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A variety of one-dimensional Ising spin systems, including staggered and parallel 
magnetic fields, alternating and second neighbor interactions, four-spin coupling, etc., 
are discussed in terms of renormalization group theory. A continuous range of distinct 
renormalization groups is constructed in exact closed form, analyzed in detail, and 
compared with exactly calculated thermodynamic properties. Fixed point linearization 
yields relevant, irrelevant, and marginal operators. All groups yield identical “critical” 
behavior (at T = 0) with 7 = 1, 6 = co, y  = Y = 2 - 01, and with identical linear 
scaling fields. A generalization of Wegner’s analysis to discrete groups yields explicit 
power series for the nonlinear scaling fields; these are seen to depend on the particular 
renormalization group and, hence, are physically nonunique. A planar, multiconnected 
“truncated tetrahedron” model of effective dimensionality log, 3 is analyzed via a dede- 
coration and star-triangle group revealing highly singular behavior as T + 7, = 0. 

1. INTRODUCTION 

The general formulation of Wilson’s renormalization group approach to the 
study of critical point behavior has been presented by Wilson [l] and others [2] 
and developed by Wegner [3] to discuss the corrections to asymptotic scaling [3]. 
The principal model so far discussed with an exactly realizable renormalization 
group, in contrast to a perturbation theoretic realization by E-expansions, etc. 
[410] is Baker’s model [ll] which has the same structure as Dyson’s hierarchical 
model [12, 131. For this class of models, however, no exact solutions of the 
renormalization group equations have been found, nor have the models themselves 
been solved exactly by any other methods. 

In this paper [14] we discuss a variety of models for which renormalization 
groups can be constructed in exact closed form as recursion relations in finite- 
dimensional parameter spaces. The simplest model is the nearest neighbor linear 
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Ising chain [15, 161; we also consider more elaborate one-dimensional Ising models. 
Although the thermodynamics of these systems are readily calculable by traditional 
methods (such as the matrix method), and their “critical points” all occur at zero 
temperature [16] the explicit analysis of the associated renormalization groups 
illuminates a number of important features of the general theory. In particular 
we discuss (a) the nonuniqueness of the renormalization group; (b) its semigroup 
property: (c) the behavior of the constant or “background” term in the Hamilto- 
nian; (d) the existence and nonexistance of fixed points for particular types of 
critical behavior; (e) the exact critical operators, including examples of relevant, 
marginal, irrelevant, and pseudo-relevant variables; (f) asymptotic scaling; 
(g) the “irrelevancy” and “nonlinear” corrections to asymptotic scaling; (h) the 
nonlinear scaling fields, which are shown to be nonunique, and techniques for 
calculating them. 

In addition we discuss one model, a planar, multiconnected “truncated tetra- 
hedron” Ising lattice, (which is not of simple one-dimensional form) where the 
exact renormalization group equations yield precise information on the critical 
(T-+ 0) behavior which seems otherwise inaccessible. Although this last model 
represents the only new result concerning critical behavior as such, we believe the 
study throws light on various important aspects of the renormalization group 
approach and improves ones general understanding of its operation. 

For the reader’s convenience we summarize at this point, the main aspects of 
the paper. In Section 2 we review the renormalization group approach with 
emphasis on certain general features and questions. Readers familiar with the 
theory may wish to peruse this section lightly or merely refer back to it for nota- 
tion, etc. as the occasion arises. 

In Section 3 the simple linear Ising chain with nearest neighbor interactions is 
discussed in the presence of both a uniform magnetic field, H, and a staggered 
magnetic field, Ht. A renormalization group transformation is defined by using 
the spin dedecoration (or “iteration”) transformation [17, 181. This yields explicit 
algebraic recursion relations. Various fixed points exist, including one describing 
the ferromagnetic critical point (at T = 0 with pair spin coupling J > 0) and the 
antiferromagnetic critical point (at T = 0 with J < 0). The appropriate critical 
exponents are correctly found by linearization of the renormalization group. 
Specifically, one obtains 7 = 1, 6 = co, and y = v = 2 - d. (Compare with 
Ref. [16].) Both relevant and irrelevant critical variables or operators appear. In 
addition, when alternating coupling strengths J1 and J2 along the length of the 
chain are introduced (Section 4), a marginal variable appears. More elaborate, 
but still exactly soluble models discussed in Section 4 include the linear chain 
with both first and second nearest neighbor couplings and a “ladder” of spins 
including a four-spin interaction. 

By considering different spatial resealing factors b, produced by dedecorating 
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firstly alternate spins and secondly, a pair out of every three spins, etc., the semi- 
group property of the renormalization transformation is explicitly checked. The 
importance of the constant or spin-independent term in the Hamiltonian appears 
in the calculations; it is seen to go to an appropriate limit at the fixed points. The 
scaling predictions of the renormalization group can be checked against the exact 
solutions and the appropriate scaling functions may be derived. 

