

VI.2. Wilson's Renormalization Group

The Fourier transform S, represents fluctuations with wave vector g, i.e.

wavelength A = 21/|3]. Theq]arge values of Q thus represent short wavelengths.

In the vicinity of Tc’ where the correlation length ¢ is very large, such fluctu-
ations are expected to be unimportant. We now follow Wilson?! in dividing the
Brillouin zone into two regimes, an "1ntern§1" one with Iqil < A/b and an "external®
one with A/b < [qil < A.  The variables S:, in the "external" regime, are now

q
integrated out of the partition function, leaving Z as an integral over Sg {in
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the "internal" regime):
.. R85
z = | ;fdsi e N
q q

(92)

We next use the fact that both § and §a are "dummy" variables in (92). We thus
rescale both of them, defining o
via

~

=zco, - (93)
a/b g

The rescaling of q by a factor b
brings the reduced Brillouin zone back

into its original size. The spin re-
scale factor ¢ will be chosen below.

” Finally, we expand the resulting Hamil-
tonian in powers of o, and of 4,

and identify the new coefficients r',
e', u', etc. This defines our re-
cursion relations.

VI.3. Gaussian Model

Fig.19. Reduced Brillouin Zone. It is very instructive to study

the simple "Gaussian" model, in which
one maintains only the quadratic terms in Eq.(91). This model is exactly soluble,
and one can later check the relevance of the higher order terms. In terms of the
weight function w(Si), this is eqivalent to replacing the spin distribution function
by the Gaussian exp(- % 512) [instead of the double peaked Eq.(85)].
The Gaussian model partition function is thus

. ] 2 0~ 2
IR
Z = [1°dS, e q q (94)
£ >
q q
Integration over the external regime now simply introduces a multiplicative constant,
and we have
<
— - ] 52 2
A5,y = 3 J (r+ed) [ . (95)
q a q

The substitution (93) now turns this into
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_ - 2
H {o} = %-czb d [+ (r +ed2/b?) |o | (96)
q

r = b r , (97)

el = 2b e . (98)

We now turn to the choice of . It should be emphasized right away that any
choice of ¢ will yield correct results. However, some choices are more convenient
than others. For example, the choice 2 < bd implies that both r and e are
jrrelevant. However, the resulting fixed point, at r = e = 0, is not very useful,
and the physics must be extracted from the way the irrelevant variables decay to

zero. Similarly, the choice 2 > bd+2

implies that both r and e are relevant
near the fixed point r = e = 0. By our definitions, this fixed point represents a
multicritical point rather than a simple critical point. Indeed, we shall see below
that such a choice is appropriate for a Lifshitz point. The choice bd <2< bd+2
is also not very convenient: Although the fixed point r = e =0 has only one
relevant variable, r, the irrelevant variable e cannot be ignored since it contains

the information on correlations. Finally, we are led to the choice

2 = ¥, (99)
for which

rt = bZr , (100)

e' = e . (101)

These recursion relations have the Gaussian fixed point,

r=0, e = const. (102)
Since r (T - T), by Eq.(90), we now identify iy =2 [Eq.(72)], i.e.

v = 'I/)\t = 1/2 . (103)

The scaling relation dv = 2 - o [Eqs.{75), (76)] now yields
o = (4 -d)/2 . (104)
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In order to find the other exponents we must introduce a magnetic field term,

H = hs . (105)
>

G=0

Under our transformation, this becomes

ﬁh = hgo s {106)

hence

p Moo =pldrR)2 (107)

It is easy to derive from Egq.(73) the scaling relations
8= (d-ap)ay s v o= (2 - dag s
yielding for the Gaussian model
B = (d-2)/4 , y = 1 . {(108)

It should be emphasized, however, that the Gaussian model has no "ordered" phase,
since the integral in Eq.(94) diverges for r < 0. One must include higher order
terms (e.g. S(X)*) to stabilize this integral.

The choice (99) for % may be "justified" by a comment about correlation func-
tions. The Fourier transform of the spin-spin correlation, <§ﬁ §ﬁ>’ is expected by
translational invariance to have the form

S S> = G@Q)s@+p . (109)

-2+n

At T., the exponent n is defined via 6(4) = || Performing the renormali-

zation group transformation, Eq.(93), we now find that

2 <, o> = b G@&) s (§+B). (110)
q P

Since at TC the correlations should be invariant of the length scale, we conclude
that

2 = bd+2'n . (111)

Together with Eq.(99), this implies that in the Gaussian model one has n = 0.
Indeed, this can be directly checked from the exact result
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n > >
S, 5> = 6 {q+p) , (112)
q p r+e|d|?

as well as from the exponents in Eqs.(103) and (108) and scaling relations.

Different choices of z2 would imply that e is not invariant under the re-
normalization group transformation.  This would result in an additional rescaling
of the function G(q):

d+2-n C-Z

6(5) = b 6@ (113)

implying Eq.(98). For example, the choice pd < g2 < bd+2
irrelevant variable. However, e cannot be ignored, since at TC it appears in

implied that e 1is an

the denominator of G(4) = 1/e|q|2. A non-trivial rescaling of e thus gener-
ates a rescaling of the whole function G. Such variables are called "dangerous
irrelevant variables".25
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VII. LANDAU AND LIFSHITZ POINT THEORIES

We now turn to the higher order terms in Eq.(91), and consider their relevance

near the Gaussian fixed point (102).

VII.1. Landau Theory for d > 4

We start with the quartic spin term,

_ b
Hu =y J dd x S(X)

In the Fourier transformed variables (88), this becomes

n=ujf[§§§§
u > e e g G, 43 -41-42-G3
Q0 g2 gz 1 2 73

(114)

(115)

Replacing each S by S+ §” (§ < is non-zero only for |qil < A/b, and §q> is

non-zero only for A/b < |qi| < A), the integrand becomes
$< 88 8 4+ 485988 +65°5°87 5 +
+45°8 85 +5 58§

We now expand exp(ﬁh) in powers of Wh, and integrate over the 5§75,
order in u, this yields

+

< >
6 u [ S S R J L + const.
32
-q 3 r + ep

We now use Eq.(93), and end up with

' ~3d

u = b u + 0 (uz) .

>

ro= 2b 9 r+t2u J 140 ()],
port ep?

e

n

g2 p=d4-2 e + 0 (u?)

(116)

Up to first

(117)

(118)

(119)

(120)

By the rules explained above, we choose z2 via Eq.{99), ending up with Eq.(101).
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With this choice, Eq.(118) becomes

1]
u = p*d

u+0 (u2) . (121)
Thus, u 1is irrelevant for d > 4. The Gaussian fixed point (102) is therefore
expected to describe the correct critical behavior for dimensionalities d > 4.

However, it turns out that the exponents o and B8, as given by Eqs.(104) and
(108), do not describe the correct physics once u > 0. In order to see this in a
simplified way, we iterate the recursion relations (118) and (119) & times, until
|r(2)] >> 1, so that the fluctuations are negligible. At that point, we use the
Landau theory for the free energy

F(z) = %r(z) M2(5) + u(e) M*(2) . (122)

Since wu(2) > 0, we can follow the discussion of Sec.III and find that
M« [|(r(£)|/u(z)]%, and F(2) « |r(2)}|2/u(2). Using Eqs.(118) and (119) for r(z)
and u(z), and Eq.(64) for F(2), the original free energy density becomes

Febd p2rz/upltdey o 2 (123)
Thus, F « [T - T |2 and o =2, rather than Eq.(104). A similar argument yields
g =% instead of Eq.(108). A1l the critical exponents thus have their Landau
theory values, rather than those of the Gaussian model. The mechanism which led to
this result is the fact that u(%), which appeared in the denominator of F(s&), had
a non-trivial rescaling, which affected that of F(2). The variable wu(g) is
thus a dangerous irrelevant variable.25

We could have avoided the need to worry about dangerous irrelevant variables,
by choosing ¢ differently. Since we realized that u is going to be important,
we could have chosen ¢ so that

u = u. (124)

By Eq.(118), this implies

g = p3E (125)
and hence

el - b(d'4)/2 e . (]26)

ro= b2 [r 0 (u)] . (127)

For d > 4, this implies that e(2) > =, so that the spatial variation of S(X) tends
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to disappear, and we may use a uniform value S(X) = M. Using the same arguments
as before,

-dg ,dsa/2

Feb |b ri{2/u = rfu . (128)
Similar arguments may apply to the tricritical point for d > 3 (see below).

VII.2. Lifshitz Points

We now return to Eq.{94), and add higher order terms in the gradients, e.g.

'| ~
Hy = -5 ¢ [ la)* |s,|2 | (129)
2 g

By the same rules as before, we find that

' -d-4
= 2
ey 2 b ey - (130)

Thus, if we use the choice (99) then

e, = b2 (131)

and e is irrelevant. It is for this reason that all the details concerning the
lattice structure are usually irrelevant.

However, the fixed point (102) is useful only if e > 0. If e =0 then the
leading behavior of the correlation function is 6(q) = 1/e4la|“, and e, becomes
a dangerous irrelevant variable!

It is therefore convenient to choose

2 = b4 (132)
so that

(133)

The recursion relations for r and e now become

r = b*r (134)

e = b2e , (135)

so that both are relevant. The fixed point
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r=e=0, e, = const. (136)

thus represents a multicritical point. 1In the vicinity of this multicritical point
the free energy density has the form

-d

F(r,e) = b F(b%r, b2e) . (137)

Setting b%r = 1, this yields
Firee) = v/4 F(1, e/r) (138)

and we identify o = (8-d)/4 and ¢ = %n Similarly, v = 1/Ar = 1/4. These ex-
ponents will be observed as long as e/r% << 1. One can now add Hu’ Eq.(114),
and see that the fixed point (136) describes the muiticritical point for d > 8.
The problem discussed here is very similar to that of the Lifshitz point, dis-
cussed in Sec.IV.2. The only difference is that here we allowed the coefficients
of a1l the quadratic terms in the momentum to go to zero [rather than only one of
them, as in Eq.(54)]. In that case, the correlations at TC are described by

6@ = Vle,qd + fa¥) . (139)

In order to preserve both terms under the renormalization group, one chooses to re-
scale the momenta via 2

q, — /b , » 9, — boa, . (140)
.. . d d ,d-%
This implies that d°'q — d'q/b » and thus
roo= g2 V2 (141)
£ o= p2p 42 (142)
Yo -d-3/2
e, = 2 b e, - (143)
The choice
2 = pd*3/2 (144)

now leaves both f and e, invariant, while

r = b2r . (145)
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Adding the quartic term (115) now yields

u: o b-3d+3/2 u o= b9/2—d u o,

from which one deduces that the Gaussian Lifshitz fixed point

r=e_ =0, e, = const., f = const.

describes the critical properties of the Lifshitz point for d > 9/2.

(146)

(147)
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VIII. THE e-EXPANSION

VIII.1. Non-trivial Fixed Point

For d <4, Eq.(121) shows that u is a relevant variable. One thus must go
to the next order in the perturbation expansion in u. The term of order u2 in-
volves a product of eight spins. Simple observation now shows that only the product
(§< $< s> §>) (§< $$8” §>) will contribute to u'. The resulting recursion rela-
tion turns out to be

u o= b9 [ - 36 w2 [ —1 o)) . (148)
3 (r+ep?)

Clearly, the second term in Eq.(148) tends to siow down the increase in u,
which results from the prefactor b4'd. However, this slowing down is meaningful
only if the two effects are of comparable magnitude, which happens only if u is of
order ¢ = (4-d). This is the origin of the studies at d = 4-e, with e treated
as a small parameter. It then turns out that u "flows" to a fixed point, of order
€. A study of the vicinity of that fixed point yields the e-expansions for the cri-
tical exponents.

For convenience, one now renormalizes the spins and the momenta so that both e
and A become equal to unity, and one performs a first iteration which brings the
cubic Brillouin zone into a spherical one.21s23  One next replaces b by %%, and

rewrites Eq.(148) in the differential form

- = gu-BuZz+ ..., s (149)
dg

with B = 36Ky = 9/2n2, where Kd is the area of a d-dimensional unit sphere divided

by (2n)d, Kd-] = 2d'] nd/2 r{d/2). Similarly, Eq.{119) now becomes

dr Au

aw - 2r + T4 + ... , (150)
with A = 12K,.

Eq.(149) is now easily solved, to yield
u(z) .= uet/Q) , (151)
where

Qe) = 1+ (e%F - 1) wu* (152)



248

and

2
- £ - 2ne (]53)
36K, 9

For large ¢, u(e) thus approaches the fixed point u*. For small g, u{g) grows
as esz, as implied by the scaling of the relevant variable u near the Gaussian
fixed point u* = 0. Eq.(151) thus describes the crossover from the Gaussian to
the non-trivial Ising fixed point.27

To order €, EG.(150) has the fixed point r* = - %—A u*. In fact, it is
convenient to define a new temperature scaling field (to leading order)

te) = r(a) + %Au(z) i (154)
It can then be shown that
t(z) = t(0) et/ Q)8 . (155)

When t(0) = 0, t remains equal to zero and the Hamiltonian flows to the fixed
point (153). When t(0) # O then t(2) grows larger. The Hamiltonian flows in

the r-u plane are shown in Fig.20. The line t{(0) = 0 is now identified as the
critical line. For u=0, the flow of t(&) is characterized by the Gaussian thermal

=

¥

v
-
/Ll

Fig.20. Hamiltonian RG flows.
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exponent 1, =2. For u # 0, Q(&) approaches e®* u/u*, so that

£(1) — t(0) el2-A/B)2 (156)
and we identify

A = 2-Be = 2-%¢ , (157)
or

vo= Inp = pllegero(ed)] . (158)

VIII.2. n-Vector Case

Thus far, we have limited the discussion to the Ising case, in which the spin
variable has a single component S(X). In the more general Heisenberg-like case,
the spins are n-component vectors 3 = (S!, S2, ..., S"), and the exchange inter-
action involves the scalar product (§1-§j). In this case, Eq.(82) is replaced by

A= Jdd x Gpr (312 + ge [F]2 +u [S]*+ b . (159)

In Fourier language, Eq.(91) becomes

F = 1? J (r+9lq|2) l%_}IZ-f-UJ [ [ (g". g*)(g—;%—) > —>)'
[ q 4 4 4

(160)

The only effect of these changes is to alter the various combinatoric coeffici-
ents in the recursion relations. In particular, A and B in Eqs. (149) and (150)

now become

A = (n+2) Ky B = (n+8) Ky (161)
The critical exponent v therefore becomes

v I AmEL e 4 0 (e2)] . (162)

Since the recursion relation of e remains unchanged to order - u, Eq.(111)
implies that n = 0 (e2). Using these two exponents and scaling relations one can
derive all the other exponents. The e-expansions for the various exponents have
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been carried out to order - ¢3. Some additional information, on the behavior of
the coefficients of the high order terms in u, made it possible to obtain very accu-
rate values at d = 3.28

VIII.3. Logarithmic Corrections

The recursion relations which we discussed above were based on a perturbation
expansion in u and in e. Therefore, they become more and more accurate for
smaller and smaller e. At d =4, or ¢ =0, these recursion relations become
exact. At d = 4, Eq.(121) shows that u is a marginal variable. One therefore
must go to the non-linear higher order terms in order to determine how u "flows"
under the RG transformation. Eq.(149) can then be exactly solved, to yield the
leading behavior

u(z) = —BTJLO]—'*’J s (163)

where % is determined by the initial value u(0). The Gaussian fixed point

u* = 0 1is thus stable at d = 4, but the "flow" into it is slower than exponential.
Eq.(163) also results from Eq.(151), if we simply let e -~ 0. In the same

1imit, Eq.(155) becomes

t(r) « t(0) &%/ (wgo)“/B . (164)

By Eq.(63), £{1) = ge'l. Iterating until g*, so that t(e*) and £(2*) become
of order unity, we can then eliminate * and find that

£ o« t73 e t|MB (165)

For the n-vector model, this implies

g« 73 |gn ¢|(M2)/2(n8) (166)

Up to higher order corrections, this result is exact. Similar results are always
expected when the linear terms in the recursion relations vanish, i.e. at "upper
critical dimensionalities" (d = 4 is the highest dimensionality at which fluctu-
ations affect the critical exponents for usual critical points).

For the Ising model with dipole-dipole interactions, the quadratic term in
Eq.(91) 1is replaced by 2930

> qz -
[r+eq2+g (=)2][S,|2 . (167)
> q [
q
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Very roughly, it turns out that one can treat the angular variable cose = (qz/q)

as an additional coordinate axis in momentum integrals, so that the behavior of this
model at d = 3 1is the same (to leading order) as that of the non-dipolar case at

d =4, This model was indeed predicted to have logarithmic corrections. 29,30

The experimental verification of these predictions31 was one of the triumphs of the

RG theory.
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IX. RESULTS FOR MULTICRITICAL POINTS

We now review the RG results for the multicritical points discussed in earlier
chapters.

IX.1. Tricritical Point

As mentioned above, Eq.(151) describes the crossover from the Gaussian fixed
point to the non-trivial Ising (or Heisenberg) fixed point. For d < 4, one must
set both t and u to be equal to zero in order to flow to the Gaussian fixed
point. Having two (or three, including the ordering field) relevant variables, the
Gaussian fixed point is thus identified as a multicritical point. Remembering the
similarity between u and A, of Eq.(21), it is natural to expect that the Gaussian
fixed point represents the tricritical point. Indeed, if we start with u < 0 then
the recursion relation (149) yields a flow to more and more negative values of u,
without ever reaching a fixed point. We thus iterate until %, with r(2*)=0(1),
and consider the resulting Landau-like free energy, Eq.(122). For u(%) < 0, this
free energy is meaningless unless we include the sixth order term

A, = ug {ddxs(i)6 . (168)

Following the same routine as in Sec.VII.1, we now see that

s e L (169)
With Eq.(99), this yields

S (170)

Thus, Ug is irrelevant near the Gaussian fixed point for d > 3, and

Ug (2) = ug e(6'2d)2 . (171)
Adding u6(£) M6(2) to Eq.(122), we can now use the results of Sec.III. In partic-
ular, transitions for u < 0 can be shown to be first order, and the point u = 0
can be identified as the tricritical point [more accurately, Ug also contributes to
the recursion relation for u, and therefore the tricritical point occurs at
u=-c(n) u6.32]. Substituting Eq.{171) and its analogs for r(z) and u(r) into
Eq.(38) we then see that at the tricritical point (u = 0), ug is a "dangerous irre-
levant variable" which turns the Gaussian exponents (104) and (108) into their Landau
theory counterparts ay = 1/2 and By = 1/4.

From Eq.(171) we now conclude that the upper critical dimensionality for the
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tricritical point is d = 3. At d = 3, the addition of the terms of order u62
and Uy Vg to the recursion relations yields logarithmic corrections. For d=3-¢
one can find a fixed point, with u6* = 0(e), and derive e-expansions for the tri-

critical exponents.

1X.2. Lifshitz Point

Sec.VII.2 contained a discussion of two types of Lifshitz points. For the iso-
tropic case, in which e = 0 [in Eq.{91)], ¢ was chosen by Eq.(132). With this
choice, the recursion relation for u, Eq.(118), becomes

>
TR S (TR Y [ —1_3 . (172)
3 (ree,p)?

A11 the arguments of Ch.VIII can now be repeated, ending up with an expansion of the
critical exponents in powers of e = 8 - d.

Similarly, the choice (144) for the anisotropic Lifshitz point yields expansions
in ¢=9/2 - d.?

IX.3. Bicritical Point

As explained in Sec.II.2, the bicritical point results from a breaking of the
rotational invariance via quadratic spin terms, as in Eq.(18). In the continuous
spin model, this amounts to replacing Eq.(160) by the more genera}?2:23

=xj
I

[ NURENCRECEE

o

| —

>
q

s¢ go gB B
+ [+ [» {+_ aZB g Sy Sy S, S, L, . (173)
G 92 G 9 9 9 -9-92G3

If we choose our recursion relations so that

e = e = 1 (174)

for all o, i.e. we rescale all spin components by the same factor
2 = 2 =
Ca 4 b s (]75)

then E£q.(119) dis replaced by
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>

! 1 1
r o= b2[r +47 u { + 2u f 1. (176)
o o ay 2 oa 2
v § § Tt

>

Similarly, Eq.(148) is replaced by n? equations for the uas's. We next concent-
rate on the vicinity of the isotropic fixed point, at which

- - 3
Uypg = u* 4K4 n¥8 . (177)
Substituting this value in Eq.{176), and linearizing about the isotropic fixed point
rx = - %—K4(n+2) u*, we find the n 1linearized recursion relations
>
Ar& = p2 [Aru - 4u* ( [ q'4 ) ar + 2Ara)] . (178)
F4 Y
q

These recursion relations have two eigenvalues. One, corresponding to the isotropic
eigenvector Ar, = Ar, is non-degenerate and is equal to b]/v, with v given by
Eq.(162). The second eigenvalue, bAQ, with

Ag = 2 - 8K4u* = 2 - == s (179)

has the (n-1) anisotropic eigenvectors with J APY = 0 [compare with Eq. (18)].

Y
A1l of these anisotropies are thus relevant, with the crossover exponent

A
= 9
¢ A

14 sm—re+0 (e2) . (180)
t 2{n*8)

There are several ways to study where the Hamiltonian flows to, when the aniso-
tropy g is not equal to zero. A simple way is based on the fact that for the
anisotropy (18), if g > 0, the variable " will grow faster than the variable
ro = rz. After g* iterations we may have r](z*) =1 and rz(z*) << 1. At
this point one may integrate the spin variable S$! out of the partition function,
and remain with an effective Hamiltonian which contains only the two spin components
S2 and S3. The coefficients in this effective Hamiltonian, e.g. Uaff? will be
renormalized via the integration over S!. Apart from this, the effective Hamil-
tonian now represents a two component spin Hamiltonian. The crossover is thus from
the Heisenberg (n=3) fixed point to that of the XY (n=2) model.

It is important to comment here that in some cases, the renormalized effective
coefficients change sign or move out of the region of attraction of a stable fixed

point. In these cases, the order of the transition may change via tricritical
. 32
points.



255

X.__ THE CUBIC PROBLEM

We devote this last chapter to a discussion of the effects of the cubic symmetry
breaking Hamiltonian, Eq.(19).23 A simple power counting shows that the leading
term in the recursion relation for v is similar to that for u, i.e.

v c p~3d v+ .. . (181)

When u = 0, the Hamiltonian decouples into n independent Ising-like Hamil-
tonians. Therefore, we expect the recursion relation for v to reduce to that
given in Eq.(148), with v replacing u. By symmetry, we do not expect a term of
order u2 in the recursion relation for v (cubic symmetry should not be generated
by purely isotropic terms). It is also not expected to find terms of order v?
in the recursion relation for u. The only quadratic terms we need to worry about
are thus of order uwv. Finally, the recursion relations for u and v become

Qv - gu- 4K4 [(nt8) 2 + 6 uv] + .... s (182)
%% = ev-ak 2w +9v2] + ... ) (183)

These recursion relations are easily found to have four fixed points, i.e. the
Gaussian fixed point,

ua’ = va = 0, (]84)

the isotropic Heisenberg fixed point,

G- e O 2
the decoupled Ising fixed point,

LN S (186)
and the new cubic fixed point,

e = & vr = glncd : (187)

C 12K4n C 36K4n

For n < 4, the flows in the u-v plane are shown in Fig.21. The isotropic
fixed point is found to be the only stable one, with exponents
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A, =-¢+0 (e2) X =:——4-e+0(ez) . (188)

Fig.21. Hamiltonian flows in u-v plane.

A11 the Hamiltonians which flow to the isotropic Heisenberg fixed point will
thus have second order transitions, with the asymptotic exponents having the same
values as if the cubic symmetry was absent. However, we should note that the cubic
interaction is also a dangerous irrelevant variable! At any finite distance below
Tc’ the cubic term will remain finite, although it will be rescaled by t|¢V|, with
o, = AV/At. Thus, the system will have well defined easy axes (along diagonals for
v> 0 and along axes for v < 0) and the transverse susceptibility will remain fin-
ite. It is only asymptotically close to TC that these cubic effects become neg-
ligible. Since i¢v| is very small, one never reaches this asymptotic limit in
practice.
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Another effect of the cubic term is to yield a tetracritical point, as shown in
Fig.10. The only effect of the fluctuations is that the two critical lines which
bound the intermediate ordered phase approach each other tangentially as T - Tc’

somewhat faster than the other two lines.l!2

It remains to discuss the flows which do not approach the isotropic fixed point.
Except for the special flows which go to I or to C, these flows go away, to larger
negative values of u or v. Eventually, they cross the Landau stability lines
uty = 0 or nutv = 0 [see discussion following Eq.(50)]. Matching to Landau
theory after 2* diterations then shows that the transitions become first order.
Thus, there exist transitions which are driven by the fluctuations to become first
order! 32,33

The Hamiltonians which flow to I or to C are now identified as tricritical,
since they separate between second order and first order transitions.

Similar structures are expected for many systems in which the symmetry is
broken via quartic spin terms.®

CONCLUSION

The aim of this series of lectures has been to review several examples of multi-
critical points, using a phenomenological description, a Landau theory analysis, a
scaling theory and a renormalization group analysis. Although we were limited to
a small number of examples, it is hoped that the reader is now able to follow the
current literature on the subject and to appreciate the large variety of possible
multicritical points.
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I. PERCOLATION
1. Introduction

Percolation problems were introduced by Broadbent and Hammersley (1957). For
reviews see Frish and Hammersley (1963), Shante and Kirkpatrick (1971), Essam (1972),
Kirkpatrick (1973), Stauffer (1979) and Essam (1980).

Consider a crystal lattice in which some of the sites are occupied by particles,
the remaining sites being vacant. Nearest neighbor particles are connected by bonds
thus forming clusters. As the concentration of particles increases the average size
of the clusters increases. Eventually we reach a concentration, the critical concen-
tration, at which a cluster of particles extends from one side of the lattice to the
other, i.e. there is an "infinite" cluster (for an infinite lattice). If the bonds
are conductors of some type, the solid will be conducting or percolating in that
current can now percolate from one side to the other side of the lattice.

It is clear that the dimension of our lattice is important. In 1-d an
arbitrarily small concentration of vacancies causes the solid to be non-conducting
so that the critical concentration is 1. In 2-d at low concentrations we have an
infinite cluster of vacancies and finite clusters of sites. At the critical concen-
tration an infinite cluster of occupied sites appears and this coincides with the
disappearance of the infinite cluster of vacancies.

For theoretical purposes it is simpler to consider percolation processes on a
regular lattice. We consider a regular array of sites, each site being connected to
its neighbors (usually only nearest neighbors) by bonds of some kind. There are two
classes of percolation problems known as site and bond percolation. In the site
problem, the sites are occupied independently and at random with a probability p and
emoty with probability q = 1-p. Near?st nelghbor occupied sites are connected by
bonds. The percolation probability P (p) is the probability that a site belongs
to the infinite clust?r of occupied sites. The critical concentration p. is the
value of p at which P is first non-zero. For p<p. all clusters are finite. In
the bond percolation problem the bonds are occupied independently and at random with
probability p and empty with probablllty q = 1-p. The percolation probability PB(D)
is again the probability that a site is connected to an 1nf1n1te cluster of sites by
occupied bonds and p B is the critical concentration at which PB (p) is first non-zero.
Some authors define “PB as the probability that a bond belongs to an infinite cluster
of bonds.

One of the interesting problems in percolation theory is that of determining
the distribution of cluster sizes in the lattice. Consider the bond percolation
problem and let Nn_(p) be the average number of clusters of size s (i.e. containing
s connected sites) at the concentration p on the lattice of N sites. Complete
information on the cluster size distribution is contained in the generating function

F(p,h) = § n ghs (1.1)

We will see that F is like a free energy and h (the variable in the generating
function) like a magnetic field. The probability that a given site lies in a cluster
of s sites per site is PS(P) =5 ns(p) and we define

A(p,h) = 2 Pse~hs (1.2)
s=1

Clearly A = -
thus

%g—. Only finite clusters contribute to the sums in (1.1) and (1.2) and

A(p,0) 1 p<pC

1-P(p) PP, (-3

fn
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where P is the percolation probability. The moments of the cluster distribution are
obtained by differentiating (1.2). Thus the average cluster size per site is

S(p) = {%ﬂi} (1.4)
h=o0

This diverges at the critical concentration and is analogous to the susceptibility
in a magnetic problem. In the site problem Eq. (1.3) must be modified. For p<p_,
A(p,0) = p and is the probability that a site is occupied while for p>p ¢
A(p,0) = p-P(p). ¢

2. Magnetic models

Percolation theory has been used as a model for the behavior of alloys of
magnetic and non-magnetic atoms. Antiferromagnetic alloys such as KMn Mgl_ F
show percolation behavior while K2Mn Mgl_ F4 and RbZMn Mgl_ F4 behave Iike txo—
dimensional percolating systems (Birgeneau et al. (1978). Blearly these alloys are
examples of the site percolation problem, with magnetic atoms corresponding to
occupied sites and non-magnetic atoms to empty sites. Assuming only nearest neighbor
interactions, a magnetic phase transition can only occur if there is an infinite
cluster of magnetic atoms. The finite clusters respond to a magnetic field and
contribute a Curie-like term to the magnetic susceptibility. As T-0°K the coupling
between the atoms is infinitely strong and the magnetic properties of the alloy are
determined by the cluster distribution. If the spins are Ising-like the spontaneous
magnetization per site is P(p)., A cluster of s sites behaves as a single spin and
thus the magnetic moment per site is

M = P(p) + ] P_tanh(Hs/KT) (2.1
s

The zero field susceptibility is given by

1 _ S
X=grlshs =5 (2.2)

In a classical Heisenberg magnet tanh Hs/kT in (2.1) is replaced by
(coth Hs/kT - kT/Hs). 1In addition in a Heisenberg magnet spin waves can exist in
the infinite cluster and a further quantity of interest is the spin wave stiffness.
The infinite cluster near p_  is rather tenuously connected and the energy of the
spin deviations can be reduCed by concentrating the changes in angle to narrow
channels. The spin wave stiffness is then reduced in the percolating system and
vanishes at p_ . The spin wave stiffness is directly related to the electrical
conductivity of a random network and is discussed further below.

3. Inhomogeneous conductors

The problem of determining the conductivity or dielectric constant of a random
mixture of insulating and metallic material, e.g. a cermet/ceramic metallic composite)
or of a granular metal which consists of overlapping islands of metal mixed with
insulator is an old one. We define a spatially varying conductivity o(r) which takes
on values appropriate to the metal and insulator and sglye for the potential distri-
bution V(r) which satisfies current conservation %-(O(T) (r)) = 0. It is more
convenient to consider the problem on a lattice and look at this equation at the grid
of lattice points. We then get Kirchoff's equation

JZoij (vi-vj) =0 (3.1)
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where i, j are the lattice points and 0ss is the conductivity between sites i and j.
The grid of lattice points is chosen codtse enough so that the ¢.. are statistically
independent. In this way we obtain a bond percolation problem in“which the bonds
are the conductors o,.. and the sites are the nodes of the electrical network. If
the conductors ¢, . have a probability p of having the value ¢ and 1-p of being zero
then the network™is conducting for p>p , the current being carried by the infinite
cluster and is insulating for p<p . A related problem is that where the conducting
elements are replaced by superconguctors and the insulating regions by normal conduc-
tors. The conductivity is finite for p<p when only isolated islands of super-
conductors occur and diverges at P, where an infinite superconducting cluster forms.

4. Exact results

Comparison of different lattices allows certain inegualities to be established
(Fisher and Essam (1961), Essam (1972))

(a) The percolation vrobability for the bond nroblem is greater than for the site
problem

PPy » PS(p) 4.1

It can also be shown that P(p) is a non-decreasing function of p and thus on
the same lattice

P, <P, (4.2)

(b) The removal of certain edges or bonds from a lattice will not change p the

fraction of occupied bonds or sites and will not lead to an increase in P(n).
Thus if L is a lattice obtained from L* by removing certain bonds

Pe(® 2P (p) Por+ <Py (4.3)

Applying this result to the 2-d triangular, square and hexagonal lattices gives

Pea ‘<pcD < Pe hexag (4.4)

and in 3-d to the fcc, bee and simpler cubic lattices gives

Pesc. € Pepee € Pe fee (4.5)

(c) The critical concentration in some 2—d_1attices can be obtained using a trans-
formation similar to the Kramers Wannier duality transformatior for the Ising
model (see Essam (1972)). Thus

() =1
p @ =1
B B .
P. (A) = l-pC (hexag) = 2sin (n/18) (4.6)

An approximate formula (Kirkpatrick 1973) for pCB in the bond problem that
works well in any dimension d is

where z is the coordination number.
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5. Bethe lattice

The bond and site percolation problems can be solved exactly on the Bethe lattice
(Fisher and Essam 1961). We will not go into the complete solution but consider
certain aspects of the bond percolation problem. With a little modification the re-
sults also apply to the site problem. Suppose R% is the probability that beginning
at a site (the origin) there is no path of connected bonds to the outer boundary
i.e. R(p) is the probability that the origin site is not part of the infinite cluster
and the percolation probability is

z
P(p) = 1- R*(p) (5.1)

For an infinite lattice R satisfies the relation
R=1-p + pRZ"} (5.2)

where the first term corresponds to the absence of a bond and the second term to the
presence of a bond but with all the bonds attached to it not leading to infinity.

One solution of (5.2) is R=1 and this applies for p<p_. For p>p. a second solution
exists and it is easily obtained close to p_ by putting R= (1-z"1P) where P is small.
Substituting in (5.2) and expanding in P gives

Plp(z-1)-1] = £ (2-1) (z-2) P (5.3)
Thus p. = E%T-and close to P.
2z(z-1)
P = (2_2) (P‘PC) (5'4)

The one dimensional case is z=2 and P.= 1. Essam and Fisher have also determined
the cluster distributions.

6. Critical exponents

In percolation problems we are interested in the cluster distribution functions
n_{p). The behavior of systems close to a phase transition is usually described by
critical exponents 0,8,y ... and close to the percolation point we define percolation
exponents a_ By

P PP

b
2-a

(Z ns(p))sing N (p-pc) p (free energy) (6.1)

s

(2 sns(p))Sing Y (p—pc) P (order parameter) (6.2)
A -Yp

(z s ns)Sing ﬂ;(p-pc) (suscept) (6.3)

s 1/8

(Z sns(p)e-hs)Sing N h P P=p. (order parameter at Tc) (6.4)

) -V

g v (p-p) P correl. length (6.5)

The subscript sing. denotes the leading non-analytic part of a quantity. In order
to justify these definitions and analogies we turn to a formulation of the percola-
tion problem in terms of a spin problem.
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7. Potts model

A great deal is known about the critical behavior of spin systems and it is
very useful to relate the percolation problem to a spin problem. The spin problem
is the Potts model and its relation to bond percolation was first pointed out by
Kasteleyn and Fortuin (1969). It is also possible to relate the site percolation
problem to a different form of the Potts model.

The Potts model is a generalization of the Ising model. 1In the Ising model a
spin is placed on each site of the lattice and each spin can take on two values
generally taken to be *1. In the Potts q state model each spin can take on q possible
values. Nearest neighbor spins have any energy -c¢ if they are in the same state and
0 if they are in different states. If e>0 this leads to an ordered state at low
temperatures. If A is the Potts spin on site i the partition function is

KJs

+h} 3§
LT LA e AL, ]
Z=Tr e (i5) 717 1

1 (7.1)

where K = ¢/kT, the first sum is over all nearest neighbor nairs of spins and we
have included a magnetic field h which acts on spins in the state A=1. The trace
indicates a sum on the q values of each spin.

We will show that the Potts model in the limit g>1 is related to the bond
percolation problem and to obtain this relation we write Z as

L) a1
Z=Tr I [1+ V8 Je * (7.2)
.. AL AL
(i3) i’73
where v = eK—l. The product is over all nearest neighbor rairs and we can regard
the factors 1 and V8 in the square bracket as representing the absence or

AiAj
171 . . . . . . .
presence of a bond connecting sites i and j. In order to weight the configurations
correctly we choose

v = P (7.3)

which relates the concentration p in the percolation problem to the temperature in
the Potts model with low concentrations corresponding to high temneratures.

When the product in (7.2) is multiplied out we generate all nossible arrange-
ments of bonds on the lattice. Owing to the factors ék s the snins on the sites
19
of a connected cluster must all be the same and on taki%g %he trace on A a cluster
of s sites and b bonds is weighted by a factor

vb[ehs + gq-1] (7.4)

In a given configuration G of B(G) bonds let Nn (G) be the number of clusters of s
sites. Then s

Nn (G)
2 =7V s Lgay 8 (7.5)
G s
where N is the number of lattice sites. For g=1
7= (1-pyN#/2 N (7.6)

where z is the coordination number. Differentiating (7.5) with respect to a and
setting q=1 we find the "free energy" per site

F(p,h) = l(é% 1nZ)q=1
ng e hs 7.7

0]
ne~-1 2
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where n_ is the average number of clusters of size s per site. This is the reauired
generating function. To summarize: the bond percolation problem correspronds to the
unphysical gq=1 1limit of the Potts model. This is a form of the well known replica
trick.

8. Mean field theory

The relation between bond percolation and the Potts model enables us to obtain
a mean field theory quite easily (Stevhen (1977)). We begin with the partition
function of the Potts model End/lntroducgha representation for the spins in which

=1, w, ... W where & = *is a g root of unity. We can then write
al , g-r
Cﬁ)\ y = 1+ z )‘i )\j (8.1)
i’ r=1
g-1
Wy =] A (8.2)
? r=1

The Hamiltonian for the Potts model is

K KN N
H/AT = -— 7 JandT - EZZA]{-Z—E-}‘— . (8.3)
(ij) r J iy a q
By differentiation of the partition function with respect to h the magnetization

per site is a»+ M where

q 1
<3 >\ > (8.4)
r=1

M =

.D|b-a

The cluster generating function is

2
InZ]

_ o
A(p,h) = "N’[aqah q=1 [aq a

+M)] - 1- (& (8.5)

99’ q=1

and is thus determined by the magnetization of the Potts model.

In the mean field theory we introduce an order parameter R = <A'>. We choose
the symmetrical solution so that R is independent of the index r (r=1...g-1).
Omitting constants the mean field Hamiltonian is

/KT = -~(xR+h) 2 AT (8.6)
r=1
where x = zK = -z In (1-p). Using this Hamiltonian the self consistency condition
R = <A™> becomes
exR+h 1
R=<__ - (8.7)
exR-'-h+q_1

We are interested in these formulae when q=1 and thus setting q=1 we find

A(p,h) = 1-R (8.8)

R = 1- e-XR_h (8.9)

Eq. (8.9) is more conveniently written in terms of A

Ao XD XA (8.10)

which is easily solved by iteration
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b (sx)s'1 -s(h+x)
A(p,h) = ] e (8.11)
s=1 :
and the cluster distribution
s-1
P = lsii}___ omSX (8.12)
s s!

This solution applies for P<p..-

The average size of clusters diverges at the percolation point ag?/ghis serves

to locate the transition point as x_ = -zIn(l-p) =1 or p = l-e Close
to critical point we approximate PS for large s and small 1-x "by
s 2
1 —(1-0
PS:W e (813)
(2ms™)
Close to P. Eq. (8.9) can be expanded in powers of R:
x2 2
R(1-x) + 5 R = h . (8.14)

The following results are then easily derived

(i) For P>P, and h=0

B
R = P(p) and P(p) = 2(1-x) ° , B, = 1 (8.15)
(ii) For p<pc R = hS(p) where the average cluster size
-y

S(p) = (1-x) P , Y, = 1 (8.16)
(iii) For p = P.
1/8

Rvh P 6 =2 (8.17)

p

Note that the form of the mean field equation (8.14) is different from that for a
magnet because the non-linear term is R“ and not M° as is a magnet. This also leads
to different mean field exponents for percolation.

The full equation (8.9) can also be solved to find the distribution of finite
clusters above P, Firstly the solution of (8.9) for h=0 determines the percolation
probability P

p=1- X (8.18)

For x<1 (i.e. p<pc), P=0 (we reject the solution of (8.18) with P<0) and for x>1
(i.e. p>p ) a positive solution P>0 exists (see (8.15). The distribution of finite
clusters is determined by A (Eq. (8.8)) and it is convenient to put

A(p,h) = A(1-P) P>p, (8.19)

Then using (8.18) Eq. (8.10) can be written

AF _ e-x(l—P)—h ex(l-»P)Ap (8.20)
This is of exactly the same form as (8.10) with x replaced by x(1-P) <1. The mean
field theory thus gives the same form for the distribution of finite clusters, Eq.

(8.11), for p both above and below P.-
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9. Scaling theories

One of the most important recent developments in theory of critical phenomena
has been that of scaling theories and that close to the critical temperature there
is a characteristic length scale for correlations. As the critical temmerature is
approached all quantities scale with this length. These same ideas can be applied
to percolation problems and using the relation between the bond percolation nroblem
and the Potts model the identification of various quantities is straightforward.
The "free energy'" F(p,h) has a singular part near De-

2-uD AD

Foing®m v Ip-pl 7 £,(0/[p-0 | 5) (9.1)
where we use a subscript p on the exponents to indicate that they are rercolation
exponents and the subscripts * apply for p>p_ and p<p_ respectively. The function
is not universal but in accordance with the universality hypothesis it can be made
so by introducing two further parameters ER and Q- The form

2-0.

- p
Fiing@h) = alel £, (hle]

D

] (9.2)

p.-D
ey . . .
) is universal excent for the narameters a, and a which must be

where € = ql(
determined for Sach model.
The cluster generating function is then given by

by A
Aging®h) = a lel 7 - £, (h/ el ) (9.3)

This form implies that all the critical exponents can be expressed in terms of the
two exponents o and AD. Thus

=Y.
s(p) = c,(1-29 P (9.4)
put pC
where
+ 'Yp
= - . - = "
Yp = 2Ap 2 +ap ; C a9y fi (o) (9.5)
Similarly
BD
P(p) = BE- -1 (9.6)
Pe
where
BD
- ey - - I '
Bp =2 ap Ap N B qoq1 f+ (o) (9.7)

Exactly at D,

P(o_.h) = En'/OP (9.8)
where

1 2-q, —1/5n

==L 1 s E=q_ 1limz f'(z) . (9.9)
$ A "0 £

b p 27
A further test of universality is provided by the amplitude ratio
1/8 1 1-1/8
R=C, PE"'B P (9.10)

+
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which should be universal due to the cancellation of the non-universal parameters q
and q, (Stauffer (1976)). The results of series expansions (mainly in 2-d) are
consistent with this result.

Finally we discuss the correlation length exponent defined by & lo-p_| ? and
hyperscaling. We suppose that the concentration,of large clusters ng is inversely
proportional to the Xolume that they occupy ie.& . Thus Eq. (9.1) for F should
be proportional to £ and this leads to the hyperscaling relation

2-a_ = dv (9.11)
P p
We can find the form of Ps by taking the Laplace transform with resmect to h
of (9.3) which gives
fp
_A A
PS s TP g(s[p-pc| p) (9.12)

This form for the distribution of cluster sizes has been well established by
computer simulations in 2-d (Leath and Reich (1978)).

The mean field values of the exporents follow by comparison of these results
with those of the previous section and are a_=-1 B _ =1, y_ =1 AD =2

and it can further be shown that v_ = 1». This latter result together with the
hyperscaling relation enable us to determine the upper critical dimension for
percolation as d* = 6.

It is also possible tc construct a field theory for the Potts model and hence
for the bond percolation problem. The field theory has a Hamiltonian of the form

H/KT = ddx[l T qilz*(x)z (x) - = Y oz, oz z* + 0( 4)]
270 °2r r 3! T] Ty T1+T) z
r=1 T T,ry 1

where z_ is a complex field with g-1 components. An important difference with the
field theory of the Ising or Heisenberg models is the appearance here of terms cubic
in the fields and this implies that classical mean field behavior is only obtained
in 6 or more dimensions. This has led to expansions in € = 6-d for the critical
exponents (Harris et al. 1975) with results such as

(9.14)

=<
]
-
+
~[m
-
™
1
—
|
~|m
-

I
N
+
oo| Lt
o,

10. Lattice animals

We have discussed the cluster distribution n_(p), the average number of clusters
of s sites per site. The probability that a given site lies in a cluster of s sites

is thenP_ = sn_ per site. We can look at this in a different way by focussing our
attentioh on the given site and asking how many ways we can form a cluster of s sites
with perimeter t including the given site. We denote this number by sg__. The

factor s arises because the given site could be any one of the s sites ih the cluster.
The perimeter t is the number of empty sites adjacent to the occupied sites in the
site problem or unoccupied bonds adjacent to the cluster in the bond problem. Trans-
lations of a cluster are not counted as distinct clusters but rotations do give rise
to distinct clusters. Thus

n, = 12; g » (1-p)° (10.1)

The ot have been called lattice animals by Domb and are more basic than the
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cluster distribution n_. This form has been used by Kunz and Souillard (1978) to
obtain some rigorous results for n_ for large s. We present here a simplified and
non-rigorous discussion of their results. Assume that for sufficiently large s, at
fixed p, the cluster numbers n_ decay like Inn_< -s®. The exponent Z = T(p) is not
a critical exponent in the usu@l sense since it is defined for all p, not only close
to p.. For p near 1 only the most compact configuritiyas with the smallest perimeter
occur in (10.1}. The minimum perimeter varies as s~ for large s. Thus

(p>1) = 1- % (10.2)

It is plausible that this result holds for all p>p . For p>0 all animals in (10.1)
get an equal weight because (1-p)~ can be approximated by 1 and n_ is proportional
to the total number Z ot animals. Numerical results from series suggest that this

number increases as s-A5. Thus for p>0 lnnS’bs InpXx and

o{p>0) =1 (10.3)

Using these results we can say something about the average number of perimeter
sites t_ for a cluster of s sites. Thus differentiating (10.1) with respect to p
we find

¢ =1p . _1p

s b n (Eg;a (10.4)
For p>pC from (10.2) the second term on the right is sC as s»» and thus
ts 1-p
lim <= 5 n>pC (10.5)

5900

For p<p. is again proportional to s for large s but the constant of proportion-
ality i§ different because z=1. This proportionality of the verimeter to the
system size has led Domb (1976) to describe the clusters as ramified.Holes or miss-
ing bonds in the interior of the material and dangllng ends are resvonsible for this
proportionality to the system size.

Not much progress has been made in determining the form of g It is simnler
to follow the reverse path and infer the scaling form of 8¢ from Ehat of n (see
Essam 1980).

11. Fractals

The word fractal was introduced by Mandelbrot (1977) to describe objects with
fractal dimension d' smaller than the Euclidean dimensionality d of the underlying
lattice q¥ space. Roughly speaking if the mass or size s of a system varies as
(length) then d' is called the fractal dimensionality and can be different from d.

Studies of computer generalized clusters show two important features which
suggest that ideas of fractals may be avpropriate to describe percolation clusters.
These features are
(1) The texture appears to be self similar: the coarse features are roughly similar

to the features of small portions of the same figure which have been enlarged.
This self similarity suggest that a single parameter may be used to characterize
the texture.

(2) Studies of clusters in which L/E is kent constant by increasing sample size L as
D>p. suggests that the self similarity is independent of p-p_ . The coarse
features (scale £) remain similar while increasing L and £ 51mp1y adds finer
details to the texture.
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A number of different definitions have been provosed for the fractal dimensionality
of a percolating cluster. For example (Reatto ggg Rastelli (1972)) the average

number of sites in a cluster s varies as (n—pcl .d,Since we may regard s as pro-

portional to the mass of a cluster we equate s v £ . This gives a fractal dimen-
sionality
d'=BT(S— d1=d—8— (11.1)
1487 v

In conclusion the fractal dimension of droplet-ramified clusters are useful catch
words (Stauffer 1979).
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II. RANDOM MAGNETS
12. Harris criterion and nodes and links picture

I now want to discuss the behavior of random magnetic alloys, i.e. alloys of a
mixture of magnetic and non-magnetic atoms, e.g. szMn Mg1 F4. In dilute magnets
we have the problem of treating simultaneously the 6ffBcts Bf thermal fluctuations
and quenched in disorder. We first consider the aquestion of whether a random
magnetic alloy will show a single sharp T or some sort of distribution of local
critical temperatures and hence a rounded transition. A second question is if it

shows a sharp T, is the critical behavior the same as that for the pure system.

Harris (1974) introduced an argument to show that if the specific heat exponent
a<0 then a small amount of randomness will not affect the critical behavior while if
0>0 then some new type of behavior will occur.

The argument is as follows: divide the magnetic system into cells of dimension
L. We choose LME so that the cells are sufficiently large to have a well defined
average concentration of impurities but are weakly correlated. Let T_be the
average transition temperature and let us estimate the fluctuations in TC from cell
to cell. We expect from the central limit theorem that

1/2,, (-d/2

ATC A (no. of impurities in cell)” (12.1)

Thus

AT~ g2 o g 7]dV/2
C C

(12.2)
As long as AT_ < |T _-T| the fluctuations in T_ will not round the transition and
this requires dv/2>1 or using the scaling refation dv = 2-0 we find

a<0 (12.3)

as the condition for a sharp T.. Only the 3d Ising model is thought to have 0>0.
Luther and Grinstein (1976) and Lubensky (1975) have studied magnetic systems near
d=4 with small fluctuations in the exchange parameters using the renormalization
group and concluded that when the Harris criterion is satisfied the fluctuations due
to a small amount of randomness are irrelevant. For o>0 they found a new fixed
point with different critical exponents.