In Section 5 we describe two “truncated tetrahedron” Ising models. These are 
respectively three- and four-coordinated planar structures containing polygons 
of sizes 3, 6, 12, 24 ,... . However, despite the number of polygonal closures, these 
lattices (or pseudo lattices) have a connection number [19] of only three; as a 
result the critical point still occurs at T = 0. Nevertheless, the singularity there is 
extremely strong; its character (in zero field) can be deduced from the exact 
renormalization group which is constructed. We have not, otherwise, been able 
to solve these models. 

Since the exact renormalization group equations for the linear models are at 
hand, Wegner’s analysis [3] of the corrections to scaling can be applied. As 
demonstrated in Section 6, this enables us to generate explicitly, appropriate 
nonlinear scaling fields (combinations of temperature T, magnetic field H, etc.). 
However, these are seen to be nonunique: the free energy can also be extended 
outside the linear critical region in scaling form using other nonlinear fields. 
Wegner’s discussion [3] assumes that the renormalization group is given as a 
continuous group on the spatial resealing factor. In our analysis the resealing 
factors are always integral and the renormalization group is discrete. Accordingly 
we present a method for calculating the scaling fields for a discrete group. 

We also show, in Section 3, that it is possible to “miss” a fixed point describing 
a particular critical point if care is not taken. Specifically, the antiferromagnetic 
fixed point may be transformed away and an irrelevant operator is apparently 
turned into a relevant one. This illustrates that a useful renormalization group 
should be chosen so as to “focus” on the critical point of interest. 

In a related context, we generalize in Section 7, an Ising spin renormalization 
group devised by Wilson [20] thereby obtaining an infinity of renormalization 
groups for the Ising chain parametrized by one continuous parameter. These 
groups (which in one limit include the original dedecoration group) generate the 
same low temperature fixed point with the same critical exponents, but have 
different nonlinear scaling fields and different high temperature fixed points. The 
distinct character of these renormalization groups is specifically related to the 
presence of a variable spin-resealing factor. In general such a feature is needed 
in order to realize a fixed point with a particular value of the exponent q. However, 
for dimensionality d = 1 and a critical point with 71 = 1, a “fixed spin” renor- 
malization group, such as the simple dedecoration group, suffices as the earlier 
analysis shows. 
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2. RENORMALIZATION GROUP FORMALISM 

In this section we review briefly the general renormalization group formalism 
[l-3]. This will serve to exhibit the features to be explored in the explicit analysis 
and to introduce the notation. 

2.1. Renormalization Groups 

A system with given interactions at a specified temperature, T, and subject to 
particular external fields H, H+,... is described by its reduced Hamiltonian 

c@ = L@({s}~) = -sI”({s& , H, H+ ,... )/k,T, (2-l) 

where ($1, = {sl , s2 ,..., St ,..., s,,,} denotes a set of N local degrees of freedom 
associated with, say, lattice sites Ri . In our discussion these degrees of freedom, 
or jield cariables, will be simple Ising spins, si = i 1. The reduced Hamiltonian, 
or what is equivalent, the Boltzmann factor es, is to be a translationally invariant 
function of the field variables (at least asymptotically in the thermodynamic 
limit N-+ co); it will be parametrized by a set of “initial” fields or interaction 
parameters {k} = {k, , k, ,...} describing the various (translationally invariant) 
terms appearing in 2. It is normally convenient to take kf as the coefficient 
multiplying some particular additive term in Y? but for critical points occurring 
at T = 0 other choices will often be more convenient. The zeroth field, k, , may 
be identified with the constant or “spin-independent” term in .?f’, say E,/k,T. 
In general the set {k} must be of infinite dimensionality. The solubility of the 
renormalization groups we describe resides in the fact that they may be realized 
exactly in a finite field space {k, , k, ,..., k,} = K, . 

A renormalization group transformation R carries a Hamiltonian LZ? (we will 
omit the adjective “reduced” hereafter) into a transformed or renormalized 
Hamiltonian 

2’ = R[sP], (2.2) 

which is again translationally invariant and may, likewise, be parametrized by 
the set {k}. On a finite system the renormalization operator [w acts to reduce the 
number of degrees of freedom from N to 

N’ = N/bd, (2.3) 

where d is the spatial dimensionality while the spatial resealing factor b exceeds 
unity. In the examples we will discuss, b will be an integer but this is not generally 
necessary. 
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The renormalization group must also (under all currently explored formula- 
tions [Zl, 221) keep the partition function 

invariant so that 
Z,,,[i] = Tr,{e%} (2.4) 

ZN’[TP’] = Z&P]. (2.5) 

The operation Tr, denotes the trace operation, integration, summation, etc., 
appropriate to the field variables {s}~ . The free energy per degree of freedom 

f[SP] = Ii% N--l In Z&F], (2.6) 

thus satisfies the basic covariance relation 

(2.7) 

This relation ultimately leads to critical point homogeneity and scaling. The 
presence of the thermodynamic limit in (2.6) and (2.7) is essential to any discussion 
of critical points (which do not exist for finite N) but, in general, leads to severe 
technical problems in constructing a mathematically rigorous definition of R. 