The magnetic alloy is like a site percolation problem and let o be the vroba-
bility that a given site is occunied with a magnetic atom and 1-p that it is occupied
with a non-magnetic atom. In a quenched system the transition temperature T_(p)
decreases as p is decreased and eventually reaches zero at the critical valué for
percolation p_. (See Fig. 12.1.) For p<p_ there is no infinite cluster and no
spontaneous magnetization is possible. Thé behavior of T (p) at the two end points
has been calculated for the Ising model by Domany (1975). Close to p=1

aT_(p)
7;;———— = 1.329 Tc(l) (12.4)
and close to P,
-2J/kTC(P)
e = (21n2)(p-pc) (12.5)
-2J/kT

The appropriate temperature variable in Ising systems near p and T=0°K is e
where J is the exchange constant. This measures the probability of an excitation
which costs an energy 2J from the ground state. For XY or Heisenberg systems with
no gap in the excitation spectrum the appropriate temperature variable is T/J and we
expect near the percolation point that Tc(p)’bJ(p-pc) , i.e. a power law behavior.



272

Fig. 12.1. Phase diagram for a random Ising magnet indicating

the ferromagretic (F) and paramagretic (P) regions
and the vercolation point Pe-

Stauffer (1975) has argued that the point p=p _, T=0 is a type of multicﬁj}ﬁ¥al
point and that the scaling fields for the Ising model are Ho=p-p  and p,= e’ -
He proposed that the free energy should be a function of the scaled variable ﬁé i
where Uy and u, are linear combinations of Ky and Ky and 7 is a crossover exnonen%

A very useful picture of a random diluted lattice for discussing the magnetic
phase transition has been proposed by de Gennes (1976) and by Skal and Shklovskii
(1975). For p just above P, the lattice can be viewed as a collection of nodes
(compact clusters) which aré connected by links which can be thought of as random
paths (see Fig. 12.2). Two important lengths enter this picture. The distance

Fig. 12.2. Nodes and links picture of the infinite cluster.
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-V
between nodes is the vercolation correlation length £_~ (p-p ) L The other length
is the length £ of the random nath between nodes. We introduce a new exponent  to
describe the divergence of £ near Pe

N (12.6)

We can place some reasonable bounds on 2. We would certainly expect £ to be greater
than §_. A reasonable guess for £ is that it is of order of the number of steps in
a selfavoiding walk between nodes (Lubensky (1977); Stanley et al (1976)). This
gives

(12.7)

where v_ is the correlation length exponent for the self avoiding walk. Eqg. (12.7)
yields The following relation for [

v § [ v_n/vS (12.8)
Skal and Shklovskii (1975) have given a simple argument based on the nodes and links
picture which gives £=1. Suppose we remove a fraction (1-m) of the bonds already
present. The probability of breaking a link is (1-m)% and at the critical concentra-
tion m_ (1-m )&=1. At m_ we also have pm_ = p_and combining these results gives

€ 1 ¢ “Te c
z’v(p—pc) and hence g=1.

The argument that leads to scaling functions for the phase transition at p=p
T=0 is that on a length scale small compared to £ the lattice appears to be a collec-
tion of non-interacting contorted one-dimensional chains, On a scale large compared
with £ the true d-dimensional nature of the lattice appears. We then comnare the
correlation length £.(T) of a one-dimensional system to £. El(T) can be calculated
exactly and at low temperatures

£,(T) = 2T Ising
(12.9)
= J/T XY, Heisenberg
If &, >> % the spins are ordered and we expect the magnetic nroperties to be

determine% by the percolation theory. The magnetization M is given by the percola-
tion probability and the magnetic susceptibility is related to the mean cluster size:

Bn
M~ P(p) ~ lp-pc[ : (12.10)

-Y
XT ~ S ~ |p-p_| P (12.11)

To obtain the behavior in other regimes we assume that the free energy and other
thermodynamic functions can be expressed in scaling form

2-
. % H g
sing(P'PC;T,H) = [P‘Pc] F(TID_D IAP ) EI(T))
- C

1
T G (12.12)

where H is the external magnetic field (note that H/T is the appropriate variable
near T=0) and q_ and are percolation exponents. Other thermodynamic guantities
scale in a similBr manner, e.g. the correlation length

-V
E(p-p.,T) = |p-o | P gle/g (™) (12.13)
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Thus if ¢ >> gl it follows from (12.12) and (12.13) that

B/t
Mo (E) P
YD/C
XT v (gl) ! gl << & (12.14)
v /T
£ ?
and that the transition temperature satisfies
£, () = n[pp |7 (12.15)
or
2J .
T Vo I
T ICE ) sing
(12.16)
N J(p-pc)C Heisenberg

in agreement with (12.5).

The behavior of random magnets near the percolation threshold can be put in
terms of the Potts model and the crossover exponent f has been calculated in nowers
of € =6-d with the result ;=1 to all orders in € for Ising systems (Stevhen and
Grest (1977), Wallace and Young (1978)). This is in good agreement with experiments
on RbZanMgl—pF4 a random 2-d Ising system (Birgeneau et al (1976)).

The nodes and links picture works well in higher dimensions d 3> 3. It is
obviously wrong in 2-d where v_ = 1.365 which exceeds 7 and is inconsistent with
the model. P

For Heisenberg magnets the situation is not so clear. The recent exnerimental
data of Birgeneau et al (1976,1980) give £ v1.48. Coniglio (1981) has argued that
in the nodes and links picture it is the resistapnce between nodes which determines
the propagation of correlations and that g = ;R' where Tr is a resistivity critical
exponent.
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III. RANDOM CONDUCTORS

13. Random Resistor Networks

The problem of determining the conductivity of a random mixture of insulating
and metallic material is an impmortant one. As discussed above where we consider
this problem on a lattice we get Kirchoff's equations

goij(vi-vj) =0 (13.1)

The conductors o,. connecting nearest neighbor sites are statistically indenen-
dent and in this way we obtain a bond percolation problem in which the conductors
0, are the bonds. If we have a mixture of two materials a and b where a is a good
cdfductor and b is a poor conductor then we assume that o.. can take on two values:
Oij = 0_ with probability p and 0,5 = O with probabilitlel—p and o_>>0,. Thus p
i5” the Concentration of the good tdnduclor. There are then two inteTesting limiting
cases (Straley 1977)

(a) 0.0, 0,=0 1i.e. a metal-insulator mixture. For p<p_ the macrosconic conduc-
tivity 2 (response to a uniform applied electric field) is zero and for pzp, we
define a conductivity exponent t by

t

N - > 13.2

Lo, ep) P> (13.2)

(b) o ==, 0,>0 i.e. a supercondutor-normal metal mixture. For v<o_ only finite
isTands Ef superconductors exist and z is finite. At v _ an infinite superconduct-
ing cluster forms and ; becomes infinite. In this case we can define an exponent
s describing the divergence of X by

%

z N — p<pC (13.3)
(p.-p)
The relations (13.2) and (13.3) are sketched in Fig. 13.1.

(a)

.-
Z-1
|
o 1
P P
Fig. 13.1. Phase diagram of a random resistor rnetwork

(a) metal-insulator mixture 0a>0, 0. =0
(b) superconductor-normal metal mixture 0,5%, ob>0
(c) 03#0, cb#o with oa/ob>>1.
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(c) In the more general case of a mixture of good and bad conductors the conductivity
at p_ is finite and varies smoothly between the two limiting cases. In this case the
conductivity depends on two variables p- D and 0, /0 _<<1. We now make a scaling
assumption (Straley 1977) about the denen ence o¥ tﬁe macroscopic conductivity on
these two variables

s+t
9, (p-» )

1(0,,0,,p-p) = 0, (p-p ) f(-——;;———————) (13.4)

This scaling form is assumed to hold for (p-v )<<1 and ¢, /0o _<<1. The exnonent of
p-p  in the unknown scaling function f has beén chosen sg that the two limiting
casés (a) and (b) above are correctly described. Thus if ¢, =0 andlf(w)>0 we obtain
case (a) and if g o (p<p )} we obtain case (b) provided lim f(x)’h_.. In case (c),

P=p.> P-P must cancel in"(13.4) and this leads to X#-o
l-u_u
Z(oa,ob,o) Vo, oy , (13.5)
wher? u = ;%; . In two dimensions duality arguments (Straley 1977) give s=t and

u=5.

14. Effective Medium Theory

An effective medium theory for describing a random mixture of conductors was
developed by Bruggeman (1935) and by Landauer (1978). The inhomogeneous medium is
replaced by a uniform medium with conductors o_. The effective medium conductivity
o is chosen in such a way that the average efrect of one of the real components
embedded in the effective medium is zero. This theory is surprisingly accurate in
3-d except very close to .-

To see how it works consider the random resistor network with the good and bad
conductors o_ and o, with concentrations p and 1-p. In the medium suppose each bond
of conductivity % Carries a current im. The voltage across it is given by

oV =1 (14.1)

Now introduce a bond with conductivity o0,, in the medium under conditions of constant
current (see Fig. 14.1). The current through o,, is i_+1i' say and the voltage

A AB m
across it is Vm-FV' so that

Opp(Vp ¥ V') = i + i (14.2)

The excess current i' must flow from B to A through the effective medium by naths

avoiding 0,p. Thus (Fig. 14.1b) GABV' = -i' and from (14.2)
yroom +23 (14.3)
%A AB
It is easy to show that Gl = (é—l)o where z is the lattice coordination number.

We now require that <v'> 20 which gives the condition determining on'

<—BA__ (14.4)
g (7 oy

For the case of the mixture of good and bad conductors we get
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(a) (b)

Fig. 14.1. (a) Impurity bond in the effective medium
(b) Ecuivalent circuit of (a)

g -0 g -G,
P _._l%;Ji___ + (1-p) ___ﬂ%;ll___ =0 (14.5)
Oa+(f_l)om Ob+(—2__1)om
In case (a) where 0, =0 we find 0 = 0,(pz-2)/(z-2). Thus N, = 2/z and the exponent
t=1. In case (b) where o =~ we tind op = ZOb/(Z-pz) and thé exponent s=1. Exactly
at P and if oa>>ob we ge% omz (2oaob/z_2)V2 in agreement with the scaling rredic-

tion:

The effective medium theory can also be applied to the eaquivalent problem of
determining the dielectric constant of an inhomogeneous medium (Landauer 1978). The
result for the effective dielectric constant €n is

xl(el-em) X (ez—em)

€. +2¢ €,,+2€ =0 (14.6)
1 m

where x, and x, are the concentrations of the two comnonents with dielectric con-
stants % and . In deriving this result it is assumed that the average polariza-
tion of a spherical inclusion in the medium is zero.

The exponents t and s given by the effective medium theory are not correct. In
d=2 t has been calculated using simulation methods (Kirkpatrick 1973), real space
renormalization (Kirkpatrick 1977, Kogut and Straley 1978), and scaling arguments.
These methods give values of t in the range 1 to 1.4. In d=3 t is about 1.7. It is
expected that at d=6, the upver critical dimension for percolation, the conductivity
exponents t and s should reach their classical values. These have been shown to be
t=3, s=0 (log) from studies of the conductivity of a Bethe lattice (Stinchcombe 1974,
Straley 1977b) and by a mean field theory typve of calculation (Stevhen 1978). The ¢
expansions for t and s in €= 6-d have also been determined with the results

11 11
t =3 5e s = 45€ . (14.7)
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The nodes and links picture of the infinite percolating cluster of de Gennes
(1976) and Skal and Shklovskii (1975) is a useful one in which to discuss the conduc-
tivity of a random resistor network. We consider case (a) i.e. a mixture of conduct-
ing and insulating links. The éurrent is carried by the infinite cluster. In this
picture, after the dangling ends have been removed as they carry no current, the
infinite cluster is composed of nodes connected by effectively one dimensional links
(see Fig. 12.2). The distance between nodes is & < (p-p )_vP the percolation

correlation length. The resistance R between nodBs is p% vortional to the length

of the one-dimensional links £ and thus from (12.6) R’vo; (p-p )~% where ¢ is the
same exponent as in the random Ising model. When an electric field E is apnlied to
the network in Fig. 12.2 the voltage between links is Ef_ and the current in one
link is E§ /R. The number of links per unit area in d dimenstions is § 1-d and thus
the currenkt density J is P

2-d

J'M—J%i—— E (14.8)

and the macroscopic conductivity ) is

€
I v Lo (p-p) P (14.9)
This model thus predicts
t = (d-Z)\)p + 0. (14.10)

As discussed above € expansion gives z=1 and this is also obtained by real space
renormalization group calculations in d=2. Thus in d=6 v_ = 1/2 and t=3 as expected.
In d=2 t=C and this is in fair agreement with the values Bf t aquected above.

The nodes and links model can also be applied to discuss a mixture of sumer-
conducting and normal conductors. In this case the nodes are interpreted as super-
conducting islands which grow and eventually join up to form the infinite cluster as
PP, - The quantity R is interpreted as the resistance between ngarest neighbor
supérconducting clusters and vanishes with an exponent R'v(pc—p) 1/0b. The
conductivity exponent s is thus

s = ¢;-(d-2v (14.11)

In d=6 ¢1=2 giving s=0 (log).

Scaling theories have also been apnlied to the freauency dependent conductivity
and Hall effect (Skal and Shklovskii 1975).

The macroscopic conductivity is only defined for p>p_ . It is usually easier to
calculate critical exponents in the disordered vhase and 1t is therefore interesting
to find some quantity defined for p<p_  which can be related to the conductivity
exponent t by scaling. Cne such ocuanfity is the resistive suscentibility (Harris
and Fisch 1977) defined by

XR(¥-¥i) = [R(r,x)C(r,x)] (14.12)

where R(r,r') is the resistance between points r and r' in the same cluster and
C(r,r') =1 if r and r' are in the same cluster and is zero otherwise. In a non-
random system Xg is easi?x calculated
d 1_eJk-(r-r')
Xp(r-r!) = {dk -
R EkZ

v (JatH! (14.13)




279

where the integral is over the first Brillouin zone and a is the lattice spacing.
In a percolating system (p>p ) the factor C(rr') restricts r and r' to be in the
infinite cluster and

Xglr-t') v E~LE% (14.14)

as ]r-r'l b,

Below b, we define the average resistance of a finite cluster

.
Z X (x-1) v (p_p) (14.15)

which should diverge with an exponent (y, say). 7Y, is related to the conductivity
exponent t by the following argument: Assume XR(r-r') satisfies the usual homogeneity
relation

R

-d+— .
Xg(r-r) v [r-rr| VP f(J‘g—rl) (14.16)
D

This form has been constructed to agree with (14.15). Comparing this scaling form
with (14.14) gives

= + t-(d-2)v_ = + 14.17
R T WV =Y, L ( )
Xg can be calculated by series expansion or € exvansion (Harris and Fisch 1977).

We briefly discuss the relation between the conductivity )} of a random resistor
network and the spin wave stiffness in a random_ferromagnpet (Kirkpatrick (1973)).

In a Heisenberg magnet with Hamiltonian M = - Z J..S.-S. the linearized sovin wave
. o o] 1 1 3
equations at T=0"K are (ij)
T + o+
is; = zsz J;5(55-85) (14.18)
where 8 = + 1S . and S is the spin. The J,. are random ferromagnetic coupling

constants. f% has geen shown that for p>p wher an infinite cluster exists this
equation has spin wave like excitations with a disversion relation for small wave
vectors k

w = 2JS D(p)k° (14.19)
where D(p) is the spin wave stiffness. D(p) vanishes at P.- Eqs. (14.18) are of
exactly the same form as Kirchoff's eauations for a random resistor network in the
case where an a.c. source is applied at each site. Using a response function forma-

tion it is possible to express the conductivity in terms of the svectrum of low lying
excitations which leads to the relation

Y(p) = P(p)D(p) (14.20)

where P is the percolation probability.
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Iv. SPIN GLASSES

15. Introduction

Spin glasses are random dilute magnetic alloys, e.g. CuMn or AuF? alloys are
two well stu%ied examples (Cannella and Mydosh (1972)) with magnetic ion ?oncentraj
tions of 1077 to 10°1, At higher concentrations conventional ferromagnetic or anti-
ferromagnetic ordering is observed. These are metals and it is believ?d that the
exchange coupling between the magnetic ions is mediated by the conduction electrons
and is of the oscillating RKKY form (see Fig. 15.1). Insulating spin glasses are

Fig. 15.1. Spins interacting via an RKKY interaction

also known, e.g. Eu Sr, S. In this case the n.n. exchange interaction J. >0 is
ferromagnetic while thé Second n.n. interaction J2 is antiferromagnetic and JZZ——J .
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Experimentally spin glasses exhibit a cusp in the a.c. susceptibility at a

temperature T, called the freezing temperature. On the other hand the specific heat
does not show any singularity at T_. but a rounded maximum. Below T_. the remanent
magnetization decays slowly with time. The d.c. suscepntibility below T_. devends on
the conditions and is different if the sample is cooled in zero field afid then a
field is applied or if the sample is cooled in a small field (V5 gauss) and then the
susceptibility is measured. A review of experimental results on spin glasses has
been given by Ford (1982).

The questions that arise are (i) what is the nature of the low temperature
state? (ii) is there a phase transition? (iii) is it a static phenomenon and what
are the relevant time scales?

It is believed that spin glasses can be described by an exchange Hamiltonian
-+ >
H - gj‘]ijsi'sj (15.1)

where the spins may have either Ising or Heisenberg symmetry. The exchangs inter-

actions J.. are randomly positive and negative so that [Ji‘]av= 0 and [Ji' ]av=.J

i
where the %rackets [...]av indicate an average over the imburity configurationms.
Such materials have been called spin glasses by Edwards and Anderson (EA) (1975).
At temperatures T<Tf they suggested that the spins become frozen so that for a given
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impurity configuration <S,> # 0 where the angular brackets indicate a thermal

average. Because of the Tandom signs of the exchange interaction the frozen ground
states will not have all the spins parallel but the sign of <§5.> will vary randomly
from site to site with the result that in zero field there is fio net magnetization

M= 1/N Z <§.> = [<Si>]av =0 (15.2)
1

This led EA to introduce an order parameter for spin glasses

2
q = [<Si> ]av (15.3)
which is the average of the square of the magnetization. The quantity q vanishes
above T, and is non-zero below. The meaning of the order parameter becomes clearer
if we look at the spin-spin correlation function <S, S.>. These have the following
properties: o
(a) If we average over the random exchange interactions, spins on different sites
will be uncorrelated, i,e. [<S.5.>] = 8.. where we assume we are dealing with
spins of unit length S.“=1. this #suit’follows by making the transformation
S.—*—Si and J.k -J for all sites k connected to i. This leaves the Hamiltonian
(15.1) and the alstribﬁ¥ion of J,, unchanged while the spin-spin correlation function
changes sign showing that it must be zero.
(b) EA suggested that we should look at the spin-spin correlation function at a site
as a function of time, i.e. <S_.(0)S.(t)>. In the paramagnetic phase this will vanish
for large t as the spin becomes uncorrelated with its initial orientation. Below
the freezing temperature the spins become partly frozen and

lim <Si(o)Si(t)> = q (15.4)

Tt

is a measure of the order in the ground state. The ground state of the spins inter-
acting via the random exchange interaction is not likely to be simple as in a ferro-
magnet or antiferromagnet. In fact we expect that there are many possible ground
states of more or less the same energy i.e. there are many arrangements of the spins
which lead to a low energy.

The order parameter g is related to the local susceptibility

X = g X; ; =B§ [[<8;8,>],,-[<8;><8;>1 ] (15.5)

The first term describing the long range spin correlations is imnortant in under-
standing the susceptibility of ferromagnets or antiferromagnets. In the spin glass
both terms vanish for i#j and for i=j the first term is 1 and the second term is the
order parameter q (Fischer 1975). Thus

X = 8(1-a) (15.6)

Other attempts to describe the hidden magnetic order in spin glasses include the
concept of frustration (Toulouse 1977). Consider 4 spins at the corners of a sauare
and suppose there is an odd number of antiferromagnet bonds. Then it is impossible
to find a ground state in which all the exchange interactjons are satisfied--there
is always one spin which does not know which way to noint i.e. it is frustrated. It
is this frustration which gives rise to the expected large degeneracy of the ground
state. A well known example of a fully frustrated soin system is the antiferro-
magnetic Ising model on a triangular lattice. This model has been solved exactly
and does not exhibit a phase transition at finite temnerature. The zero point
entropy, which is a measure of the ground state degeneracy, is of order N.
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16. The Replica Trick and Mean Field Theory

The partition function of the spin glass is

B ) J..S.S,
(ijpy Y
Z({Jij}) =Tr e (16.1)

for a given configuration of the exchange interactions. The average free energy is
then

F = —kJ[an({Jij})]av (16.2)

This is called a quenched average and is the anpropriate way to calculate the free
energy of a disordered system with a fixed distribution of impurities. The other
possibility is an annealed average in which Z is averaged. This would corresvond to
a physical situation in which the impurities are mobile and during a measurement
take up all possible configurations.

The calculation outlined in (16.1) and (16.2) is difficult and for this reason
the popular replica trick is often used. It is based on the formula
n
lim [2=L
n

= [Inz], (16.3)
n>0

]av

Thus instead of considering Z we consider n replicas of the same system and calculate
[z%]... 1In practice n is taken to be an integer and at the end of calculation n is
set equal zero. There is a problem of analytic continuation from the integers n to
zero which is discussed further below. The advantage of the method is that the
impurity average is an annealed average and is easily accomplished. This is offset
by having to deal with n replicas and the averaging introduces interactions between
the replicas.

The n replicas are introduced by attaching an index & to each svin which runs
from 1 to n. Thus

n
87 Iy ¥ s‘i"s?‘ + BHZS?
2o pp e (13) o=l ia (16.4)

where we have included a magnetic field H. The exchange interactiors are assumed to
have a Gaussian distribution

2,.<2
-{J..-J )/
_ 112 TV
P(Jij) N (ZﬂjJ N (16.5)
After averaging independently over all the Jij we find (omitting constants)
z(m) = [z
B0 1 s‘i"sgh%sziz ) s‘;‘ssis‘;‘sg

s Tr e (i) (ij) o# (16.6)

The averaging procedure thus mixes the replicas. In the mean field theory we focus
attention on a single site and renlace the effect of the neighboring snins by an
average. This leads to introduce two order parameters

ma = <Sd'> . thS = <SaSB> (16.7)
and a mean field Hamiltonian
- = . agh
s}l.mF Ky g musoh Kza;qu‘BS S (16.8)

272

where K1 = BJOZ and K2 = %—6 J”z and z is the coordination number. The self
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consistency conditions determining the order parameters (16.7) are

o

a mF

Illa = TT_S__&— (16.9)
Tr e mF
Tr SaSB e_&#mF

Yo = M (16.10)

mF
Tr e
In the EA theory replica symmetry is assumed, i.e. my = m, qp = q. Close to the

transition the right hand sides of (16.9) and (16.10) are expanded in m and q and
after setting n=0 we obtain the mean field equations

m = K m- 2K _K_am

1 12
(16.11)
2 22
q = qu + K1 - 8](2 a
These equations have three types of solutions
(1)  m=q=0 the paramagnetic phase 2
(ii) m=0, q#0 the spin glass phase. From (16.11) q = (Kz—l)/SKZ and thus
the transition to the spin glass phase occurs at ka = “/z/2 7 .
(iii) m#0, q#0 the ferromagnetic phase. From (16.11)
2
Kl-l ) (l—Kz)(K1—1)+4K2(K1-1)
97 KX n, = 7 (16.12)
172 2K1 K2
and the transition occurs at kT = zJ . The transition between the ferromagnetic

and spin glass phases occurs on the line where the spontaneous magnetization m_=0.
All the transitions are second order. The phase diagram is sketched in Fig. 16.1.

SG

Fig. 16.1. Mean field phase diagram of a spin glass showing
the spin glass (SG), ferromagnetic (F) and
paramagnetic (P) phases.
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17. Infinite Range Spin Classes

In order to shed light on the EA mean field theory Sherrington and Kirpatrick
(1975 SK) introduced the infinite range model. In this model the sum in (15.1) runs
over all i and j so that each spin interacts with all the other N-1 spins. This
procedure will make sense only if at the same time we weaken each individual inter-
action so that the sum of all exchange interactions with a given spin remains inten-
sive on the average. Since this average might vanish fluctuations about the mean
interaction strength must also be appropriately scaled. To do this we define

Ui51ay = I/N (17.1)
2 ~2
[Jlj ]av IO

The infinite range pure ferromagnetic model (J=0) is soluble and its solution is
identical with the Weiss molecular field theory. The infinite range svin glass has
not been completely solved but is sufficiently interesting to discuss in some detail.
We will consider the case of the Ising spin glass so that the spins in (15.1) have
the values Si = t1. The distribution of Jij is

(3. 22y 252

-(J..-=—-) N/2J

PU..) = (Ngl/2 1IN (17.2)
1] PAIN)

Proceeding exactly as in the previous section after averaging indenmendently over all
the Jij we find (omitting constant terms of order N)

z(n) = (2",
232
L
= e Tr e (17.3)
where
22 BJ
J 8.2 2
=B T (st 0 sh ] s? (17.4)
off 1 o i i

The averaging procedure mixes the replicas. The EA order parameter (15.3) is given
by

q = lin <sJs%> (17.5)
n>0
where the angular brackets indicate a thermal average with respect to the replica
Hamiltonian (17.4). We have also assumed a symmetry between the replicas.