In a hear renormalization group the basic correlation function 

G[Ri - Rj ;rio] = (sisj)~, WO 

(where (e) denotes the standard statistical average taken with 9 in the thermo- 
dynamic limit) transforms according to 

G[R;i@] = c2G[R/b;e@'], (2.9) 

where c = c[g] is a spin resealing factor determined by R. However, nonlinear 
groups have been successfully employed numerically [23], and have recently 
been studied theoretically [24]. We will also exhibit an exact nonlinear renormaliza- 
tion group (in Section 7). 

Under iteration 

FP[sq = lQ[W[S]],..., IwZ[sq = Dqrwyq], (2.10) 

one obtains renormalization operators with spatial resealing factors b, = b2,..., bl = 
bz which satisfy the semigroup property 

Rz+z’ = pRz’ 
3 b z+z’ = bzbz, = bZ+Z’. (2.11) 
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2.2. Fixed Points and the Critical Spectrum 

To utilize a renormalization group one looks for a fixed point S?* defined by 

[wpr*] = &?* (2.12) 

and presumes that one may expand as 

lR[$'* + wQ] = A?* + wLQ + O(w2), (2.13) 

where w  is a scalar parameter and L = (SE%/&%?)* is a linear operator on 
Hamiltonians. One then studies the eigenvalue problem 

LQj = 4Qj, (2.14) 

to obtain the spectrum of critical operators or variables Qi , and corresponding 
eigenvalues dj , which in view of the semigroup property (2.11) are expected to 
have the form 

A,(b) = bhj, (2.15) 

where the hj are independent of b. 
The form of dependence of Aj(b) on b also follows if R can be defined for b + 1 

so that the infinitesimal generator 

G = J$ (R, - U)/(b - 1) (2.16) 

can be constructed. If we redefine I = In b the renormalization group Eq. (2.2) 
then becomes 

ds/dl = S[Y?]. (2.17) 

This is the form presumed by Wegner [3] in his analysis of corrections to scaling, 
etc., but we will be working with discrete groups only. 

If the set of eigenoperators or critical variables Qj for the fixed point X* is 
complete one may write 

2 = c%f* + C h,Qj , (2.18) 

thereby parametrizing SP in terms of eigenfields or (linear) critical BeIds 
VG = {ho , 4 ,...I. 

In the cases we will study the completeness of the scaling field expansion (2.18) 
[or its equivalent] will not be in doubt; but in general one should probably expect 
no more than some sort of asymptotic or weak completeness, e.g., for suitable 
expectation values taken with 9 in the vicinity of &‘*. The mapping from the 



232 NELSON AND FISHER 

initial fields (k) to the scaling fields (h) is in general nontrivial but can often be 
simplified (at least to leading order) by symmetry considerations. 

One of the critical operators, say QO, may be identified as the constant or spin- 
independent term with field k, or h, . Since such a term in z+? can always be 
removed from under the trace in (2.4) it follows that it transforms in a trivial way 
under the renormalization group so that its eigenvalue is always (1, = bd or 
h, = d. 

Under action of the renormalization group the expansion (2.18) yields 

R[s] = 2’ = &‘* + c h,z’&Qi + 0(/Q (2.19) 

which may be recast as the recursion relations 

hj’ = Ll,h,[l + O(h, ) h, ,...)I. (2.20) 

Iteration I times yields 
h?’ 3 r=z (lizhi , (2.21) 

provided one stays within the linear region where the O(h2) terms in (2.19) can 
be neglected. It now clearly makes sense to classify the critical variables as 
(a) relevant with (lj > 1 (Xj > 0), which grow in importance, (b) irrelevant with 
/1, < 1 (X, < 0) whose contribution diminishes under iteration, and (c) marginal 
with (li = 1 (Ai = 0) which remain (in linear order) of constant magnitude. 
Normally the most relevant operator (with largest CrJ would identify the order 
parameter and its ordering field h = H/kBT. Another relevant operator would 
be the “energy” and its field would be the reduced temperature t = (T - TC)/TC , 
etc. However, in the cases we will study, where T, = 0, the corresponding tempera- 
ture variable must evidently be expressed in different form. 

Furthermore, in general, there are a variety of distinct fixed points with distinct 
scaling fields and exponents. In general different identifications will be necessary 
at different fixed points. In particular we will observe infinite temperature and 
infinite field fixed points where, clearly, appropriate new variables must be adopted. 