For simplicity we will only consider the svmmetrical case J =0, H=0. The
general case is discussed in the pavers of SK. The calculation of (17.3) is
simplified by using the identity

2w

12 1/2
2 -5y + (207 Tay
eka = —l—-fm dy e 2 (17.6)
vor
Then
BN -l N232 7 02 e ) (17.7)
Tre - (84 r(do)e 2 (xZB o8 oB

0
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where
6232 z thBSO‘SB

=Tre OB (17.8)

f(q 5)

e o8
The dependence on N has been explicitly displayed in (17.7) and suggests the use of
the steepest descent method to evaluate the integrals. The integrand is stationary
with respect to 908 when

o L
B ,232 oq -
B°J GBBZJZZ q SOLSB

o
TrSOLSBe B
- 232 0B (17.9)
BJanBSS
Tr e a<B
which is the self consistency condition for a,;. The SK solution assumes that the

saddle point in the - n(n-1) dimensional space of the qgg 1s the symmetrical one
dog = 9q- The followgng results are then easily obtained. Ea. (17.9) can be simpli-
fied by using (17.6) and the self consistent equation for q is (in the n=0 limit)

[=+]

=z
q = . J dz e ? tanhZQ (17.10)

ol

where @ = BJ m + quzz + BH and we have included the magnetic field and asymmetry
Jo. m is the magnetization and is given by

1 7 ¢
m = ———-fdz e tanhQ (17.11)
2T
The free energy per spin is given by (including the constant term in (17.3))
1,2
F = %Jomz-%ﬁzjz(l-q)z——l— fdz e 2 In(2cosh®) (17.12)
V218

From (17.10) it follows that the freezing temperature is determined by ij =1
At low

i.e. kT.,=J . Close to Tf q’b(Tf—T) and vanishes linearly at Tf.
tempera§ures
1
2,2 kT 1 kT,2
q = 1- (—TF) _j— - ‘T? (7) P (17.13)
and it can be shown that the zero voint entropy per spin is So = -k/2m, an

unacceptable result.

It was pointed out by Almeida and Thouless (1978 AT) that the assumed saddle
point 908 = 4 in the SK solution is actually unstable. This was shown by exrlicitly
considering fluctuations around the noint Qg = -

fhe SK solution is stable in a sufficiently large magnetic field. The AT
results shows that the assumed symmetry amongst the renlicas in the spin glass is
incorrect below T.. A wide variety of replica symmetry breaking schemes have been
proposed and some will be discussed below. It should be noted that the Fischer
relation (15.6) is satisfied by the SK solution but if the replica symmetry is
broken this relation will no longer be valid.
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18. TAP Mean Field Equations

Thouless, Anderson and Palmer (1977) (TAP) have attemnted to improve on the mean
field equations by using the Bethe-Peierls-Weiss (BPW) anproximation which we brieflv
describe. The BPW anproximation consider a spin and its nearest neighbors and re-
places the effects of the rest of the srins by a field h, acting on the neighbors.
This approximation takes into account some of the effectd of short range correlations.
The Hamiltonian for the central snin S0 and its neighbors Si is thus

Hpy = - g 5.5 -g h,S, (18.1)

Using the notation 805 = tanh B Joi and t; = tanhBhi it is not difficult to show that

-1
<s > = tamh [§ tanh™ (g .t.)] (18.2)
o1 2 2
B3> = g [t (1gy; ") + g (1-137) <8 >] (18.3)
1_goi i

where the angular brackets indicate a thermal average with resvect to the BPW
Hamiltonian (18.1). We define an effective field ho acting on the central snin by

-1 -1
h =8 g tanh™ (g, t;) (18.4)

In the long range case where Joi is small this reduces to

hy = g J ; tanhBh, (18.5)

which is the eguation of the Mean Random Field model.

A better apnroximation leads to the TAP eauations. For convenience let
m_ =<8 > and m; = <S,>. Again for small J . (the long range case) (18.2) is
rgplacea by 1 1 o1

m = tanh(g BJ ;t;) (18.6)

and (18.3) is exvanded in rowers of J . giving m., = t. + RJ .(l—t.z)m + O(JZ).
X - PO oi i i oi i’o
This can be solved for ti giving

_ 2 2
t, = m -8 (1-m Im_+ 0(I) (18.7)

Substituting in Eg. (18.6) gives the TAP eauations for the random magnetizations

1

~ 2 2 2
m, = tanh[B g Jo.mi-B g Joi (l-mi )mo] (18.8)

The first term on the right is the usual Weiss molecular field term. The second
is cavity field or Onsager term and revresents the effect of the cerntral spin on the
neighbors. TAP have given analytic solutions of (18.8) near T_  and, with some
further assumptions, numerical results near T=0 in good agreemént with Monte Carlo
results. These eauations have been rederived by Sommers (1978) who showed that the
TAP equations admit a solution involving the EA order rarameter and an anomalv of
the linear response (a violation of the Fischer relation). The Sommers solution is
also not satisfactory. It is unstable like the SK solution but gives a good value

for the ground state energy E0 = - X3 (comnared with the Monte Carlo result

? = -.765J). The Sommers solution has a nositive entropy but decreasing like e~
instead of the exnected T¢ denendence.

C/T
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As an example of replica symmetry breaking we consider a procedure introduced
by Bray and Moore (1978) and de Dominicis and Garel (1979). It is equivalent to the
Sommers solution and gives a positive entrony but is still unstable in the sense of
Almeida and Thouless. The vr?ifdure is a follows:

(i) Introduce 2 replicas, S and S , on each site with the following
Hamiltonian
M=o T30 (1)s ., s, (z)s (2, (18.9)
(in)
The EA order parameter is q = [<Sl(1)S (2)>] . The calculation of the free energy
is performed using the replica trick. "We reblicate each of the initial 2 revlicas
m times giving n=2m revlicas Si(1 a, Si(z)a oo =1...m. The EA order parameter
is
. 1 2
q = 1im (<5, )“si( SSH (18.10)
m>0
We can also consider 2 other parameters
- (Da, (2)8
LI PR RS a#B
18.11)
_res (Dog (DB, _ [ (Dag (28 (
Ty = [<Si S5 >]avA_[<Si 53 >]av o
It can be shown that a stationary value of the free energy is consistent with T =T,
(ii) We now extend this model by taking not 2 renlicas but p replicas on each site
Si(a) a=l...p. We then renlicate this system m times to get pm replicas
Si(a)u a=1...m. The EA order narameter is
(a)ag (bog
= [<
q [ Si Si Lv s a#b (18.12)
The other parameter is defined by
r = <si(a)“si(b)s> o#B (18.13)

This is a minimal procedure for breaking the symmetry between revlicas.

The free energy can be calculated straightforwardly as in the SK solution in
the limit m>0 for arbitrary p. It turns out that the zero point entropy and energy
are given by

S,(P) = Sg/p . E () = Egy (18.14)

where SK stands for Sherrington-Kirkpatrick. Thus to get zero entrony reauires n=«
It can be shown that the entropy decreases exvonentially at low temperatures. The
stability of this solution has been investigated by de Dominicis and Garel (1979)
and it has been found to be unstable.

More elaborate replica symmetry breaking schemes have been introduced by Parisi
(1979). It is difficult to motivate these schemes from a nhysical viewvoint although
they appear to give a reasonable account of the thermodynamics of the infinite range
spin glass model. For this reason we now turn to the dynamical theory.

19. Dynamical Theory of Spin Glasses

A dynamical theory of the infinite range spin glass has been introduced by
Sompolinsky and Zippelius (1981) and by Sompolinsky (1981). This theory is interest-
ing from a physical point of view. The static thermodynamic properties predicted by
the theory are similar to those of Parisi (1979).

As discussed above the spin glass at low temperatures is characterized by the
large number of states of low energy. Because of the frustration effects it is
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possible to construct many states of almost the same energy. These states can differ
by reversing the sign of large blocks of spins. In a dynamical theory the existence
of these states will give rise to very slow relaxation processes. Sompolinsky
assumes that the time dependence of the order narameter is characterized not by a
single (macrosconic) relaxation time but rather by a distribution of many large
relaxation times, t_, all of which become infinite in the thermodynamic iimit. These
relaxation times are parametrized in decreasing order by a parameter 0<x<1. Thus t
is longest time scale (the purely static limit) and t, is the shortest one. In
general if wxl ¢ 1/t > as N»o. We then envisage 4 vhase space with many ground
states separated by maCroscovic energy barriers b.. These barriers give rise to
relaxation times t,ve /T such that for b.<b., t./t.<<l. If the height of the
barriers bi’»AiNa Where the Ai vary cont%nu&usl% wé will have &ig ti=oo and

&i& ti/tj + 0 if Ai<Aj' With these vroverties the thermodynamic proverties of the
spin glass phase will be dependent on the distribution of relaxation times.

The EA order parameter was defined in {15.4) as the time persistent part of the
average spin-spin correlations. We now define a generalized order parameter

g(x) = [<Si(o)Si(tX)>]av (19.1)

which measures the amount of correlations which have not decayed at the time scale
t_. Thus q(x) is expected to be a monotonic increasirg function of x with a maximrum
value q(1) = ag, which is the frozen correlation measured in a finite time.

Another order parameter is the susceptibility measured at a freauency wx’htx_

t
X

X(x) = Rex(w) = J x(t)dt (19.2)
0o

It is convenient to write this in the form
™) = (1-qg,) + A(x) (19.3)

The order parameter A(x) is the slow resnonse due to overturning of large clusters
and is a decreasing function of x with its maximum value A(o)} corresvonding to the
purely static susceptibility x(o).

The order parameter (x) and A(x) are assumed to be continuous as they are sums
of a large number of contributions from a broad range of time scales ranging from
the static to finite time limits. This implies that

aq(x)+0 as x>0 (19.4)

in zero field, showing the comple decay of spin-spin correlations at the longest time
scale and

Ax) >0 as x>1 (19.5)

reflecting the validity of the Fischer relation and linear response theory at the
short time scales. The Sompolinsky theory thus predicts that the time demendent
susceptibility on a time scale large commared to microscopic processes but small com-
pared to macroscopic ones, appbroaches a auasi-equilibrium value Ty(1) =1-q A- The
suscentibility then very slowly relaxes to its true equilibrium value Tx(o§=1-q +A(0)
The order parameter A provides a clearer definition of the spin glass transition than
g as it measures the response of the system to a field, No estimates have yet been
made of the time scales or the rate at which slow relaxation occurs. In principle it
is possible to measure qp, and A(o) as functions of T from measurements of the sus-
ceptibility. Low field measurements in spin glasses (Guy (1975) and Nagata, Keesom and
Harrison (1979)) do exhibit a slow relaxation of the susceptibility from a non-
equilibrium value X, towards an equilibrium value ¥ . The above discussion has been
for long ranged systems. In 3d short ranged systems relaxation times may be finite
even in the thermodynamic limit.
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V. LOCALIZATION
20. Electrons in a random potential

In this section we are going to discuss the proverties of electrons in a random
potential. In solid state physics we generally learn that a conduction electron in
a metal sees a more or less periodic potential. The resulting electron states in
the metal are modulated plane waves or Bloch states. We will refer to such states
which extend throughout the metal as extended states. In order to understand the
electrical conductivity of metals it is necessary to modify this picture to include
the scattering of the electrons by impurities (elastic scattering) or by rhonons
(inelastic scattering). This scattering is usually treated as a perturbation on the
motion of the electron by writing a Boltzmann equation with a collision term or if
you are more sophisticated by the Kubo formula. The effects of scattering are often
lumped into a collision_time and this leads to the well known Drude formula for
the conductivity ¢ = ne“T/m. It is essential in order for a metal to have a non-zero
conductivity as T»0°K, that the eigenstates of the electrons in the presence of
scattering extend throughout the system. If they do not an electron initially in a
particular region of space cannot diffuse out and there will be no conductivity.

In contrast to the above situation Anderson (1958) argued in his classic paper
"Absence of Diffusion in Certain Random Lattices! that it was natural to expect that
for sufficiently strong disorder the electron eigenstates would be localized in
regions where the potential is favorable. Away from this region the wavefunction
would drop off (perhaps exponentially).

It is difficult to vary the amount of disorder and it is easier to think of
varying the Fermi energy. At low energies the states are localized while at high
energies the states are extended. Separating these two regions Anderson suggested
is an energy, E , the mobility edge where the transition from localized to extended
electronic statés occurs. If the Fermi energy EF<E at T=0°K only localized states
are occupied and the material is an insulator at T=0°K. If E_>E_ the extended states
are occupied and the material is a metal. The nature of this transition is of con-
siderable current interest.

This problem has some features not present in percolation models of conductivity.
In percolation the motion is classical and a particle can only enter those regions
which are classically accessible. In the quantum mechanical case this is no longer
so because a particle may tunnel from one region to another. An interesting conse-
quence is that it is not possible to have localized and extended states coexisting
at the same energy. Suppose we had a localized state in some region of the material
and in some other region there was a band of extended states, the energy of the
localized state falling within the band. Some small matrix element would always
exist between the localized state and the extended states and owing to the nrecise
degeneracy would mix the localized states with the extended states.

Some experimental systems that are being investigated are
(i) Granular metals - A metal is evaporated on a substrate in an atmosphere of
oxygen so that we end up with a mixture of metal and oxide. The corcentration of
metal can be controlled.
(ii) Mosfets - These are made by coating the surface of a semiconductor with oxide.
A metallic electrode is then formed on the oxide and a voltage avplied. This causes
the conduction band to bend and electrons povulate the surface states. The electrons
can move parallel to the surface so the metal is effectively 2 dimersional. The
disorder is provided by the rough surface and the concentration of electrons can be
varied by varying the applied voltage.
(iii) Other systems studied are cermets (ceramic metal mixtures) and thin wires
and thin films which are discussed helow.

21. Minimum Metallic Conductivity

An interesting approach to this problem mainly develoved by Mott and coworkers
(1974) is the concept of minimum metallic conductivity or maximum metallic resistance.
We have the picture of electrons propagating in a veriodic lattice occasionally making
collisions with impurities. Two important lengths enter this picture
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(i) The de Broglie wavelength of the electrons

-1
A -~‘Y1/pF _'kF (21.1)
where p_ and k_ are the Fermi momentum and wave vector resvectively. The phase of
the electron wavefunction changes by 2m in a distance 2mA.

(ii) The mean free path £ = v_ 1. The electron wavefunction loses phase coherence in
the distance 2. It is argued that the above picture loses its meaning when the mean
free path becomes comparable with the wavelength A. This leads to the Yoffe-Regel
criterion that when #vA i.e. kpkwl a transition from metallic to insulating
behavior will occur.

When this condition is combined with the relation between the conductivity and
the mean free path 0 = ne“1/m some very interesting results are obtained. It is
interesting to consider separately the_case of 2d and 3d metals.

(1) 2d - The electron density n = kF /21  and thus
e2
0= 5 (kFl) (21.2)

According to the Yoffe-Regel criterion the minimum metallic conductivity is

Opin = €“/2th independent of the material and depending only on fundamental constants.
eg/Znﬁ ~ 4 1073 ohm™! which corresponds to a maximum metallic resistance of 25,000
ohms. Thin metallic films have been studied by Bishoo et al (1981) who found that
high temperature extrapolations for the high resistance curves all tended to converge
to about 30,000 ohms. 3 2

(ii) 3d - The electron density n = kF /31" and

2

0= ——k_(k.L) (21.3)
2 F*°F
3T h 2
which leads to a minimum metallic conductivity Omin'b—g——-kF which is inverselv oro-

portiqpfl to,the de Broglie wavelength. This now depeHds on the material. If we
take kF’b§0— cm, the interparticle spacing, the maximum metallic resistivity

_ I
Prax = ~.2
was reached the material would make a first order transition to the insulating state.
It is now generally believed that the transition is continuous.

anv 10_3 ohm cm. Mott suggested that when this value of the resistivity

22. Models

It is useful to introduce a few models which we can use in the further discussion
of localization.
(1) Anderson tight binding model. In this model we have regular lattice. The
amplitude of the wavefunction on site i is a; and satisfies the Schrddinger eauation

Eai = g2, + z Vijaj (22.1)
The e. are the energies of the state on sitesand V,. is the honping matrix element
usually taken to be non-zero only between nearest neighbor sites. The e. may be
random (diagonal disorder) or the Vi' may be random (off diagonal disorder) or both
may be random. J

As an example let us assume that the g, are independently and uniformly distri-
buted over the range -W/2 to W/2 and V,. = ¥ for nearest neighbors only. The ratio
W/V measures the degree of disorder. rough estimate can be made of the rate at
which the amplitude of a localized eigenstate falls off from its maximum value.
Consider an electron which in the 1imit V+0 would be localized at a site whose energy
€, is near the center of the band. Then the amplitude on a neighboring site j is, to
1owest order of perturbation theory, aj'vV/(sj—ai). Since the denominators can range
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between *W/2 a typical value is W/4. Since there are z neighbors, where z is the
coordination number, the rate of fall off of the amplitude is determined by the
smallest denominator which is of order W/4z. The condition for the convergence of
the perturbation theory is then

4zV
w <!

The amplitude would be expected to fall off exponentially.

More generally we would expect a phase diagram of the form in Fig. 22.1.

|, 74"
L
E
>
z E/V
Fig. 22.1. Phase diagram for the Anderson model showing

extended states E and localized states L

(1i) Schrodinger equation with random notential. The one electron Schrodinger
equation is

2
B 0 v 1y = Byl (22.2)

The potential is usually taken to be a sum of random placed notentials with nossibly
also random strengths

V@@ =] vi(?-Ei) (22.3)
1

We hope that the exact nature of the model and the form of the disorder are unimmor-
tant, i.e. we hove that there is universality near the mobility edge in the same way
that the critical behavior near 2nd order phase transitions is universal. For this
reason we will generally use the Anderson model in our discussion.

What quantities should we look at to decide whether we have localized or
extended states? This information should be contained in the Green's function

a.(a)lz
1
Gi5(Ey) = g E,-E, ~ (22.4)

where ai(a) is the amnlitude of the eigenstate with energy EU at sitej, E, = Exip
where n"is a small real nositive quantity and + refers to thé retarded or advanced
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Green's function. G is the Green's function for a given configuration of the
impurities and its analytic proverties in E should be different for localized or
extended states. For localized states G will have noles on the real axis (nerhaps
densely distributed) and the residue at a nole gives the sauared amplitude of the
state at site i. For extended states G will have a cut on the real axis. (An
exception is the case of the Anderson model with infinite range interactions where
in the absence of randomness G has noles at E=0, NV but the states are extended
over all N sites).

If G is averaged over the distribution of random elements it is believed that
the distinction between localized states and extended states is lost. Thus G,. does
not have any singularity at the mobility edge and amalytically has a cut along the
real E axis. The discontinuity in G across the real axis is the average density of
states which is believed to be smooth at the mobility edge. This has not been
nroved rigorously. There is one model in which it can be worked out in detail (the
Lloyd model) in which the distribution of site energies in the Anderson model is a
Lorentzian

- Y/

€ *Y

The Green's function has its poles either in the upper half or lower half plane
depending on whether we take E; in (22.4). The Green's function can then be averaged
over €. by closing the €, contour either in the lower or unper half planes. This
corresponds to replacing’e, > ; iy wherever it occurs. From (22.1) the average
Green's function satisfies

(Etly)Gij + ]z( vikaj = sij (22.6)
which is easily solved by taking Fourier transforms. For a d dimensional hypercubic
lattice

R
: Lk (7-5)
G

1
= = _ 22.7)
rs N 2 Etiy + 2V(cosk_+ cosk ... (
& LY+ 2V(cosk + cosk )

It is not difficult to show that G and the density of states have no singularities.
The Lorentz distribution is of course very special but the same result is believed
to be true for other distributions.

Recently Wegner (1981) has proved rigorously that the average density of states
is positive under conditions that the distribution of site energies is finite. This
is important because it rules out theories of the mobility edge in which there is a
singularity in the density of states at the mobility edge, e.g. it was thought that
the average density of states may vanish at the mobility edge.

On the other hand the d.c. conductivity is given by

2
o=-= % 1 (k'k') GCKK'E+in)G(K'KE-1in) (22.8)
Kk*

2
6mm
The average now involves retarded and advanced Green's functions and the above
method doesn't work.

23. One-dimensional Systems

The effects of disorder on the eigenstates depends in an immortant way on
dimensionality. It is generally accepted that in 1d systems all states are localized
if there is an arbitrarily small amount of disorder., A review of 1d systems has been
given by Ishii (1973).

A rough argument for localization in 1d due to Borland (1963) goes as follows.
We take the Anderson tight binding model and ask the following question: We begin
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at one end with amplitudes a_and a, and ask how the mean sauare amnlitudes behave a
distance L along the chain. "This iS easy to work out in detail. We rewrite the
Schrodinger equation in transfer matrix form (assuming V=1)

. a.
SEENCO N (23.1)
a. 1 OJ a; ; a.

a. E-€, -1] a,
1 1

i

i-1
We can iterate this relation beginning at one end:

a a a
R IOt £ N I VIS B (23.2)

a a a
L o] [o}

On the right we have a product of random matrices and a theorem due to Furstenburg
tells us } at under almost all conditions the amplitudes increase exponentially, i.e.
O where L is related to the localization length. The states we have
constructed in this way are not eigenstates but Borland argued that an eigenstate
could be constructed by matching the magnitudes and sloves of exponentially growing
states from each end. This matching would only be possible for certain values of
the energy. These arguments have been made more rigorous (see Ishii 1973). The
initial value problem can also be solved in higher dimensions (Stephen 1981) but the
matching problem is more complicated as the eigenstates are not ordered in increasing
energy.

The calculation of the resistance of a 1d system is closely related to the above
initial value problem. The resistance pj of a segment of length L can be expressed
in terms of the transmission Ty and reflection R, = 1-T| coefficients (Landauer 1970)

21 Cl—
e2 TL

oy = (—) -1 (23.3)
o?

The inverse transmission coefficient can in turn be expressed in terms of the product

of transfer matrices introduced in Eaq. (23.2). At the band center (E=0)

__m +
pL = ;5 (TrMLML— 2) (23.4)

A slightly more complicated formula holds away from the band center. Calculating
the average of (23.4) is simple because each scattering center may be averaged
independently. The result is that the average resistance increases exponentially

— . L/Lg

ppve (L>L0) (23.5)

Thus "Ohms law'! for thin wires should read

0 =p, 0 (23.6)
Ltk 7Ly,

We all know that Ohms law applies to wires. The reason that we do not generally see
these effects is because measurements are made at finite temperatures. The above
calculation only took elastic scattering into account and only abplies at T=0°K. At
finite temperatures inelastic scattering processes can occur and an electron in a
localized state can be inelastically scattered into a nearby localized state and
eventually make its way to the other end of the wire.

In order to observe the above effects of localization on resistance we must
satisfy two conditions (i) L>L, i.e. the length of the wire must be greater than the
localization length. (ii) L >Lo i.e. the inelastic scattering length must be
greater than the localizatidh® ength. As an example consider No.50 Cu wire which



294

has a resistance of 34 ohms/meter and a diameter of 20 u. The localization length
is that length with a resistance of 2mh/eZ = 25000 ohms i.e. L, n 25000/34= 1000
meters. This is out of the question and we need a material of high resistivity and
small cross section. We expect Lo’bAl/aZ where A = cross sectional area, 2 = mean
free path and a is a microscopic length (v the interatomic spacing). Recently such
thin wires of W-Re alloys have been fabricated by Chaudharl and Habermaier (1980)
and Giordano et al. (1979) w1§h res1st1v1t1es of 106 ohms/cm. This corresponds to
a localization length Lo’vlo' 1073

The second requirement that the inelastic scattering length %jpe1> L, is more
difficult to satisfy. Suppose that the time between inelastic collisions is T;.
This could be due to phonons or electron-electron interactions and is the average
time in which the energy of an electron changes by more than the energy difference
between localized states. The electron diffuses a distance %4 = ﬁi?; in the time
Ty Ehe diffusion constant is related to the conductivity by t the Einstein relation
o=& Sp, Experimentally it is found that T, ~vH/KT. It is believed that this
comes from scatteglng from localized two level 1mnurity states. Thus for Ehe W-Re
wires %351 V51077 s em and %3,V only at very low temperatures TN 10° It
is d1ff1cult to attain and make measurements at these temperatures because of heating

effects.

We can estimate the effects of localization at higher temperatures using the
following simple model, Thouless (1980). Divide the wire with sections of length

Qinel'

9. /L
Each section has a resistance proportional to e inel ©.1 and the total resistance
is
L. /L
o vt (e Y0y (23.7)
inel

For £. <Lo we expand the exponential and the first temperature correction to the
res1s%ance is
1

[ -
Ap _ Tinel 2
- i VT (23.8)

Thus the resistance should increase at low temperatures. A small increase in p (of
order 1-2%) has been observed by Chaudhari and Habermaier (1980) and Giordano et al.
(1979) with the temperature dependence of Eq. (23.8) (this was how it was obtained).
In addition L_ is predicted to be inversely proportional to the cross sectional area
of the wire and this is also observed.

A final comment on the resistivity at T=0°K where it increases exponentially
with length is that it is statistically not a well behaved quantity. This is almost
obvious from the fact that it is a product of independent random quantities (the
central limit theorem applies to a sum of random quantities). It can also be shown
explicitly that the fluctuations in the resistance grow exponentially more ravidly
than the average resistance (Abrahams and Stephen 1980). It has been shown Anderson
et al. (1980] that log(l+p;) is a statistically well behaved quantity obeying a
central limit theorem. Further it is additive for large L

log pL1+L2 = log le + log pL2 . (23.9)
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24. Scaling Theory

A successful scaling theory of the conductance has been developed by Abrahams,
Anderson, Licciardello and Ramakrishnan (1979) and in this section we will give an
outline of their work. We will use the Anderson model as an illustration. In this
model, as discussed above, there are two important parameters: W which measures the
degree of disorder and V which measures the coupling between nearest neighbor sites.
For a given Fermi energy E_ for large W/V we expect localized states and small W/V
extended states and somewhere in between is the m7211ity edge. The localized states
are characterized by an exponential envelope “ve where £ is the localization
length. At the mobility edge &+~ and the states become extended. The extended
states are characterized by a non-zero conductivity or diffusion constant. The
distinction between localized and extended states is only clear on a scale L>f i.e.
it would be necessary to make measurements on a sample of size L>f in order to
determine whether we have localized or extended states. Thus the size of the samvle
is important.

We now consider what happens to the parameters W and V as we look at the system
on larger and larger scales, Thouless (1978). Consider a block of material of side
L and volume L% in d dimensions. The average spacing between the energy levels
determines the scaled parameter W' and is

_ B L
W' = an Ld (24.1)

where (g%) is the density of states per unit volume.

The new coupling V' of the states in the block to states in a neighboring block
is determined by the hopping rate from one block to the next. It can be written,
using Fermi's golden rule

ﬁ

v =B o onju? 22

(24.2)

where M is the matrix element between states on the left and states on the right,
M= <w IT|y,> and T is the coupling between the blocks. This is a reasonable model
for a granu%ar metal.

We can now relate the ratio V'/W' to the conductance. Apply a Dgten51a1 ¢ to

the left hand block. The excess number of electrons on the left is (aE)L e¢ and the
current is
2
e’¢ ( )L (24.3)
where %—is the hopping rate. The conductance on the scale L
_ _ A, dn d
G(L) = I/g = (?) ® GO
- (%—)(V'/W') (24.4)

Thus the dimensionless conductance g(L) = G(L) determines the parameter of
interest, V'/W'. These kind of arguments _?éd to the provosal by Abrahams et al.
that the only important parameter in the theory is the dimensionless conductance
g(L). This parameter determines whether we have localized or extended states. For
localized states the matrix element M in Eo. (24.2), which devends on the overlap of
states on the left and right, will be exponentially small, i.e.

g(L) n e'L/E (localized states) (24.5)

For extended states M ~ Ld‘1

-1 . .
/Ld =1 7, i.e. the area divided hy the volume and h-%L
This gives

d-
g(L) v L 2 (extended states) (24.6)
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This is, the result which we expect because the conductance of a metal is
(L) v—5 oL™ "~
g o2

Now consider the conductance on the scale bL i.e. we join bd blocks of size L
together. The assumption is made that the new conductance only depends on the old
conductance and b (if L>)

g(bL) = %(HLD (24.7)
By letting b = 1+¢ we can write this in differential form

ding _
dinrs - °(® (24.8)

We have only considered systems of finite size L so we expect the beta function B(g)
is a smooth function with no singularities. { describes how g changes with scale.

The asymptotic forms of B(g) follow from (24.5) and (24.6). Thus in the
localized region from B(g) vIng and in the extended region B(g) = d-2. If we
smoothly extrapolate between these limits we obtain Fig. 24-1.

Fig. 24.1. Sketch of the expected form of B= dlng/d1lnlL

We now consider some consequences of this picture in different dimensions.
(1) d=3. Suppose we begin at some length scale L, with conductance g If g
as we increase the size we eventually find gL }.e. metallic behavior. If g <g
as we increase the size we eventually find g’\le'L Eie. insulating behavior. °Thé
mobility edge is g, where B(g ) =0. The correlation length exponent v is related
to the slope of the beta func%lon at g, Thus if we linearize the relation (24.8)
about g. we get

SIRE - (g-g B (g) (24.9)

This is then integrated from initial values go,Lo to g,L giving
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Blg. 8,8
gl) = g [1+G) e -] (24.10)
o] c

A scaling hypothesis now enables us to relate the correlation length exponent to the
conductivity exponent. The scaling hypothesis is that

g(L) = £(L/8) (24.11)
EF—E Y
where £ is the correlation length and diverges as & " ( E C) . Matching (24.10)
c
and (24.11) (with go—gc'hEF-EC) we find v= ETL__' Above the mobility edge for L>>§

c
we have metallic behavior and f(L/E)%(L/g)d‘z. The d.c. conductivity is given by

2
o =5 12 dgng2-d (24.12)

The conductivity exponent is thus t=v (d-2) (Wegner 1976).

(2) d=2. This is the marginal case. Whatever conductance we begin at because
B<0 we eventually end up with insulating behavior. Thus no true metallic behavior
should occur in d=2.

It is possible to do perturbation theory for the conductivity in the weak
scattering limit. The usual Drude formula for the conductivity comes from summing
the ladder graphs. The next corrections to this result have been discussed by
Langer and Neal (1966) and come from crossed graphs. These latter graphs have been
summed and found to diverge logarithmically. The result for the conductivity is
(Abrahams and Ramakrishnan (1980))

2
o=0_ --1n (L/2) (24.13)
o] 2
A
where £ is the mean free path. The 2d dimensionless conductance g = g, - J? InL/& .
T

This size dependence of the conductivity has not been observed but recent
experiments on 2d films have observed a log dependence of the conductivity on
temperature and voltage (Bishop et al. (1981)). These experiments can be interpreted
as follows.

(i) At finite temperature?/ghe length L should be replaced by the inelastic

scattering length QinelrbT_ (see Eq. 23.8)). Thus the conductance should depend
on temperature as
g =g +— 1T (24.14)
o] 2
27

The universal constant —L~is also in1§ood agreement with experiment (when the
temperature dependence Tof l'ne T4 s assumed) . This, however, is complicated
by the effects of electron—e}ec%ron interactions which give a similar log temnerature
dependence to the conductance in 2d.
(ii) At finite voltages the experimental results have been interpreted in terms of
a heating model (Abrahams et al. 1980). The Joule heating is related to the tempera-
ture by oE2 = CT/T.n 1 where C is the specific heat (CvT). Thus E4nT3 (using
T, VvT™H) and su%s%1tuting
inel
g =g +— InE (24.15)
o 2
3m

which again agrees with the observations.
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25. The e-expansion

The conductivity and correlation length exponents have been calculated by
Wegner (1980) by an e-expansion in € = d-2. The leading term in this expansion can
also be obtained from (24.1 ). The dimensionless conductance in d dimensions (d
close to 2)

A d-2
£=—7H¢0
€
kil d-2 e2
= =5 oL “[1- in L/g] . (25.1)
o] 2
e fmoo

The beta function calculated from this is

B =d2-— (25.2)
mg
. 1 1 2 2 .
Thus B=0 gives 8. = —jr————-and B'(gc) =z =T (d-2)". The correlation length
exponent is m°(d-2) g,
1 1
v = g7, " a2 (25.3)

and the conductivity exponent is

t=(d-2Jv=1 . (25.4)
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LECTURES ON CORRELATION FUNCTIONS

Alexander L. Fetter
Institute of Theoretical Physics, Stanford University
Stanford, CA 94305 USA

I. X-RAY SCATTERING

Correlation functions play a central role in analyzing anc understanding the
properties of condensed matter. One familiar example is the use of x-rays in cry-
stallography, but similar techniques also apply to scattering of visible light and
neutrons, both of which have provided much basic information on various types of
phase transitions. Although the relation between measured properties (for example,
intensity of scattered radiation) and the ccrrelation functions is relatively direct
it is not always spelled out in detail, and it seems useful first to consider a
simple concrete model of x-ray scattering from a collection of atoms. We shall
work in a classical picture here. The physical quantity of interest is the electric
field of the incident electromagnetic wave, which acts on the electrons, setting

them into motion and thereby inducing electric dipole radiation (Fig. 1.1).

&

Fig. 1.1 Geometry of x-ray scattering

Suppose there is an incident plane wave (we mean the real part here, as is

common in E. § M.)

(h.r--wt)
~ -~ A
Elex)=Ece . (1.1)
The induced current j(r,t) = j(z)e_lwt oscillates at frequency w with a harmonic
factor e_lmt. The corresponding radiated vector potential has the same factor
-iwt :
e and an amplitude k]
1SS BVALY baiol o
Al)= & (0 22
PR c |v~_v-/
X-c (1.2)

where the integral runs over the volume of the target. Now j(r) is a sum of contri-

butions from all electrons of the form

ie)s Z, (-e)y §(r-g
2(") 70y Sleeg) (1.3)
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where Vi and_gi are the velocity and position of the ith electron, and we have
approximated}"i by the average position ignoring the amplitude of the motion (which
is permissible if the incident E field is weak). The velocity'xi has a phase fac-

tor e?ki!i since it arises from the electric field at that point. Furthermore, the

distance ls—s'l = r-?-s' + ... for a distant observer at r, and the resulting vector
potential takes the form
eikr .kl )
—ik.
/\({) ~ S‘,Pr' e ~ - )}(r’)
~ rc ¢ -
ei.ﬁv
- , iq.r
- e t°€{<k,k)2e}_ .

(1.4)
where (Fig. 1.2)

o
PR

k

1=

Fig. 1.2 Wave vector q transferred to the target.

~ ~ (1.5)
In quantum-mechanical language, ftiq is momentum transferred to the target. Note
that ~
= i
'i‘l Lhom(i0) (1.6)
where © is the angle between k and k' (assuming that |kl = k'l , which is generally
accurate for x-rays). Thus q > 90 for © + 0 (forward scattering) and q » 2k for
&+ 1 (backward scattering). The scattered vector potential has several factors:

eﬂqyrc is the outgoing spherical wave, E is the incident E field, f(k,k') is the

3
"scattering amplitude' for a single electg;;, and finally, the sum over i contains
all the properties of the multielectronic system. This last factor is the quantity
of interest here.

It is a straightforward exercise in electrodynamics to find the energy flux
radiated by the system and, dividing by the incident energy, one can get the dif-

ferential cross section for scattering by the target; it takes the form

.g-— = a o | L%.r' *
da da Zz e~

a.7n

where is the Thomson cross section for scattering by a single electronl.

as|
daQ'T
For unpolarized light with frequency high enough that hw exceeds the binding energy

of the electrons, the Thomson cross section1 for 1 electron is %—rg[l+(ﬁ~§')2], but
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the details do not matter here (note: ro = ez/mc2 ~ 2.8 x 10-13 cm is the classical

electron radius).
The basic point here is that the cross section for scattering from an assembly

of electrons differs from that for one electron by the factor
iq- 2
I z, e"} L
S

If we introduce the electron number density

- (1.8)

ngte)= I, 8e-x;) (1.9)

is given by

then the Fourier transform of nel

Moyl )= §°\3‘ e nale) = 2% e HH (1.10)
and it is clear that neg(;k) = nel(h)*' Thus the basic factor of interest is the
squared modulus of nel(ﬂ) , allowing a direct study of the electron density in the
sample merely by studying the angular dependence of the differential cross section.

The preceding picture is fine for a plasma, but in most cases of interest to
condensed matter, the electrons are collected into atoms, whose charge density can
be described by an atomic distribution —eno(z) for an atom at the origin. Conse-
quently, the total electronic density can be written as a sum of the densities from
individual atoms:

Ngle) = 2_3- nolr-Rj)
(1.11)
where Ej is the position of the jth atom. Here we assume that each atom is identi-

cal. The Fourier transform of nek(r) now becomes

ag ) = Zp fd T (re))

= 23 Qxf(*l%-gj) no(})
(1.12)
where no(g? = f dsre-iﬁfz no(z) is the Fourier transform of the electron density in
the single atom. This is assumed to be known or calculable from atomic theory.

The quantity no(q) has some simple properties:

Lo wlg=0) = (& n (x) = 2 (1.13)

~

where Z is the number of electrons in the atom.

2. Define the "atomic form factor® fq by the relation

~

il

1
{} = Y\O(})/ V\O(ETO) = -Z_ Y\O(cb.) (1.14)

By definition:
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s g
{ N fdre ~ r\o(o!_)
3
‘:b_' f&\r nolg)
- (1.15)
and it is expected that | f | <1 owing to extra interference in the numerator.
As a result, our basiC quantity of interest may be written:
A% X, 2 - In * Il
I Z‘:Q_ ~ Tr “(}) s
_ 92 1S %R
= Z H}l ,Z;',e ~ =% (1.16)

where the sum over j runs over all separate atoms. Here we act as if the atoms were
fixed in space. In fact, they move about owing to thermal motion, and we really
need to take an ensemble average, denoted <-- f> ; in a quantum mechanical pro-
blem, the angular brackets will also include an appropriate quantum expectation

value. The differential cross section for x-ray scattering thus becomes
de-

4 2 P2 [ La.R. 12
3 ﬁ'TZ H}I <|Zée391| > (1.17)

and the last factor contains all the information on the position of the atoms in

the medium.

It is convenient to introduce an atomic density n(r) defined by

nir) = Z’i S(:‘Ri)

(1.18)
Evidently, its Fourier transformis n(q) = 22 g—"jz'g;} 5 and the desired factor in
Eq. (1.17) is just the quantity
; %
(n(pn(—})> = {nlg) wig) > (1.19)

Alternatively, it can be written as the double Fourier transform of the density-

density "correlation function" (r\(g;)vd:‘)):

. 1
<'\L}) \'\(”1-)> = Y‘l}" ’\SV‘I e‘.}‘(!m}:) < wir) V\(:/)> (1.20)
Thus all one can ever get from x-ray scattering is a determination of the density-
density correlation function.
For an extended target, the number of atoms N and volume V both become large,
with their ratio N/V fixed. Hence <r\(,\:)) ;N/V =n , and it is more interesting to

consider the density deviations, defined as

7\({): Y\\:)-(v\'t_r_D = nle)- o, (1.21)
It follows immediately that
Ri)Riehy = <ntg) g - ot
(1.22)
and this latter function is more properly called the density-density correlation
function, for it vanishes as |r-¢‘| — ocoand, more generally becomes small for all

|y -¢'l if the atoms are uniformly distributed with no correlations. Further-



306

more, for an extended system with translational invariance, this function depends
only on the relative separation r-r', except near the boundaries. It is conven-

tional to introduce the "static structure function" S(q) by the definition

- —~i%-C ~ ~
Slg) = h'fdjve~~“<v\c,‘:]h(°)> (1.23)
where we make explicit that <&(g)R(x’)> depends only on r-r'. We will see that

all the x-ray scattering information can be expnressed in this one function S(q).
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II. TWO-BODY CORRELATIONS
To understand some of the properties of the static structure function S(q), it
is helpful to introduce the "two-body correlation function'" for N atoms in a ;édium
with volume V
N N
ploer = < T, 00-8) Zﬁ:ul 8(1"25)> 2.1
This function is proportional to the joint probability of finding one atom at r and
another, distinct atom at‘z' (note the restriction j ¥ i). It can be written in

terms of the density ngs) by adding and subtracting the terms with i = j.
N
#le,e) = <Y\(g)h(£')> - fizl <S(["B;)S(}_"~gi)>
= <l Ing)> = Qe ) {ale)d. (2.2)

For a uniform system, this function depends only on r-r', and it is usually expressed

in terms of the '"pair distribution function' g(r-r') according to the definition:

3r) = W p(x,0) (2.3)
In a real liquid, it is reasonable to assume that g(z) approaches 0 as r > 0, since
two atoms cannot occupy the same spatial region, and that g(r) - const for r -+ =,
because there is no long-range order in a fluid. [The situation is different in a
truly infinite crystal, since the differential x-ray cross section has DBragg peaks,
reflecting the long-range order in g(z,r').]

To study the behavior of ggz), consider the integral
ja% [3(;)-—'] = (4% W)y - wSie) -]
SEIN Cno)d = - = V]

n

(2.3)
Note that g(r)-1 has a well-defined spatial integral even in the thermodynamic
limit (N + «, V » o, but N/V fixed). Thus we conclude that g(r) must approach 1
as | v»| —> oo. Furthermore, g(r)-1 has a well-defined Fourier transform. Indeed,

a simple calculation gives
f B ¥ g)-1]
= "T [43'- e—kj',': [(r\(r) ‘n(o\)—hz - hS(}:)_]
n

= # {A’r YL (R Re)) - L

n
(2.4)

But comparison with Eq. (1.23) now shows that the integral is just nS(q), leading



to the basic relation
S(}) -~} = n {o\gr e—k'}.: l:f)(;)-—\] (2.5)
Thus any measurement of S(q) is also a measurement of the pair distribution function
(in a liquid, g(r) is isot:opic and often called the radial distribution function).
Equation (2.5) shows one important property of S(q), namely that it approaches 1 as
H} | ——> og - This arises from the rapid oscillations of the integrand on the
riEht—hand side; more formally, it follows from the Riemann-Lebesgue lemma
because S(0)-1 is well defined and S(q)-1 must then tend to zero as %> oo For
an isotropic fluid, the angular integ;als can be performed explicitly to give
s

S(qb)- | = %Ty\ fo v Adv Sin % [%(r)- l] 2.6)

but this form offers few advantages over (2.5).

One other property of S(q) follows from Eq. (1.23), by writing the integral as

r-¢f
X-g

- 3 -cpele-g) A -
S(g) =n" fé(:-z')e ¥ <REYR D (2.7)
Since <h(_\:)\r\(;‘)> depends on r-r' only, there is no dependence on (r+r')/2 and we
can integrate over this dummy variable, dividing by the volume V. A change of

variables with unit Jacobian then yields

S(})

1

(wV)™ gdgr el AT PR LRI RGN

(nV)™! fdsr FRNORS SIS 2 [-<V\(,L") “(.‘:l»—hz]

)

]

N <n(%) \r\(—p> -N93
B 5 350

(2.8)
where we use box normalization to introduce the Kronecker delta in the last line.
Note that for ¢ 7‘: 0 , the quantity N S(q) is precisely that determined in x-ray
scattering [see Eq. (1.19)]. Furthemore, q i: guaranteed to be nonzero since other-
wise the photons would not be scattered at all. Thus any x-ray experiment of the
sort considered always measures S(q) directly. Working backwards, it also measures
g(z)—l through Eq. (2.5). These rglations are widely used.

To this point, all our correlation functions have been expressed in terms of a
first-quantized description, but it is often preferable to introduce the standard
second-quantized operat.ozs. It will be convenient to apply periodic boundary condi-

tions and to use either ‘f"(:) that destroys a particle at r or a )‘that destroys

k
a particle with momentum + b and spin A . These operators are related by the
eguation
~ -y Lher
(e) = ~=
\I)o( E) v Zk)\e (q 7\)-( Q'k)\ (2.9
where vz N is a spinor for spin state A and & denotes the particular component.
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The narticle density n(r) then becomes the second-quantized operator

Aie)= 2 Cf"j(;) ‘?’d (r)

(2.10)
and its Fourier transform has the form
a 3 —ihee A +
n(\z)zfclre T owig) = @ a
2 x) Z‘yx FEY TR (2.11)

In this language, it is easy to see that Eqs. (1.20)-(1.23) remain correct with n

reinterpreted as a second-quantized operator, and that the two-body correlation
function in Eq. (2.1) becomes

Ve z, e ety S

Pple,c) = Z IR NS R A

“p A (2.12)

It is an interesting exercise to evaluate p(r,r') for an ideal gas at tempera-
ture T = (knpf'and chemical potential I in the grand canonical ensemble. Use of

Eq. (2.9) and the orthogonality of the spinors readily yields

: . t 4 ;
-2 - -C(-f-g)-: H "‘é):
i) =V pa L e e X <a fa. fa.va >
Ehppt AN RN %X Tea/ (2.13)
Furthermore, it is not difficult to prove that grand -canonical ensemble averages in
an ideal gas obey a form of Wick's theore 2. As a result, the operator factor may

be rewritten

tg 1 a _ + o T
<Qh)\ QE’X CLI’): (\f}\> - < Q}})\ O‘f)\> < QE‘)\I Qg/)‘/>
+ <<1£; Qf,)‘,>< Qk,x:rog”}

= 0, °(§
n—h)hhlkl( k‘f ng’ + Sffl Sf’\o:lg)\x)

(2.14)
Here “h(;: <Qk;\f Q,b:)‘> is the momentum distribution in an ideal gas
o - (€0 ~p) - =
N C (efnHz1) (2.15)

. . : 3
and the upper and lower signs refer to bosons and fermions, respectively . A com-

bination of these results gives

- ) =R ) (c-x)
'P(:’E‘] =y~ * fh'&' ZﬂM, Y\h: N (l '—*’SM'Q - )

2y~ -2 [ Q ’L(k'“‘f-':l)'(:"'sl’

2

a? + (2s+() (2nr3fA3heLE'&“£)7\€

(2.16)
where 2s+1 is the spin degeneracy.
Two special cases are easily evaluated.

(1) For an ideal classical gas, Eq. (2.15) becomes
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o _ _ B~ - Beg
New =Y =el e Be (2.17)
where
= W a5 (2.18)
and
A= upRY/m) " = (R e, T ) (2.19)

is the thermal wavelength. The resulting integral can be evaluated by completing
the square in the exponent and gives
2 -1 12 2
' = - = = 2s+! ~le-¢
-‘o(l\:‘)i] = T;(: o) n [Ii( +1) e\p( le-c'1%/ A )]

2~ wr as b —> 0 for ]‘r_‘—}:’];{;o

(2.20)
Thus the pair distribution in an ideal classical gas is just g(r) = 1 [see Eq. (2.3)].
Correspondingly, S(k) also = 1 for an ideal classical gas.
(2) The other simple case is an ideal Fermi gas at zero temperature, when the

distribution functions again become simple

ny = Ok, ~k) (2.21)
with 8(x) a unit step function and &'; = ‘b\lle;/Zm = M~ . The corresponding integrals
are easily evaluated in spherical polar coordinates to give

glri= |- 2oel [ {RF k" dle  sin ke ]’-
n 6 2W|F ke
2
- .
= 1 = (2541 [ 33|(kpf)/ kFrJ (2.22)
where 4 (x)= iQ(SmX"X cos %) is a spherical Bessel function and we have used the
Lo 3 2 -
relation V\:\zF(’-‘*')/(oT\ . Note that g(r) = 2s(2s+tY' as r — 0 and approaches
1 for kF r >> 1. This reduction below the classical value of 1 reflects the
Pauli exclusion principle which keeps particles with the same spin projection apart.
Since kF_1 ~ wf‘” is comparable with the interparticle spacing, each particle is

surrounded by an "exchange hole" of radius roughly the nearest-neighbor spacing.
For spin 1/2, the corresponding g(r) has the approximate behavior shown in Fig. 2.1
with the first zero of jl(x) occurring at & 4.49.

In principle, the Fourier transform of Eq. (2.22) gives the static structure
function, but it is simpler to work directly with Eq. (2.8), interpreted as a seconc
quantized expression. For q 0, use of Eq. (2.11) and the generalized Wick's theorem

gives

N7 <R ) W )Y
N LT

S (ck)

n

t +
, Q@
N N e, Qf\>

~ ~ -

Y <a‘r"
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= M" (25+\) Z,f Y\x+; (1 "Y\g)

sl )
= = N7 (2511) Zf “f*‘}i N

(2.23)

?Lr\ )

el

)’ka

Fig. 2.1. Pair distribution function for ideal spin 1/2 Fermi gas at zero tempera-
ture.

The last sum is just that needed in evaluating the first correction to the ground-
state energy of an electron gas [see Ref. 2, Eq. (3.35)] and gives
(3x-x3)/2 x= R/2kp < |
S(h) = { ( x= RILEE > (2.24)

for the static structure function of a degenerate Fermi gas. Note that S(k) has a

S(k) IT

b e . e = = -

L > k/2b
1

Fig. 2.2. Static structure function for ideal Fermi gas at zero temperature.

discontinuous second derivative at ZkF, and that it falls below the classical value
(1) for k € ZkF’ again reflecting the Pauli exclusion principle.

It is interesting to compare these simple models with the behavior found in
real systems. Figure 2.3 shows the form of S(k) for liquid 4He at T =~ 0K and
the corresponding g(r) obtained by numerical integration. Here the hole in g(r) at
small distances arises from the hard repulsive cores in the interparticle potential,
and the peaks reflect the predominance of nearest neighbors and next-nearest neigh-
bors. Typically, S(k) has peaks associated with the characteristic Fourier compon-
ents of the density correlations. Similar features are seen in classical liquids

such as Argon.
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Fig. 2.3. Schematic static structure function and pair distribution function for
liquid 4He at T = 0 K.

1
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III. Neutron Scattering

In addition to x-ray scattering, which is one of the oldest techniques for
studying condensed matter, many other probes exist. Here we shall consider one
particularly valuable and versatile one — neutron scattering. " The basic observation
is that the interaction between a neutron and a nucleus is strong but short range

(= 10_13cm). Thus the scattering amplitude f(k',b) for a neutron to scatter from

k to k' has the characteristic wavenumber scale 1013 cm'l, and can be approximated
by its long-wavelength (low-energy) value —a whenever the neutron wavelengths are

large compared to 10713 cm. Here a (L‘:lO_l3 cm) is the s-wave scattering length for

scattering off a bound nucleus. For example, a neutron with leV has k & 2;(109 cm'l,
so that the product Re. is indeed small. To study the scattering, it is convenient

to follow Fermi and introduce a "pseudovotential™

Vie-y.) = 4mat S (r-c.)

il
4 2w ¥ (3.1)
for interaction between the neutronat r and the fixed nucleus at Ij' In Born

approximation, the scattering length a_, for Eq. (3.1) is precisely the exact value

B
a. Thus this potential, used in Born approximation only, gives a correct low-energy

description. For an assembly of identical spinless atoms, the total interaction

potential with the neutron is
4Rt s %
x = —_— o {r-c.
Mo () = o 240 ;})
(3.2)
and the sum over j may be recognized as the atomic number density n(r). Hence

H®® has the second-quantized representation

IN q kS
; L S
\_.\l*(\” = - V\(‘\:) .
~ 2, (3.3)
To study the scattering by a target with volume V, we introduce incident and
. R ~y, e AN .
final neutron wave functions SU *e ~ = N and Q h@ ks QA/ where  is

the quantization volume for the neutron and presumably exceeds V. The corresponding
matrix element of Eq. (3.3) for a transition with the target states |i> > [f> is

o g&gr o R 7>\’T <y ﬂ“(:) iy etks 'R

T 7
B S LIRS T EPII PN
T, SL A
= Mmekt 5 <FERT ]y
2w, SL
(3.4)
where q = k—kf is the wavevector transferred to the target. The generalization to
spin-d;pendent scattering is straightforward, as is the inclusion of different
nuclear isotopes4. The transition rate from an initial state |i{kk > to a final

state If,k'X' > is given by the golden rule as
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[ RN BN e | s (e E )
(3.5)
where Ef and Ei are the target energies and hw Z(V\l/lm.\)( hl" IZ) is the
energy lost by the neutron. A typical experiment does not measure the final target
state, so we sum over f. Moreover, the initial target states are distributed accord-
ing to the probability e_BEi/Z, where Z is the partition function. The cross sec-
tion dzo for a transition to a final neutron state in an interval AEI z 3k an?
is obtained by summing over these states, averaging over the initial neutron states
(assumed unpolarized), and dividing by the incident neutron flux \gel/fL: fkk/ﬁmﬂfl
s ]
o s B ) £ 7 5, T, | Aagio
3,/ Q
x S(tw—E_g_s-#E;) Z"'e—ﬁE» J(in);i mt:h P

(3.6)
we see that {0 cancels out. Simple manipulationsthen lead to the double differential

cross section

d*  _  Na*l/ -
do‘dw k S(%’w)

for scattering into a final solid angle at Q', with energy loss hw. Here S(q,w) is

(3.7)

the "dynamic structure function"
£
-t -/3 e
= e
Stger= (N2 Z . a5

Note that Eq. (3.7) factors into a projectile part and a target part, with all the

g(m__«f_'i_)

(z)l

properties of the target contained in S(q,w), which is effectively the relative pro-
bability that if the neutron transfers m;mentum hq to the target, it will also
transfer energy hw. ~

Evidently, SQ&,w) is very complicated, for it involves the exact target eigen-
states. Nevertheless, it has some very simple properties that can help guide one's
intuition.

1. If q = 0, the neutron does not scatter; thus we may take q # 0 in general.
In that case, the Fourier component n(q) is that for the density fluctuation opera-
tor n(ﬂ) because the constant density <n> has only the q = 0 component in a

extended uniform medium. The frequency integral of S then becomes
* ~f&
g diw S(Ijto) = (NZ) Zj ;e
-3 ~

=(ND'Z, % GIRIf ) <l R g1 1y

n (})TI 0

(n2)' Z, F5 <L|v\c%m(p 16>
N7 <h(%]h(1) >

0

(3.9)
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where the third line follows from completeness of the target states and the last
from the definition of a thermal ensemble. Comparison with Eq. (2.8) shows that
this quantity is just the static structure function
Sw dw 5(%,w) = S(g)
. ~ ~ (3.10)
Hence neutron scattering also can measure S(q), which is effectively the relative
probability of scattering with momentum lossﬁﬁq, irrespective of energy loss.
2. The delta function in Eq. (3.8) can beNQritten as a Fourier integral over

a dummy variable t:
- Lo iwt - EL . . ~ -
Sqpe) = (Nl [ ar o™ e LRI IR0

% QrP[L(Ei-E.F)’L/’F\] (’3\-11)
Furthermore the last factor can be rewritten in terms of the exact hamiltonian H of

the target, including all the interactions:

~ . ALY A ST YN
RIS ene[ e -EQ K] = <il e R ey

This last expression is just the matrix element of the time-dependent Heisenberg
operator <4| :\H(%_)-t')l-?>. In this way, Eq. (3.11) becomes

P Lwk - £, vl re ~
S g 00 = (N [T ak ™ T e PRl R g R ol

ol

- o int s ~
= ey [Tar T G g RTg0)

(3.12)
again using completeness. Thus S(q,w) is the time Fourier transforn of a time-
dependent density-density correlafzon function. Introducing the space-time opera-
tors ;H(E,t), we obtain

S(},“) = (ZTKN)" g&.‘:Qth {o(ar o\lrl Q,L Lo LR (\' £ v\ (v O)> (3.13)
expressed in terms of the space-time correlation between density fluctuations at
gz,t) and Q{',O). Thus neutron scattering provides a direct measure of time-depend-
ent correlations, in contrast to the static correlations seen in x-ray scattering.

The dynamic structure function has an important symmetry under the transforma-

tion (q,w) *~ (-q5w). To derive the relation, consider
- = - RE. N
Sloque) (N1 Z, P IR gl £y <ol At o>
€, -£
§(w+ V\—)

Since a(q) = ﬁT(—q), this double sum can be rewritten as follows by interchanging
~ ~

the dummy variables i and f:

S(‘},‘u):(t\li)”z‘: ~le'F (-F‘n (% ;.)(,;| 5‘\(‘1‘:“‘(:) S(w - E;;E~ )
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The delta function requires Ef = ho + Ei’ so that this last equation may be recast

in the desirec form

S(-g,-w)=e mPRe

S(%)w)

(3.14)

In an isotropic medium, S depends only on |q|, so that Eq. (3.14) then takes the
_Bfi_w

simpler form S(%—u) zﬁ“°50%|a) At low temperature, the factor e vanishes for

@w > 0, indicating that S(gq,w) is exponentially small for negative frequencies. This
merely reflects the simple observation that the neutron can gain energy only if the
target is initially in an excited state, which becomes very improbable as T - OK.
One final general property of S(q,w) is an important sum rule for the first
frequency moment. Consider the integral

g do w S(ibjw) = (NJZT\) ZT e

-

_RE. |2
& *|<¢| NI

(E-E)

Assuming that the system has inversion symmetry under the transformation q > -q, we

can rewrite the right-hand side as
anzhi 7, o« RE § <Al RISy (6-E)<olR Ty
+ A AT IE D (E,-E) <F1 8 (1D

= e[ hey, [R, ?ﬁ(p]] >
(3.15)
where ﬁ is again the full hamiltonian of the interacting target. Since the density
operator ﬁ(z) commutes with the potential energy operator 0 for a velocity indepen-
dent interparticle potential, the only contribution to Eq. (3.15) is from the kinetic
energy %-— Z (t\l l/zm )Q Q,E‘)\ . A straightforward calculation using Eq.

(2.11) eventually yields the remarkably simple answer

g"*&w w S(};"") = "\%/‘lmm (3.16)

which must hold for every value of q. It places quite severe limits on the allowed
form of S(q, ). -

It is instructive to consider the form of S (q w) for an ideal gas with parti-
cle mass m. The relevant matrix elements of the number operator (2.11) can be

written
: . T -
Al RIS RIREITS = Z, T oy oy <R o gapy ]t

Furthermore, the exact eigenstates of an ideal gas are direct products of normal-
mode states, so that | f > must have one less particle with quantum numbers pA' and
one more with E + ﬂ,k', and the operators with EA must then restore the iniézal
conditions. Hence we require k = P and A = A'., In addition, E4~EA :@iVim)[(k+l)EMj
= (ol Y k- 3+ + L) independent of any details of | f > . We may now use complete-

ness of the states | f > to evaluate S (q,w) as
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o 'Y t T _ R
S (%_,L.D) = N ZEX<QE}‘ QE*%))Q‘E*%,%akA) %(w t‘}‘k/m“ t"cb- /Zvv»‘)
= QsONT Tl Rge /- By am) n 2 (1E 00 (3.17)
where n 0 is the ideal gas distribution function (2.15) and Wick's theorem has been

k
used as in Eq. (2.14). Although Eq. (3.17) can be evaluated explicitly for any T

and y, the expressions are cumbersome and we shall here treat only the classical
limit in detail. In that case, the occupation numbers are much less than unity,
so that SO(q,w) has the classical limit [see Eq. (2.17)]
O( ) = lSrlg SL 'b\‘a 'b\ ) ("/‘“ fgk
9 w) = w- e/ - YViwmle
H (ml % (3.18)

A straightforward calculation gives
\ 312 2 2
%b(cb)"’) = (_\MT‘) 2xp [‘ —?YL__‘(‘*’ = ::J‘—) j
= 3 Rgl 2% kgl (3.19)

where Eq. (2.18) has been used. It is easy to verify that this expression satisfies

the symmetry relation (3.14) and the two sum rules (3.10) and (3.16). Considered
as a function of w at fixed q, Eq. (3.19) has a peak at the quasielastic value
h%t%) :'ﬁi;'/ZH\ , which is just the kinematic relation between the energy and
momentum of a single free recoiling target particle initially at rest. The width
of this peak is of order q(k T/n) 1)( NEDSE , where < v2 1/2 is the rms velo-
city in the gas. Hence the ''quasielastic peak" in S (q,w) measures the internal
motions in the target.

A similar picture of an ideal gas holds at all temperatures, with the quasi-
elastic peak at wo(q) broadeded by the mean velccity of the constituents. In
particular, an ideal Fermi gas at zero temperature has a quasielastic peak with a

w1dth of order Qv where v is the Fermi velocity. For q >’2k the corresponding

S (q,w) is parabolic, and vgnlshes identically outside certain k1nemat1c regions.
This behavior arises from the sharp Fermi surface and differs considerably from the
Gaussian tail in the classical limit. The detailed calculation of So(q,w) for this
case can be found in Ref. 2, vp. 159-163, and the comparison with data from elec-

tron scattering off nuclei is illustrated on p. 194.
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IV. LINEAR - RESPONSE THEORY

X-ray scattering and neutron scattering have one important feature in common,
for each can be treated as a weak external perturbation on the target. It is help-
ful to take a more general view of this situation, by considering an arbitrary weak
perturbation ﬁex(t) that is turned on at some time tO (hence i = 0 for t <It0)

It is convenient to work in the Schrédinger picture, where the state vector
|fP5(t)>> is explicitly time dependent. This is just the usual description of
elementary quantum mechanics (see Ref. 2, pp. 53-59 for a discussion of various
pictures). If ﬁ is the full hamiltonian of the interacting system in the absence

of the perturbation ﬁex’ then the exact state vector obeys the Schrddinger equation
A
.a -— -
sl Bw) = BT 107
A
before H™® is turned on. Thus for t < tO’ l‘PS(‘k)> is given explicitly by

“I—’s(t)> = e MR T, (4.2

A A A
For t >’t0, however, the total hamiltonian is H + Hex(t), where H™® may have expli-
cit time dependence associated with finite frequencies or other behavior. As a

(4.1

result, Eq. (4. 1) must be altered to
0 T2 ~ ex RN .
t o)) =[Re AT@)] 3w koky o

where | f?s(t):> is the new state vector that satisfies the modified Schrodinger

equation.
. Aex . . AU I .
Since H™ is to be considered weak, it is natural to try to expressl 9%'} in
terms of ISE5:> , given in Eqs. (4.1) and (4.2). In particular, we shall seek a

solution in the form

|, 00> 4.4)

A
where A(t) is an operator to be determined. Evidently, K(t) =1 for t <:'t0. The

_A.Hi./‘t\ A(‘L) lq/ (0>

equation for X follows by differentiating with respect to t:
T U P . -ifiz
n 2 _ 2 CHE /4 o :
£ vy |TSH\)> &T\bt [.QA A('L)]|k1/(o)>

= e*‘ﬁt/t [ HAG) 4 ih = Au)] AT

"

Since the Schrodinger equation (4.3) implies that the left-hand side is also equal

A A -‘,l-\ii; A .
[H+ H“tt)]e * /t\A(ﬂlfs(o)>
a little manipulation yields

AR 2 t Ald) = Q‘;’(MA(M

to

(4.5)

where
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L0t A : it /4

A= e A1) e
(4.6)
expresses ﬁex in the Heisenberg picture with respect to the fully interacting but
unperturbed ﬁ. Equation (4.5) has the same form as that for the operator ﬁ in the
interaction picture, and it may be iterated in exactly the same way. To lowest

order, we find

A~ N t n
A(i)=l-/—£—§ a;t’HeH"(t’)+---

%o (4.7)
where the integral vanishes if t < tO because the integrand does so. It follows
from Eq. (4.4) that the corresponding exact state vector becomes

e —;Qtﬁ\ H * , Doex ,]l-
l“fs(*)> x e [' T R Lo‘“ H, () \ts(°)> (4.8)

The physically interesting quantity is the matrix element of some operator
A A
0(t) in the presence of the perturbation H®®. This may be expressed in the

Schrodinger picture as

COmY, = (0l O] T80

; Ao A%/t
¢ (o[ 1 (T ar A a) e Bt
o
- ;?(t/%\ _ H T Ao ,
x € [ | %—— Jtod‘t H: (% )] l\fs(o)>
~ {F o] O,®)|F, @)
- t L, A Aew _
- itk ‘<°£H(o)] ft dt’ | 0,(2), HY, (t)] | ‘.i:‘H(o)>
[¢]
Ao ARt A g —ifkk - (4.9)
where OHU‘) = e Os t) e is the exact Heisenberg operator of

the unperturbed system, and we have noted that ISPS(O):> = IQPP.(0)7> . In parti-

cular, the change in the expectation value of the operator a(t) is given by
§<EN = <omy,, - (06
TS A A ex
= - ik Jtodt Loy, Y aN]) (4.10)

and this formula remains correct for finite temperatures if the angular brackets
are interpreted as an ensemble average. In this way, the linear response of the
operator a(t) is directly expressible in terms of a retarded commutator (since
t' <t).

To make this abstract expression more concrete, it is helpful to consider the
special case of a one-component charged system (electrons in a metal, for example)
with a charge q per particle and subject to an external scalar potential ¢eXQ£,t).

that is turned on at tO. It follows from elementavy electrostatics that the in-
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teraction energy is given by
A ' [3 ‘
Brcnn = g (20 5,000 470
H (4.11)
To characterize the linear response, we may consider the change in the density it-
self
N 'JV\‘I * /fdzr' ["' = Iy ]> q 952)‘(?' +)
E¢R,t)) = -& [ dt < MWk, ny (K LR
Te (4.12)
where the time integral can run from -op since ¢ex vanishes for t <.t0, anc the
change from A to the fluctuation in density does not affect the commutator. We now

introduce the retarded density correlation function

LR ~ ~ .
D (et,r' 1) = 6(1-2) <[V\H(g,1~), Y\H(g,',t)]> (4.13)
where 8 is the unit positive step function. Equation (4.12) then becomes
RS I VR ,
& (nlgyt)) = ‘( dk fdjf D Cex,x't’) % ¢“(L'Ji~')

—aa (4.14)
where the step function in DR allows the t' integral to run to +».
In a uniform homogeneous bulk system, DR will depend only on r-r' and t-t', so

that it has the Fourier expansion

3
D‘R('\:—ﬁ’,f‘*lj = Lk [ do

(23)3 2%

Pl lr-y) —iw(k-#

)
. DNCIR

(4.15)
Expressing ¢ex(£,t) as a Fourier integral, we readily find the corresponding res-
ponse of the system at wavevector X and frequency w:
FCR ) = WD ) ¢ 67 (ko)
(4.16)
Note that DR is the exact retarded correlation function for the fully interacting
system at some temperature T. Thus it is not exactly calculable except in special
simple models. Nevertheless, the important oroperty of causality [the step func-
tion in Eq. (4.13)] implies that DR(k,m) is an analytic function throughout the
upper half @ plane. This follows b;vinverting Eq. (4.15)
Dlk,w) = [Tak T D 1)
(4.17)
If w= Wt Lh)z, then DR(k,m1+iw2) contains the exponential factor exp(—wzt),
which vanishes rapidly for t -+ « and @, > 0. Furthermore, the nth cerivative
(A) D) = i [Tartt e e D e
dw ~! o (4.18)
is well defined for ®, > 0, so that one may construct a Taylor series at any point
in the upper half w plane, indicating that DR(B,m) is indeed analytic for Im w > 0.
Although DR(k,w) can be quite complicated, one's intuition can often help in
inferring its detailed form. For example, a charged plasma is known to exhibit a

)VL

long-wavelength resonant response at the plasma frequency Jlrz {qnv\%ﬁ/n\ with

weak damping constant y. As a result, DR(k + 0, w) has a pole near ww= i-flf - Y
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properly located in the lower-half plane. One corollary of this behavior is that
the cross section for inelastic scattering of an electron by a metallic film with
the emission of a plasma oscillation has a Lorentzian peak near QD with width vy (see
Ref. 2, Secs. 15, 17, and 34).
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V. DYNAMIC COMPRESSIBILITY

In contrast to the finite-frequency plasma cscillations found in a charged
system, a neutral system is expected to exhibit compressional density waweswith a
long-wavelength dispersion relation w = uk, where u is the speed of sound. To study
such phenomena with linear-response theory, it is necessary to formulate the appro-
priate %ex that incorporates the response to an external pressure variation. Consi-
der a small volume element V with N particles. The usual expression for the work
done in a process that changes the pressure and volume by small amounts is

S = - p3V (5.1)
where 8V is the change in the volume V of the element. Since the number density is
just n = N/V, the change in volume is related to a change in density by &V = —NGn/nz.

Thus the work done on the small volume element becomes

SW =V dn/n
(5.2)
For an extended region, the total work is just the spatial integral
SW = (&% (prm,) OX
(5.3)

where we think of keeping the mean density ng fixed and hence have introduced the
density fluctuation n measured from the mean background.
When Eq. (5.3) is combined with the first and second laws of thermodynamics,
we may write the change of internal energy E as
3 ~
SE = T8S + (& (p/n,) 8% 5.4
Correspondingly, the change in Helmholtz free energy F = E-TS becomes
SF=-5sT + (&' (p/n,) oK
(5.5)
These relations have the important consequence that the internal energy is to be
considered a function of the entropy S and the number density T (or the Helmholtz
free energy a function of T and 7). Unfortunately,'ﬁ is not a very convenient
variable to control externally, and it is therefore preferable to make a Legendre

transformation from n to its conjugate variable p/no. Thus we consider the

"enthalpy"
E=E - (& pR/n,
(5.6)
whose change is immediately given by
SE =155 - [ #e®/m)bp
(5.7)

This last term is to be interpreted as the appropriate perturbation on the system

when the pressure is the variable under our direct control, and we infer that the
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correct perturbation hamiltonian for an applied pressure variation (Sp(l;,t) is
0% = - (% Wir, k) ng! Szr(;,t)
(5.8)

As expected, the system lowers its energy by increasing T in regions where Sp is
positive. This formula (and its derivation) is wholly analogous to the faniliar
magnetic expression -u*B for the perturbation energy of a magnetic dipole U placed
in an external magnetic field 13.6

Equation (5.8) is now in a form analogous to Eq. (4.11), and we may inmediately

conclude that the induced density response is given by

R Uk,0) 2 T4RU = = (hngy ' D) Splhe)

(5.9)
Here dp(k,w) is the Fourier transform of the perturbation in pressure, characteriz-
ing the component at wave vector k and frequency w. In the long-wavelength, low-
frequency limit, the ratio betwee; 8 and 8p is related to the compressibility X =

“V-.’ b\’/)f as follows
X N . _Ne 3

= = w
S ¥ dp Y Y v 2P "o (5.10)

Alternatively, we may define a generalized compressibility '&L(k,m) for particular

Fourier components (k,w) by the relation

Vx(!t\_,w\ = Y\o-‘ M) = - ——'{—Dk(k,w)
51.,(}:.‘@) n, (5.11)
This equation is very important, for it shows how a generalized susceptibility (here
the linear density response to an external pressure perturbation) is expressible in
terms of an exact correlation function for the unperturbed but interacting many-
particle system. We shall study the corresponding magnetic example subsequently,
relating the generalized magnetic susceptibility to the retarded spin-density cor-
relation function. Since these correlation functions undergo profound changes in
the vicinity of phase transitions, one anticipates that the corresponding generalized
susceptibilities will exhibit similar alterations, typically characterized by
various familiar critical exponents. In this way, calculations of critical ex-
ponentsare related to calculations of the corresponding correlation functions.

One simple case of Eq. (5.11) is to consider the low-frequency or static limit,
when the particle motion is expected to be isothermal rather than adiabatic or isen-
tropic. Thus we obtain an expression for the wavenumber dependent isothermal com-
pressibility | 2

wT(\i,o‘) = - W D (@:,O)
° (5.12)
which has the long-wavelength limit
V’T = Lo Lim jDR (-":10)

Any k—o (5.13)
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expressing the thermodynamic derivative-—V_'(bV/)fJLr in terms of the correlation
function DR. A similar relation will be shown later for the static magnetic suscep-
tibility x. Other linear-response quantities are describable in terms of transvort
coefficients; for example, the heat current induced by a temperature gradient defines
the thermal conductivity, which may therefore be expressed in terams of a correlation
function of two heat currents, and similarly for the viscosity and diffusion con-
stant in a mixture. In this way, the sinpular features of phase transitions may be
expected to appear in the transport properties as well as in the thermodynamic
derivatives.

So far, we have relatec % (k,o) to the Fourier transforn of the retarded densi-
ty-density correlation function DR(k,w). On the other hand, the neutron and x-ray
scattering also measure the density correlations in the target, and it is natural
to expect some connection between these various quantities. To make this precise,
it is helpful to use the Lehmann representation for DR(h,w), which can be derived
just as for the single particle Green's function (see Ref. 2, pp. 72-79 for zero
temperature, and Secs. 31 and 32 for finite tenperature). In particular, the re-
tarded correlation function can be proved to have the simple integral representa-

tion .
= dw A(k-,w)

2w w-w'tin

R .
D (ko) =
e (5.14)
which demonstrates that DR is indeed an analytic function in the upper-half fre-
quency plane. Furthermore, for real w, the imaginary part of DR is given by
T Dk o) = - § Alk,w)
- (5.15)
Detailed analysis shows that A(k,w} is positive for w > 0 and related to scuares of
matrix elements of m, and comparison of this expansion with the original definiticn

in Eq. (3.8) yields the useful relation
Stk o) == (mn) (1 =e7 ™) T D" ()

= (arn)' (1= PR)T Al,e) (5.16)
Thus measurement of S(B,w)(in principle, at all frequency) fixes hnDR(k,m) and
thus the whole function DRgg,w) through the integral representation (5.14). 1In
practice, of course, S(k,w) can be determined only for a limited range of k and w,
so that this procedure is not feasible. In addaition, A(k,w) obeys the symmetry re-
lation

Atp,w)=- Al-k,-w)

(5.17)
which is equivalent to the symmetry relation (3.14) derived directly fron the defini-
tion of S(k,w).

Equation (5.12) can now be used to obtain an important result concerning the

structure function S{k). A combination with Egs. (5.14)-(5.17) shows that
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oo (kyw)
( = z “( A&)I Alky
M‘T k:,b) (—b‘r\o ) T 7

——e W

(5.18)
where a principal-value symbol is unnecessary since A(&,w=0) nust vanish for a sys-
tem with inversion symmetry. Moreover , Eq. (5.1?3 implies that

~fhe’
vep (k,0) = (hag)” {7 4“'(’"—‘*,/3—) § ()
-0 w (5.19)
In the limit‘b + 0, the function S(k,m’) is dominated by low-frequency excitations,
so that the remaining factor in parenthesis may be approximated by its value

at w' = 0. Thus we obtain the result

= Ll‘m ,s . e / U
Y = k>0 or (ko) = Té—?O (-wdw 50k,

or, equivalently [see Eq. (3.10)]:

k~|m S(h_) = ’Y\okBT )(,T

k—>0 (5.20)
Such behavior is easily seen in the x-ray scattering from liquid helium, which has
significant temperature dependence at long wavelengths (Fig. 5.1).

A S (k)

iv\(reud‘lt\'}

T

—_—
Fig. 5.1. Temperature dependence of S(k) for liquid 4He.

This expression also provides insight into the behavior near a critical point in a
fluid (Fig. 5.2), when the isotherms in the pV plane become flat as T - T. - Since
the corresponding Kp becomes singular, the scattered intensity of visible light
becomes very large, accounting for the ohenomenon of critical opalescence. An

equivalent result follows from Eq. (1.23) rewritten as

S(‘k\ - M" gd?xr a‘irl Ql}’({‘[’) <Y~"\(£)R([’)>

- N-l fdg" djrteil}-(,\:"ﬁl') [<V\L‘:)V\(S.’)> _ “'L]
(5.21)
In the limit q -0, it describes the fluctuations in the number of particles in some
volume V probed by a beam of x-rays or visible light:
Lin, 5%) = Ny - (')

or equivalently:
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(5.22)

>

Vv

Fig. 5.2. Schematic phase diagram showing liquid-gas critical point.

Note that the fractional fluctuations in a volume V with density n become small as

V - « but they increase with increasing Ko
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VI. Model Calculations for Density Correlation Functions
To think about the exact DR(rt,r't') in an interacting system, it is helpful

to return to its definition in terms of second quantizec operators

- LAk/R o T
Aokl = e n(g)e“‘H“"‘
(6.1)
where N
Wil = Al - <weedd
A + A
(6.2)

in a uniform system. Thus'ﬁ(z) is associated with the simultaneous creation and
destruction of particles at r, or, alternatively, creation of a particle-hole pair.
The density-density correlation functions involve the propagation of this particle-
hole pair fron rt to r't) where they then annihilate. To develop a diagrammatic
description, it is necessary to introduce imaginary times T and a grand canonical
hamiltonian k=1 - u&, which allows us to treat the '"time'" propagation on the same
footing with the ensemble average over the operator e_Bk. The details would take
too long to go through here, but they are treated in detail in Chaps. 7 and 9 of
Ref. 2. In essence, one studies a T-ordered correlation function

D, rw) = = ST [ R R ])

(6.3)
which can be readily analyzed with perturbation theory, and is simply related to
the desired quantity DRQEt,E't'). Indeed, the functionJ)(;T,g'T') turns out to be
periodic in the variable T-1', and it therefore has a Fourier series representation,
in contrast to the Fourier integral (4.15) appropriate for the continuous variable
t-t'. Thus we may write

A3k ikle-p) ®
H - ——
Dlrr,r'<) = S amy © Zj:—m

_iv(T-T) )
e d oD(lg,l’})
(6.4)
where
V. = 24Tk T‘/t =2 'F// |
p 4T kg 1T/ B 6.5)

The basic relation between L) and DR arises because ) (k,vj) has a spectral repre-

sentation analogous to Eq. (5.14)
dw’ A(,h:)“’l)

D) = [ 4

- oo 2T L:J}- -w (6.6)

with the same weight function AQE:“')- Thus any approximation to D (h,vj) (which
can be evaluated by resummation of Feynman diagrams) leads directly to a correspond-
ing approximation to DRQk,m) and hence to the various dynanical properties and scat-
tering phenomena inherent in the various density-density correlation functions.

To be more precise, the function 0 QE,Vj) is the sum of all connected Feynman

diagrams of the form shown in Fig. 6.1.
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1T ey,

Fig. 6.1. Structure of density correlation function.

The continuous momentum k and the discrete frequency vj are both conserved at any
vertex. These diagrams have precisely the form of a polarization insertion (see
p. 110 of Ref. 2) and may be separated into proper and improper contribu-
tions, with O * the sum of all proper diagrams (Fig. 6.2). The full O (5,\5) then
obeys Dyson's integral equation, which here takes the simple form
Dk, = ao*(k,vi) +t"oo*(g,oé)7f(&,oé) D lk,.) 6.7
with ) the Fourier transform of the interparticle potential. As a result, one
can express D explicitly in terms of JO* as
Dk, ;) = ff)*(h")‘) .
.2 | - % 'U‘(_lrg’p?.) "O*(k)o‘j)

(6.8)
For some purposes, it is more convenient to introduce a different symbol 7C for the
polarization, which is related to £ by the factor h (D=Hh %) , but we shall

not do so here.

?"Q?l( conkrbubions 1 Prep Cﬁv\‘thu_er;\y

‘o O to P

Fig. 6.2. Proper and improper contributions to density correlation function.

A very simple yet widely used approximation (often called random schase ajproxi-
mation or RPA) is to approximate oD * in Eq. (6.8) by the quantity for an ideal gas
(Fig. 6.3) [see Eq. (30.9) of Ref. 2]
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3 "5 e nS
a3p P} +
DDO(‘Z)"‘) :-(7‘5*')[ 3 T Q)
= (2m) iv: - %R (g% - ¢
} "% e )

6.9)

0 <o

RPA  assumes

JS* = NO
Hev\ce D = 0 + GD + O—‘D‘(O.t..--

Fig. 6.3. Random Phase Approximation (RPA) to density correlation function.

In a charged gas, the resulting approximate form for o0 can be shown to contain
the dynamical phenomena of plasma oscillations and Landau damping, as well as the
static screening about a point change, not only in the classical limit but also at
all temperatures, including the zero-temperature limit of a degenerate Fermi gas.
For our purposes, we shall instead consider only the simpler case of a spin-1/2
Fermi gas interacting through short-range repulsive potentials withlr(kyj)

=V{k) = V(h=0). Thus, we approximate the Fourier transform by a single positive
constant. The corresponding wave-number and frequency dependent compressibility
can then be found by comparing Eqs. (5.11), (5.14), and (6.6). A fairly straight-

forward calculation gives the resul.

wlk, o) = - w©" Fl)
|~ Vik) Fk,) (6.10)
where
A3P n;“‘!}. -~ V\:,

Flk,u) = =2

3 . f ¢ O o
(2w) Rw tin - ( El’".‘t_i ? ) (6.11)

In particular, the isothermal compressibility (5.13) becomes

Lim  (=w?) F(k,0)

T k—>o |~ V(o) F (k,0) 6.12)

In the classical limit, F(k,0) has the form

Fle,00 = = n AN = - ng(bN)/ kT 6.1
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where ¢(0) = 1 and A is the thermal wavelength (2.19) (see Ref. 2, pp. 277 and
306), so that

Wy 2 CnkgT V7 (14 wVl0)/keT)

= w! (egT +n Vo)™ (6.14)

This result is readily interpreted as the ideal classical gas expression (“-héT)-',

i

reduced by a temperature-dependent factor that vanishes in the high-temperature

limit. At zero temperature, F(k,0) again has a simple form (see Ref. 2, p. 162)

F(k,0) = =2N )¢ _(k/ke;

(6.15)
N .
where N(0) =\ka/211k ==%'*5/€£ is the density of states of one spin pro-
jection at the Fermi surface and
L7 1.2 2~ X
b0 = 3 -2 (1-3x) 4a |2
F 2x hx (6.16)

At present, the most important feature is that %!0) = 1, so that the isothermal

compressibility in the ground state becomes

K = ANG) W (1+ 2N Vo))
3 ~1 . -
2 (ned)" (1+2Ne) Vi)

N

(6.17)
The first factor is the value for an ideal degenerate gas, and the repulsive poten-
tials again act to reduce the compressibility. It is easy to sketch )L-r as a func-

tion of T for given density, for it increases with decreasing temperature until the

Wy ideat M |

N

@)

Fig. 6.4. Compressibility of weakly interacting Fermi gas for (a) repulsive and (b)
attractive short-range potentials.

degeneracy starts to appear (at TF’ where hBW:F o 8; ) (see Fig. 6.4a).

It is interesting to ask what would be the corresponding situation for an
attractive potential, when V(0) can be negative. In that case, the compressibility
would again grow with decreasing temperature, exceeding the ideal-gas value and
diverging at a critical temperature Tc (see Fig. 6.4b), which is given approximately
by
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bgT. = w | V(o

(6.18)
(assuming *\IV(O)l > haT}: ). As noted in connection with Eq. (5.20), this behavior
is roughly that found at the critical point of a fluid, where the basic condensation
phenomenon arises from the attraction between molecules. In detail, however, simple
models of the sort considered here are inadequate, for they always predict that W
diverges linearly at the transition temperature, whereas the observed behavior is
of the form

Y
% oo (T-7T) (6.19)

with V& 4/3 for a 3-dimensional fluid.

In this context, it is valuable to recall Eqs. (5.20) and (5.21). It is clear
from these results that any growth of W+ near Tc necessarily reflects a growing
scale length for the correlations in <Ql;)¢\(;’)> . To make this precise, we may

parametrize this function with a Yukawa-like form in 3 dimensions

~ N e*?(‘r/S(T))
LAty nlo)) o —
(6.20)
where n is another critical exponent and £(T) is the correlation length. The cor-

responding compressibility thus has the form
o0 |- ~v/ 2-
Yoo f ' Vae e ¥ w3
° (6.21)
explicitly showing the relation between the critical exponent y for W and a cor-

responding singularity in the correlation length:

~¥/(1~9)
T(Thee | T-T AT
(6.22)
It is conventional to intreduce the additional exponent v by writing
T e [T
(6.23)
and these relations thus predict
vi2-n) =¥
1 (6.24)

The divergence of the correlation length £(T) as T + TC is a central feature of

modern theories of phase transitions.
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VII. Fluctuation-Dissipation Theorem

We have now seen a few' specific examples of the density-density correlation
function, evaluated from simple models. It is often preferable to attempt to build
in as much information as possible at the beginning, and we therefore turn to a more

7,8 The basic start is a set

general description that has been emphasized by Martin.
of observables Rigzp) where i runs over the various quantities; for example, a fluid
can be described by its density, momentum density, and energy density, and these
then form a convenient set. To study such quantities, there must be some coupling
to external parameters at our control, such as the pressure in Eq. (5.8). In general,
the external coupling hamiltonian will be written
N oexn A
H o W)=-Z fo\zr'A-(['t) Sfx(:'t)
* . ’ (7.1)
where 8a is some small external applied field. As shown in Sec. IV, the change in
the expectation value of :A\‘i in the presence of these fields is given by
) </A\;(,r.,i-)> :'.i‘h"Z'. 3/ f t**, <[A'(,‘:)*)s A'(L’,f’]> Sﬁv(xctl)
2 e - L } (7.2)
This commutator of two operators determines the linear response. It appears fre-
quently and is used to define the conventional quantity
X (et = v CLA e, A 0]
At D e A R T (7.3)
Note that X" is defined for all t-t', without a step function. In a translationally
invariant system at thermal equilibrium, X"ij will depend only on r-r' and t-t'.

These equations can be combined to give the expression
A t ’ "o
SR = T, (v [ a# 20X, (454, #) S ) 47)
3 —ot> 3 3’ (7.4)

In many cases of importance, the applied fields have a well-defined wavenumber
k and frequency w. In that case, it is natural to define the Fourier transform of
x"i. (assuming an infinite translationally invariant medium)
R ®
"o, , A’k dw’ N b lee’) i -t)
)(..(}:“):I,'k‘t.): 2713 , X’;. k)m)i e
3 @md e 3 (7.5)

Taking the inverse transform of Eq. (7.4), we find the induced response in "&i at

wavevector k and frequency w
" - k. b Lwt A
S(A;(f@,m)>= f&’ro_ LA*.{..,OA{Q S(A;(,\:,t)>

If we represent Sa(r',t') as a Fourier integral, the spatial parts all combine sim-
ply, but the finite upper limit on the time integral in Eq. (7.4) requires special
treatment. Thus Eqs. (7.4) and (7.52 yield , to! (£-27)
A L) Aw * , _(I& ¢ n YT 1) -4 -
$<CA; (e, 0)d = 2‘5. [ ate -:t '] dw 2:X (ke

« (! f: de’ e—ia * 8&3. (k,m")
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Define the new variable 1 = t'-t, so that this expre551on becomes

SCR (g, ul) = Z ( at f At (22 ” o’ de? @ile!—wlT Qum-wt
. /" «
X 2"¥-L&'(E)‘°‘) Sai(k,u)

The integral over t is just 2m§(w-w'), and the integral over T is made convergent

N7 with n -+ 0". In this way we find

8(%;(&,9)> = Z; f“’ AL 4—(\'- ) SQ (k,w)
$__ w! —mw-in (7.6)
It is natural to introduce the following function of a complex variable z:
£¥-9 dw! ”’_ (k[ ‘)
Figlem o+ [ A i
§ cea W w' -2 (7.7

It has the following limiting form as z approaches the real axis from above

R Liwm
-X‘:a»(k:,m) = '2—>° X

by inserting a convergence factor e

k

(la i
3 wtin) (7.8)

Evidently, X?j is the retarded or causal response function, since Eq. (7.6) shows

that it determines the induced response

§CA: (ko)) = Z; X (0] Sa(k,0)

(7.9)
It has the explicit form

R
—X;&- (E,w) =

which shows that XR is an analytic function for Imw > 0. It may be separated into

w dul Ky (k)

cea T Wmw-iq (7.10)

its real and imaginary parts

—Xz(k,m) = X (ko) + 4 Y'Lj(g,w)

(7.11)
and use of the identity
-.‘ -
(W -w-1q) = Pl =)'+ i78 (w=w) (7.12)
shows that X' and yx'' obey the Kramers-Kronig relation
"
y = Aol Xk
X{“(klw) :’-P( A
) —os T W' T w (7.13)

Spectral functions of the form (7.7) play an important part in many of our dis-
cussions. Unfortunately, they are more complicated than the functions considered in
introductory courses on complex variables. To understand their properties, it is
helpful to consider briefly the function

f2) = gw At
—w T x -2 (7.14)
where x' is a real variable and p(x') = 0 is real and integrable. It is clear that
f(z) is bounded and differentiable for Im z ¥ 0, so that f(z) is analytic in both
the upper- and lower-half plane. In general, however, there is a branch cut along

the real z axis, which follows from the limit as z approaches the real axis from
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above or below [use Eq. (7.12)]
'f(x-_t;ul\ = P {11'_ ___F’N) 1 Lpx)

—aT %~ % (7.15)
Thus f(z) is discontinuous across the real axis at any point where p# 0, and p(x)
may be identified as the imaginary part of f(x + in). This znalytic structure re-
quires that f(z) consist of two distinct sheets that intersect along the real axis.
For Im z > 0, f(z) coincides with a function fI(z) that is analytic for Im z > 0 but
that, in general, has singularities in the lower-half plane. Similarly, for Im z< 0,
f(z) coincides with a distinct function flfz) that is analytic for Im z < 0 but that,
in general, has singularities in the upper-half plane. If one starts in the upper-
half plane (say), then f(z) = fI(z), and any subsequent motion of z (even into the
lower-half plane) stays on the sheet fI, if necessary analytically continued across
the real axis; note, particularly, that such motion does not reach the other branch
fII'

It is helpful to exhibit a simple example of this behavior, taking p(x') =

y(x'2 + Yz)_l in Lorentzian form (with y > 0). In this case, f(z) becomes
o>

a /
f('l) - f * b4
~eo T (w2e¥P) (W -2)
and the integrand has poles at x' = *iy and at x' = z. If z is in the upper-half

plane, then the integral is readily evaluated by contour techniques closing the

contour in the lower half plane, to yield

fay= ;@ = ~ (zriy)! Iwz >0
(7.16)
Note that fI is analytic for Im z > 0 but has a pole in the lower half plane at
z = -iy. Similarly, if z lies in the lower half plane, we find
fa)y=fg @z~ (z-iv)" Twmz <0
(7.17)
Again, f_ _ is analytic in the desired region but has a pole at z = iy in the upper

II
half plane. Note that

T {:(*'FM") :T.m‘FI{xa,.ul) = X(‘Ll+]”‘)" - P(X)

in accordance with the general property (7.15), and that fI Ff displaying expli-

>
citly the two-sheeted structure. In some situations, p(x') maylianish for a finite
interval, in which case the branch cut does not extend along the whole real axis,
and the functions fI and fII are then related through analytic continuation.

We now return to the more general description and show that ~07(gé(h,u) is a
positive semi-definite matrix in the indices ij for a dissipative system. Under a
small change d6aj in the external fields, the change in the energy of the system is
given by

dE=-Z (& <A (1)) 48a (¢ 1)
2 y o 3y (7.18)
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where the bracket denotes the ensemble average in the full time-dependent density
matrix. .To lowest order, the only contribution can be shown to arise from the first-

order change in < K£> (see Ref., 8, Sec. 3.3)

aE :~Z-}Sc13r S<,A&_(,‘C,k)> ASQ& (e, %)

(7.19)
The time integral of the time derivative thus becomes
T 4E ST ) A
. g (T ax Sa e 4) 2 8K A ()
AE = ,(_Tdi ax ia -7 RILUNY: ¢ > .20

on integrating by parts. Use of Eq. {7.9) then gives
AE = A3k IJ(‘) Z.é(-i) SQ;(k)w)*wxfé(E,Q)Sqitg,m)

QR o, W

(7.21)

iker-ot)  Here we note that 6ai(£,t) is real,

for purely harmonic perturbations e
so that Gai(kﬁm) = Gai(-h,—w)*. It is easy to show that xij'(k,m) is even under
the transformation of l(,w,ij > -k,-w,ji, whereas X"ij (l(_,w) is odd. Hence only
X" survives in Eq. (7.21), and we find
AE = f b {“&- Z . dar (E)u)* '-O—X/;(:“E;)w) Sa (k,w)
(w2 iy oA 8 1 (7.22)

Since AE must be positive in a dissipative system, we infer that wx"ij is indeed a

positive-definite matrix.

Notice that the dissipation in the system is directly related to ", which in
turn is the commutator of the relevant variables [see (7.3)]. On the other hand,
the fluctuations in the operators may be characterized by the quantity [see Eq.
(3.12)]

. . ~ A
S;-(gﬁ,r'ﬂ) = A, (g, %) A-(v'k’)>
$ ~ ‘ (O (7.23)

~ A ~ - © e
where Ai = Ai - <:Ai>'1s the deviation operator [see Eq. (1.21)]. For a transla-
tionally invariant system, Sij depends only on r-r' and t-t', and its Fourier trans-
form is given by

bk ivnk
S (hye) = (& (ar %% e S.. (x,%)
o B - (7.24)
An analysis very similar to that of Ea. (3.14) yields the general result
- REw

S (= -w) = e ™S W)
jro = o) if ko (7.25)
As a result, the Fourier transform of the commutator x"ij(r,t) may be rewritten in

terms of SijQE,m) to give the fluctuation-dissipation theorem
" _ _
1&'&;}(\&,@) = Si}(g,m) Sé;(»g,-m)

= (l—e‘ﬁ‘w) 3;5("2'“’) . (7.26)
Similarly, the anticommutator may also be expressed in terms of (1 + e-Blm) Sij(K,w).
In the classical limit, Eq. (7.26) becomes

Xzs(‘.’:r"’) = —‘i{Xu S»’.' ()0)

i (7.27)



336
VIII. Magnetic Phenomena; Perturbation Calculations

The preceding discussions have dealt solely with the density correlations in
condensed media, but there are many other types of long-range order, the most fami-
liar being the spontaneous magnetization in a ferromagnet. Since a neutron has a
magnetic moment, it can also interact with the magnetic moment of an atom, leading
to inelastic scattering because of the internal magnetization in the target. The
detailed analysis is quite similar to that for S(E)w) developed in lecture III.9
The net result is that one can measure the space-time Fourier transform of magnetic
correlation functions of the form

(MG, k) M ) 6.1
where M is the magnetization (magnetic moment per unit volume) and i and j refer to
spatial vector components. Such inelastic studies can be used to investigate spin-
wave excitations in a magnetic material, just as the usual neutron scattering has
enabled investigators to map out the phonon dispersion relations in crystals and
liquids. In addition, elastic magnetic scattering of neutrons can provide a picture
of the spatial distribution of magnetization, just as the nore usual Bragg scattering
leads to the spatial density distribution. -Such studies have been especially im-
portant in understanding the behavior of antiferromagnets, where there is long-range
magnetic order at finite wave number but no net macroscopic magnetization.

In addition to the measurability of the magnetic correlation functions, they
also are important in the theory of linear respronse tc an external magnetic field.
This second aspect is wholly analogous to the appearance of density correlation
functions in the generalized compressibility k(k,w). To analyze the situation in
detail, we shall consider a spin 1/2 Fermi gas with magnetic moment Uy per particle.
The corresponding magnetization operator (magnetic moment per unit volume) is given
by uoé(z), where

s(y=Z, YT (o), $6)
- il e Y (8.2)
and g denotes the 3 Pauli matrices. Note that Mg is not simply the gyromagnetic
ratio but differs by a factor %—h needed to relate the true spin density to g. In
the presence of a weak magnetic field'tj(z,t) along %, there is an additional energy
specified by the hamiltonian
A%y = - f‘of“" 5, (%) Hix, k)
(8.3)
This is usually written down as obvious, for it properly orients the magnetic moment
along 2? to lower the energy, but it actually takes a bit of thought and thermo-
dynamics to understand the - sign.6
The response to 23 may be characterized by the induced magnetization (assuming

a paramagaetic material)



337

A
4 M, (o, x0D =g € (Tz(v;;k')> (8.4)
and the general result (4.10) yields the basic expression
A 2.4 - 37 g LS p ‘ Iy
<Mz(i)k)> = —}Ao t fo\ r Ck.t DT (r—;)k‘* ) ﬁ'z(ﬁ)k) (8.5)
where Dg is a retarded spin-spin correlation function

R . n
4 Dglek,x'a) = & G-£) Lo, e, 0) , 6, (201 (8.6)

The corresponding Fourier coefficients obey the simpler multiplicative equation

no - R
MZ(E)U) = <N1L\_’;'w)> = —,AOL ’—DG‘ (k‘m)‘jelz“z:,a) (8.7)

The coefficient may now be taken to define the generalized susceptibility

’XR(&U@) = ‘f\ol.\:\-( ®E (\:,o)

which is obviously similar to Eqs. (5.11) and (7.9).

(8.8)

Near a phase transition to an ordered magnetic state, the function Dg(k,m) may
be expected to develop important correlations, near k ~ 0 for a ferromagnet and at
finite k for an antiferromagnet. Thus these features will appear beth in neutron
scattering with wavevector transfer k and also in the measured susceptibility (unfor-
tunately it is not simple to measure x directly for finite k). Although we shall
not deal with other systems, very similar ideas can be used to describe various
phase transitions, such as the appearance of charge-density waves or the onset of
displacements in regular crystals, often leading to the onset of ferroelectricity.

To develop a theoretical framework for understanding the many-body features of
magnetic correlations, it is helpful to introduce a generalized "polarization func-

tion10

R . , AT » A4 ) 2 rad
DD g (ekyrr) = oth-#) < T um St b ) o] ©.9)

associated with the following diagram Fig. 8.1

P R M
rx § 37\7(:/4* :2 £

Fig. 8.1. Structure of general polarization in position space.

If someone gave you such a function with 4 spin indices, it is easy to recover the

density correlation function by setting y' = p and A' = A and summing over A and u.
Similarly, the spin-density correlation function follows on multiplying by

(CANY () pip and summing over all four indices. Thus it is sufficient to
study the perturbation expansion for the general functionm.

As noted in Lecture VI, the Feynman diagrams must actually be analyzed in terms
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of slightly different functions, with Fourier transforms in the spatial variables
and Fourier series in the times. Formally, we merely introduce the quantities
J)K{,r! (k:,v,) as in Eq. (6.4), which represents the sum of all Feynman
diagrams of the form in Fig. 8.2

N I )
. . v,
k. _),\C ooxxj..'»(kl"t):? — B

Fig. 8.2. Structure of general polarization in momentum svace.

For spin-independent interactions, the spin component of the particle cannot change
on undergoing an interaction. Thus any piece of a Feynman diagram involving a po-

n

tential must have the spin structure shown in Fig. 8.3

PN A~

A A X

Fig. 8.3. Spin-independent interactionsconserve spin projections.

As a result, all the proper diagrams of &0 for spin-independent interactions
(those that cannot be separated into two parts, one at r and one at zf, by cutting
a single interaction line) necessarily have one of two spin structures
* * Q *
D, =D S, Dy 8
AN, W L Y B M Cpp (8.10)
To see this result, we note that one class of proper diagrams has the structure of

a single fermion loop with various decorations (Fig. 8.4)

Fohobge -u

Fig. 8.4. One-loop contributions to proper polarization.
Since the interactions cannot alter the spin of each Fermion line, these must all
add up to give JS: Sh,,SAQ, 5 so that each line retains its own spin projection.
Initially, one might think that this exhausts the class of diagrams, but there is
another type, shown in Fig. 8.5, in which two separate loops are joined by at least
2 interactions (hence they are still proper contributions).

» I .
B

e o= D

{

R R

Fig. 8.5. Multi-loop contributions to proper polarization.

It is clear that each of these must have the spin structure S)X gfr( accounting
for the structure oD,: found in Eq. (8.10).

For spin-indeperdent potentials, Dyson's equation in momentum space becomes
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e ~i “
; = ot R D
D N, g T Paopiy * F z~</S AN, =2 By
(8:11)
andthis equation may be solved by contracting on the indices AA'. A straightforward

calculation with Eq. (8.10) then gives the general structure of the full function

* 2 b w\
D = D §. + | b + 8§40
R A g"‘/‘ A " 4 =wTDE | 12)
where
e * - * *
P = 2 Py T ADF 4 (8.13)
for spin -1/2 fermions. It is easy to construct JJ(E,v;)='ZLAJ160)A(E,%)and to

see that it precisely agrees with Eq. (6.8). More interesting is the spin correla-
tion function

— o
Do = Tpup Pupoy (), (@), = 2Dy

M (8.14)

so that none of the diagrams of the type B contributesto the spin correlations. In
essence, this is because spin information cannot be propagated across a spin-indepen-
dent potential line joining two separate fermion loops. In particular, note that
the RPA approximation, which works reasonably for the number demnsity function oD
[see discussion at Eq. (6.9) and Fig. 6.3 ] amounts to taking J):': J}o and JS; = 0.
Hence it fails entirely to give any many-body corrections, so that XR(E;N) in RPA is
that for an ideal gas. Thus one must study an improved approximation.

One widely used model is to replace V(q) by a constant V(0) (approximating VQE)
by a short range repulsive potential). In ;his case, one can actually evaluate LF

for the following set of diagrams

O+9+@+u.+@+u.

D° (o)
2+ 4" Vo) Ja"cg,vé)

and finds

* R
J)A(E,\?é) =
(8.15)
evidently, J3§k is still zero. In this case, the computation of ‘j)(k,vé) and

JDG.(E‘V>] is straightforward and gives
L]
O (k,v;] . QDL v,
Plevp= 7;3( ; : ) ODG(E"’@): 2at‘“\/f'o)tO°CU)
N _ V. § s
2 N (k, vy " (8.16)

Note the crucial difference in signs in the denominator. As a result, this particu-
lar model gives the compressibility and susceptibility [see Eq. (6.11)]
Y = Rt }:M 1‘:“"10)
T k—>0 2 -Vis)F(k,0)
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2 Lie 2 F(k,0)

X= -k =0  2+Vo)F(k,0)

(8.17)

In particular, the classical limit becones
- -1
g =M (kBT+—‘7_-n\/(o\)

L _ t -
'X = /4°Y\ (kB‘ ~- T\'\V(O)) (8,18)
and the zero temperature behavior is

MT = QNlO)V\-l (i“-l\](o')\l(o))_l

X (8.19)

Note that repulsive interactions enhance the magnetic susceptibility yet reduce the

2’.;.:\'\ (l - N(O)V(O)).‘

i

compressibility. This behavior is qualitatively that found in liquid 3He below 1K,
for the magnetic susceptibility is considerably enhanced above its ideal-ges value,
and the compressibility is correspondingly reduced. Detailed studies, however, in-
dicate that a one-parameter model (here N(0)V(0) as T -~ 0K) is inadequate in des-
cribing the data.

The enhanced magnetic behavior arises from the Fermi statics, which enforces
the condition of overall antisymmetric states. The repulsive potential tends to
keep the particles apart, with a preference for spatially antisymmetric states. The
Fermi statistics then requires a preference for spin symmetric states, namely a
tendency toward magnetic ordering. This also explains Hund's rules in atoms. Just
the opposite effect occurs in nuclei, where the net potentials are attractive and
low spin states are favored.

If the interaction is sufficiently strong that N(0)V(0) exceeds 1, then it is
clear that the repulsive interaction can cause a phase transition to a magnetized
state at some critical temperature Tc' As in the discussion of Eq. (6.13), the
susceptibility would diverge linearly as T ~ Tc+. HMore generally, an exparsion of
X(k,0) for small k and T—Tc yields a denominator of the form (T-Tc)/TC + Ezkz,
whose Fourier transform reproduces the strict Yukawa form {6.20) withn = 0. Once
again, comparison with the experimental observations indicates an inadequacy of the

present description, which is essentially that of the mean-field picture.
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IX. Magnetic Phenomena; Hydrodynamics Description

The preceding section treated magnetic phenomena in the context of many-body
perturbation theory, and we now take a wider view of the same problem using the
approach of Sec.VII, generalized slightly to include the conservation laws in the
problem. As will be seen, the spin-spin correlation function must have a complica-
ted structure with nonuniform limiting behavior near k = 0 and w =< 0. This struc-
ture is not readily reproduced, even in infinite-order perturbation theory, and it
suggests alternative ways7’8 to construct approximations that are frequently very
useful. Such a technique will be used in Sec. X for light scattering by a fluid.

The basic problem of interest is the magnetization < ﬁ(g,t)>’induced by an
applied magnetic field 7= (I,t). Equation (7.4) indicates that the relevant quan-
tity is the Fourier transform X”(E,w) of the magnetization-magnetization commutator
[see also Eqs. (8.4) - (8.8)]

Wl k) = (27 KA G, REx]
(9.1)
As proved in Sec. VII, x'"(k,w) is the imaginary part of the retarded (causal) sus-
ceptihility XRQB,w). The full causal response to an applied field Mgk} is given

by the Fourier transforms

{lg,a?> = X5 (o) H (o)

(9.2)
where XR(k,w) is the limiting value of an analytic function
~
> ’ 1
d X7 (e, o)
Kk ,2) = f = S
~aa T w' -z (9.3)
as z> @+ in and n = 0' Thus
X (E,m)- =0 % 1
(9.4)

To proceed further, it is helpful to -introduce an alternative way of thinking
about XRQE,w). As seen in Eq. (9.2), XR(E,m) gives directly the response to an
applied field H (E,w). If the system has some magnetic collective mode with fre-
quency wo(k) and damping, then xR(h,w) for fixed k is peaked at w=z moch) with a
width determined by the damping. This picture is analogous to that in electromag-
netic cavities where Q is determined by the width of the resonant response. In the
theory of cavities, however, one can also determine Q by setting up an initial dis-
turbance, which will oscillate with the resonant frequency and decay in a time re-
lated to Q. For many purposes, this second viewpoint is preferable. We shall now
see how the information contained in xR(k,m)'can be used to study a similar situa-
tion, in which the system is perturbed a;a then left to decay. This latter picture
has the advantage that there is no applied field in the problem.

To formulate the problem, return to Eq. (7.4) expressed here in terms of the

magnetization
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< F’\(‘:,k)> = gdsflf_t ar’ 20K (g ey k) B, &)
o0 (9.5)

In particular, suppose that R (r,t) has a pure wavevector dependence e1.1$'£ and is
turned on slowly, up to full strength_H‘ 0 at time t = 0.At that time, } is turned

off
K t <o

Lreg
e, %)= {—HOQ e
O t>o (9.6)

For t > 0, Eq. (9.5) then gives
A ‘ P (0O g r i (et g f Begf ot
< M({,k>0)> = (&3\’ S-aoa\t Z’“X, ('\: ,\:/)'k t) Hoe e 9.7)

Use of the representation (7.5) immediately leads to

’

0 7 R t
(Rt ooy = 0 20Xk, k-w) H, e ,
- o , _‘_.w/(*_.tl) ?'t
- S"" dw’ 2;)("(&}@'))“‘0 S 4%’ e e
— e LT .

_ f P=] dul ’X’l(k'wl) }4 e_"‘b’t

- I
— ¥ w o

(9.8)
where the in in the denominator has been drooped since X'"(k,w' = 0) vanishes. In
particular, at t = 0, this equation becomes

A o dw’ —X‘l (!k/‘”l) 74
< M(E7t=0)> = T w’ o]
-9 (9.9)

and the integral on the right-hand side is just the full static susceptibility [see
Eqs. (9.3) and (9.4)]

N B S ()
XYz Xk o) = f_co = "
(9.10)
Thus these relations imply
A .
“1. x= = (.,‘7;)1‘4 H
<M _.)t O)> X o J (9.11)

A .

equivalently, we can eliminate 1"0 explicitly to express < M ([f:)i>o )> in terms

of the initial distribution of magnetization, using
A

My = KMty t=01) /X (k) 012

Substitution into Eq. (9.8) gives "
-

<f:\'\(\t k’)o)> - rw 4o’ ‘X”“,’;m') e <f:"\(!;,k:o)>
N —e T W’ (k) (9.13)

and causality requires that t > 0, so that there must be an implicit step function

A .
6(t). If < M(E,i‘>o)> is expressed as a Fourier integral, we therefore write
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A . A
MU,y = [T ae ™ i, 1y0))
© 4y X"R,e)  (flekzo) )(“’At gt le-wlt
o

e W w’ XU},)
- [ Taw Xk, <Mk, t=01>
—oo T Lw (m'—(n-lv'l) A
(9.14)
Use of partial fractions on the w' integral gives the simplification
(@ A Xl | X XA
—eo ¥ ;S(..;’(u’-w—u-)) i} l(m-ﬁ-ivl)
- Xk(k)w) - ‘Y(.l&]
i lw+iq) (9.15)

In this way, we find the final form for the Fourier transform of the response fol-

lowing an initial value < l"\'\(!';,t =o)>

(Rl w)y = %[ka o) XY™ - |]<£A<g,x=o)>
«(t..w-;.vl) ~1 (8.16)

As anticipatec, the function )(R(]’g_,cu) fully determines this behavior.

To understand the connection with hydrodynamics, we shall show that we may
evaluate this response directly for a simple hydrodynamic model. Turning the argu-
ment around, one can then infer certain properties of XR(E,w) that nust occur if
this model is correct. In the present example, we consider a magnetic fluid like
3He, in which each atom carries a magnetic moment uog, where g is the Pauli matrix.
The net magnetization is an ensemble average [see Eq. (8.2)]

M, k) = <z;/“°"°"z’; 5[:~x;(t)]> .17
In this model, each atom carries the magnetic moment, and M in some volume can

change only by net influx of atoms. Introducing the magnetization current density

Joord= {Zipg (o, v, She-x,ml)

- (9.18)
we may write the local conservation law
DM, k)3t + V- 3'“@,*) =0
K, (9.19)

This general equation must be augmented by a constitutive relation between
and M. The simplest choice is a diffusive process, with
4. k) = ~DY M%) |
im (9.20)
where D is a diffusion constant. Equations (9.19) and (9.20) together yield the

M

diffusion equation

IM/3t = D VM
(9.21)



which describes slow space and time variations in M. Given an initial value

M(r,t=0) the subsequent change is found by a spatial Fourier transform for t > 0

~ikr
M(E;k)o)z S&Jre - M(’v_,k>o)

(9.22)
Simple manipulations give
9 = -Dh M, %>
T Mk, t>0) e, ko) .25
whose solution is
Mk, k)= Mk, t=0) exp(-Dk'%)
(9.24)

Note that Mgﬁ,t) decays with a characteristic time (Dkz)_l, showing that diffusion

is very slow at long wavelengths.
Equation (9.24) solves the initial-value problem. Since M = 0 for t <0, its

Fourier transform becomes

MO, e) = (% ar 2% Ml %)

)
oo iwk -DRt
= M(Eu‘k-ag) SO dt a ® Q
__iMle,k=o0)
® +iDh* (9.25)
which is analytic in the upper-half @ plane. Comparing with Eq. (9.16), we may
identify
X, o) . iR
X (k) w+iDhR™ (9.26)
or

R Dk X (k)
3< (E)“J = . S
b*‘k‘bh (9.27)
Any model consistent with hydrodynamics must reproduce this structure at long wave-

lengths and low frequencies. In particular, the imaginary part is
o) wDh? X (k) .
wl= s
X £, Wt + (DRY)*

(9.28)
it is odd in w, positive for w > 0, and has a very different limiting behavior
depending on the ratio w/kz. More generally, the limit xR(b,O) reproduces the static
susceptibility x(k) for all k, and it is easy to verify Eq. (9.10) directly.

It is also {;teresting to find the two-particle correlation function for mag-

netic phenomena [see Eq. (7.26)]
S Lo = 2% w Dh X (k)
wa ool = TR Wt (DhOT

(9.29)

This quantity characterizes the inelastic magnetic scattering by neutrons. For
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fixed 5, it is peaked near w = 0, with width of crder Dkz. Thus this diffusive
system has no well-defined collective modes with finite frequency; moreover, the
damping depends on k, as noted below Eq. (9.24).

At high frequency, Eq. (9.28) suggests that x"gk,m) ~ w‘l, which implies that
only certain low moments are finite. This behavior is unphysical, since we anti-
cipate that X" should vanish very rapidly for sufficiently high frequency because
the medium cannot follow the oscillating fields. One interesting and physical way
to avoid such difficulties is to retain the exact conservation law (9.19) but to
generalize the constitutive relation (9.20) to a nonlocal one

Julor)=- J_’; ' D(k-1) ¥ Mle,x’) 5.50)
The function D(t-t') is called the memory function; it replaces the previous dif-
fusion constant D. In the present case of an initial-value problem, Eq. (9.30)
strictly runs only from t' = 0 to t' = t. A combination of Eqs. (9.19) and (9.30)
with a spatial Fourier transform yields the integro-differential equation

2 Ml t) + AT f: A D(k-1) M(e,t’) =0

?K (9.31)
subject to the initial value M(k,t=0). It may be solved with a Fourier transform
as in (9.25); a little manipula;ion gives the simple result

M, o) = A E=0)
w+i kD) (9.32)

where

Dlad= (¥ ax T D(H)

(9.33)
Comparison with (9.16) identifies the result
R $ YD (w) Xlk)
—K (\}:‘u}) = A h (105)
w+ ikt Dls) (9.34)

If D(w > 0) = D, then Eg. (9.34) reproduces the previous model (9.27) at low fre-
quency, but it allows for more general high-frequency behavior. In addition since
D{(w) itself is an analytic function of w in the upper half plane, it must have a
representation of the form
- ' i) ’ i
Diw) = f deo (= = D ()4 D a2y
—ea W& w' mw=~iy (9.35)

where )
oo t ’b’ {h)l
b”[o) = ~"P (h - Aﬂu ——

(9.36)

A combination with Eq. (9.34) provides the absorptive part

(%, whD ) Y (k)
X ,_,w)= renfy 312 (PN z
[m~k'l> (o))" + [ LD w)J (9.37)
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and we infer that D'(w) must be positive. Various models for D'(w) have been used,
and this "memory-function'" approach can also be generalized in several ways to in-
clude wavenumber dependence and to encompass other systems. Many applications are

contained in Ref. 8.
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X. Light Scattering in Fluids

The principal advantage of neutron scattering is that the energy and momentum
transfers are comparable with those of collective modes in solids. For electromag-
netic radiation, on the other hand, the kinematic relation @ = ck implies a very
large frequency for k the order of inverse atomic sizes. This observation explains
why x-ray scattering is unable to measure the very small energy shifts involved in
inelastic processes. A similar relation applied to visible light, which has long
wavelengths relative to atomic sizes, but the introduction of lasers altered this
situation. Since a laser has a very narrow frequency profile, it became feasible
to study inelastic scattering directly in the visible range, providing information
on the dynamic structure factor S(k,®) [see Eq. (3.8)] in an entirely different
kinematic regime from that probed by neutrons.

Because of the long wavelength, light scattering is insensitive to atomic
variations. Thus a continuum or hydrodynamic description ought to suffice. Indeed,
the exact hydrodynamic equations are well known, reflecting the conservation of
mass, momentum, and energy. In this section, we shall use the treatment of Sec. IX
to infer S(E,w) from the solution to an initial density disturbance F(h,t=0). The
resulting spectrum of scattered radiation has provided crucial information on the
behavior of fluids, especially near critical points. Good general references are
Refs. 8, 11, and 14.

The basic strategy is precisely that in Eqg. (9.16), generalized to a set of
observables { RI(SJ*Y> [see Eqs. (7.1)-(7.4)] coupled to external fields Sni(;,t).
A straightforward calculation analogous to that in Eqs. (9.6)-(9.16) yields the
Fourier transform of the response for t > 0

(lA.Lk,w)> = Y&Sr e_l&”: gw&‘k uot(A (¢ 'k)>
r o (10.1)
in terms of its initial value

<ﬁ1(\}.)k=°)> = ngr e-;E°£ <‘Ai (1,t=0)>

through the equation

a |
<Ai“::,u>)> = - { ZJ' [X

A ﬁo+¢7)

(10.2)

% (k) X (k) “ <A (b, t= o)>J
<A (o, k= o\>} (10.3)

Here, as in Eq. (7.8), X (k w) is the ith response function for a perturbation
Gaj, expressed in terms of the Fourier transform of the commutator X”ij(k,w)

[see Eqs. (7.4) and (7.5)]: "

€ - [ 7 A Xlh)

Xié Rl e T m'-w—irl

(10.4)
Furthermore, xij(k) is the static susceptibility
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XLA(E_') ‘_

n

UJ'

x* (g, 0) = f" Ao Ky e

(10.5)
and X_}‘ is the j& element of the inverse tensor. In particular, taking t?e density
as the relevant operator, we use known Hydrodynamic equations to infer xﬁn(h,w)
[which was called the generalized compressibility w.(k,w)in Eq. (5.11)] and, through
its imaginary part, the dynamic structure factor [see Eqs. (5.16) and (7.26)].

12,13

The basic hydrodynamic equations are well known. Conservation of mass

implies the continuity equation for the mass density p and velocity v

2P 4 Y-(py) =
0K ~ (10.6)

or, for a linearized small-amplitude motion

3p’ .

SE -t Po ¥ ¢ =0 (10.7)
Here primedvariables denote the small perturbations. The corresponding equation
for momentum conservation may be written quite generally as

0
v.) + .2 T . =0

(?A 74 EETRY (10.8)

where Tij is the stress tensor, including convective and viscous terms. In the

linearized form, it becomes

dyv” | . n L) i )
2T 4 v - VY - L (s+in)v(vy)=0
Y3 s ~F Po fa 57 X (v (10.9)

where p' is the pressure, and n and ¢ are the shear and bulk viscosities. Finally,

the equation ofconservation of energy can be rewritten (using thermodynamics) in
terms of the entrovy density s; its linearized form
ds’ 2/
TP —— -k, VT =
° a1k *h
(10.10)
merely states that the local increase in entropy must arise from an influx of heat

through conduction, proportional to -k 9 T, where kth is the thermal conductivity.

K~

Equations (10.7}, (10.9), and (10.10) involve the velocity X' and four thermo-
dynamic variables p',S',T',p'. Since only two variables suffice to determine the
state of a one-component system, these four quantities are connected by two thermo-

dynamic relations, which we write as

-+ =<§%L o (32 ¢

°p s (10.11a)

‘_ 1 ‘ 27T ’

T = ( ds ) > ( ? ) $
[ P/ (10.11b)

Two of these coefficients have simple interpretations:
R) -
(10.12a)
2Q s
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( BT) 3 To
S ¢ Cy (10.12b)
where ¢ is the speed of sound in a nonviscous isentropic fluid and o is the speci-

fic heat per unit mass at constant volume. Moreover, the remaining two are related

through a Maxwell relation

() - =(3)

In this way, the linearized hydrodynamic equations can be written exactly in the

form
'
_32__ + ?0 y-x' =0
ox (10.14)
2 L et o 3T ) g 1 piyro A -
— 4 —— ) VS - VY -~ — (3+= v{(y.y’)=0
ot Po T r°(39 )s Po So (5+41) 2(xy) (10.15)
o D.
25 D v .2 (2 v
% S P/ (10.16)
where
D = kih
T fz (10.17)
is the thermal diffusivity and
VE Syl (10.18)

is the ratio of the specific heats. Note the role of the thermodynamic derivative
(b’r/bp)s , which can be shown to equal Tclﬁ/fc* where f = vl )V/‘)T)‘P
is the thernal expansion coefficient. If B = 0, then these equations separate into
two sets, the first involving the mechanical quantities @' and v' and the second
describing pure entropy variations. For B ¥ 0, however, :hermal expansion
couples these various small amplitudes.

It is convenient to take a spatial Fourier transform, and Eq. (10.15), for

example)becones
W, Lk + ( ) ils'+ —'Lw'*r——(n 1) k (k)=
Ak SIS0 LA Po (10.19)

If v' is separated into its transverse and longitudinal components as ¥ ( k tJ =
V (& t)-+1zv (h t) then the transverse part of Eq. (10.19) is just
dvi/ok + 0k =0 (10.20)
where v = n/p0 is the kinematic viscosity. This equation has exactly the form
(9.23), and we therefore infer that the transverse velocity correlation function is
analogous to that for the magnetization in (9.26)-(9.29), with D replaced by v. 1In
principle, such behavior could be studied by exciting transverse shear waves in the

fluid; they would be attenuated with a complex wavenumber 6_1(1+i}, where § = (2v/w)



is the viscous penetration depth.

Although the transverse velocity is uncoupled, the longitudinal part is con-
neéted to density and entropy fluctuations. Since these quantities vanish for t <0,
we may take the temporal Fourier transform as in Eq. (9.25). An integratiocn by

parts expresses the intial value problem in the form

- ir ., 7 s ]
w -gk 0 e (k) g (le,t =0)

2T ’ . ', R

~kc'/gs “’+‘:ﬁD¢“1 ‘kfo(‘g’;“) Vo (hye) | 24| vy (R, k20)

s

ikcp T, D, (gg-js 0 wei Dpvk® [ |5k §' Ut =0)
(10.20)

where ])‘ = j’;‘ (3 + %‘ "{) . The poles of these fluctuations are determined by

setting the determinant of coefficients equal to zero. They lie in the lower-half
® plane, at values given approximately by-{ TR k? and Tck -1272512" , where R and B
denote Rayleigh and Brillouin. Direct evaluation to leading order in k (which is

small) gives

r, = Dy
202D+ (v-i)Dy (10.21)

where we have used the thermodynamic relation
. kS
e 8 (n )L e Y-
. =
Tec °p (10.22)

R
Thus the various correlation functions X,}. (k—,w) formed from the quantities 9',

v, and s' all have terms proportional to (w+ £ Dy kL )—I and (wich +i T’Bizt)-’

with residues that depend on the specific choice of ij[compare Eq. (9.27)-(9.29)].
As a result, the imaginary parts X'".. and the corresponding S. '(].5.’“’) have denomina-
tors of the form w* "‘FD.,.l L2 and (Ul-cz\%)z + (2w k* r'B)Ll

In particular, the frequency spectrum of light scattered with fixed k follows
from Srm (E,w). It contains a Lorentzian Rayleigh peak centered at w = 0 with width
DTkZ and a pair of (not strictly Lorentzian) peaks centered at w= Yfck with
widths of order I"15 k> (Fig. 10.1). In the long-wavelength limit, these peaks are

well separated and the
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Fig. 10.1. Irelastic light-scattering intensity from a fluid for fixed k.

Brillouin peaks at w =% ¢ k. are of equal height [see Eq. (7.27)]. The full ex-

pression for § b”\g) is found in Ref. 8, p. 77, and we shall not reproduce the

L
rather complicated structure. Physically, the Rayleigh peak is diffusive, as in

Eq. (9.29), arising from entrony fluctuations that propagate by heat conduction

(as seen by the width1D1= k*k/?oc1, ). The Brillouin doublet is associated with
density fluctuations that propagate with the adiabatic speed c from Eq. {10.12a)

and decay with a damping constantlj} :fD¢+ (}—‘)'DT containing both viscous
contributionst% and thermal contributions DT. Note the role of thermal expansicn,
which reduces the width of the Rayleigh peak from‘VI)Tto DT [see the 33 element of
the matrix in Eq. (10.20) and Eq. (10.22)]. Detailed calculations show that the
ratio of the areas under the Rayleigh peak and the Brillouin doublet is y-1, an

old result of Landau and Placzek [see Landau and. Lifshitz, Electrodynamics of
Continuous Media, Chap. XIV.]. 1In this way, light scattering can provide direct
information on the thermodynamic parameters c and y and the transport coefficients
%—q-f T and ktu . Some of these quantities (especially the bulk viscosity )
are not readily accessible by other means.

Light scattering plays a warticularly important role near the liquid-gas
critical point, because the total intensity becomes large owing to critical opales-
cence (see the discussion at the end of Lecture V). In addition, the difference
cp—c‘,also becomes large, so that the Rayleigh peak dominates; this reflects the
importance of entropy fluctuations near the phase transition. In contrast, the
width of the Rayleigh peak becomes small, because DT = ktk/ﬁ ‘-‘1, varies inversely
with c_. As a result, entropy and temperature changes decay very slowly, leading
to the behavior known as critical slowing down. Modern theories make varicus pre-

dictions for the power-law dependence on T—Té near the critical point, and light
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scattering has been central in verifying these critical exponents. We may also
mention that light scattering has been important in studying the normal-superfluid
transition in liquid 4He. In that case, the Rayleigh peak below TA splits into

a doublet associated with the excitation of second sound (see Ref. 8, Chap. 10).
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