2.3. Scaling and Nonlinear Scaling Fields 

On using (2.21) in combination with (2.15) and the basic covariance relation (2.7) 
for the free energy, one obtains, for the linear region, 

f(h,, h, ,..., hj ,...> M b-zdf(bzA”h, , bzA’h, ,..., b”jhj ,... ), (2.22) 

wheref[X] has been expressed as a function of the scaling fields. Since bz may be 
indefinitely large one can choose 1 so that as a relevant field, say h, = t, becomes 
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small one has bz”lt = 1 whereupon this relation can be written in the standard 
scaling form 

where 

f(ho ) t )..., hj )...) R3 t2-mY(ho/tbfJ )...) hj/P’ )... ), 

2 - a = d/X, , 

(2.23) 

(2.24) 

the crossover exponents are given by 

(2.25) 

and the scaling function is 

For irrelevant scaling fields hk the crossover exponent C& is negative so that 
hJt*y = hrtldjl --f 0 as t -+ 0 and one expects [21] to be able to set the corre- 
sponding argument yk in (2.26) to zero and ignore the hk dependence off in the 
critical region. Expansion with respect to y, should yield systematic “irrelevancy” 
corrections to asymptotic scaling laws [3]. As we will show explicitly in Section 3.5, 
however, “nonlinear” corrections arising from the O(h2) terms in (2.19) may well 
be more important. 

For a linear renormalization group, where (2.9) applies, one obtains a functional 
equation for G(R) at Z-P = $‘P* with solution 

where 
G*(R) w  D/R2W as R+co, 

c* = c[&‘*] = b-*. 

(2.27) 

(2.28) 

This typically critical-point decay law identifies the critical exponent 7 via 

d - 2 + 71 = 2w = --In c*/ln b. (2.29) 

This identification shows that in using a linear renormalization group one must 
usually treat c* as a sort of eigenvalue which is to be adjusted to obtain a non- 
trivial fixed point describing the critical behavior of interest. In combination 
with (2.19) and (2.21) one obtains the correlation scaling relation 

G(R; h, , h, ,...) m R-‘d-2+“D(Rt” ,..., hj/t”J...), (2.30) 

with v = l/X, , which through (2.24) implies the hyperscaling relation [22] 

dv = 2 - 01. (2.31) 
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Finally, the nonlinear scalingjelds 

g,v4l , 4 ,...I = Ml + w, , 12, ,... >I (2.32) 

are introduced [3] as the exact (formal) solutions of the fuZZ, nonlinear recursion 
relations (2.20) which behave as 

(2.33) 

where there are now no correction terms. If 2 is parametrized in terms of these 
nonlinear scaling fields (assuming this to be possible) we obtain the exact non- 
linear homogeneity relation 

f(& 3 g1 7*..3 g j  )...) = Pf(b""g, ) eg, )..., P+g, )... ), 

in contrast to the asymptotic homogeneity (2.22). 

(2.34) 

Wegner [3] has shown how to generate the nonlinear scaling fields as power 
series, given differential recursion relations corresponding to (2.17). In certain 
cases logarithms also appear. We will show how the same can be accomplished 
for a discrete group. As mentioned, we will also show explicitly that whereas 
distinct renormalization groups describe a particular critical point in terms of 
the same linear scaling fields, the corresponding nonlinear fields are in general 
different, and hence, nonunique. 

3. DEDECORATION RENORMALIZATION GROUPS 

3.1. Decoration Transformations 

Decoration or iteration transformations of Ising models have been treated 
generally by Fisher 1181. Using such a transformation, one can replace a central 
spin (or any other physical system) coupled to two neighboring spins, s, and s2 , 
by a single bond joining the two “external” spins. The transformation is effected 
by first taking a trace over the internal degrees of freedom of the physical system 
coupled to the two “external” spins. One is then left with a conditional partition 
function I,!I(s~ , s2 ; T) depending on the two external spin variables. The assembly 
is then replaced (see Fig. 1) by a single Ising bond of strength J = k,TK coupling 

8L, K 8L, 
- Ns,s2) y2* s”, 0 

St SP 

FIG. I. The generalized decoration transformation. 
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s1 and s2 , by augmented (reduced) magnetic fields 6H, = kBT 8L, and 
6H, = k,T 6L, acting on s1 and sZ , and by a spin-independent function g(T) 
which contributes an additive term -kT Ing to the total free energy. The trans- 
formation equations, as derived by Fisher [18] are 

e4K = *++#--I$+-#-+, 

e46L1 = *++#+-/#--#p+, e46L2 ~ 
~ *++*-+I*--*+- 3 

(3.1) 

(3.2) 

and 

g* = *++L#+-$-+ > (3.3) 

where #,.+ = #(+ 1, + 1; T), and so on. 
We apply this procedure to the nearest neighbor Ising chain of N spins in a 

magnetic field [15] which is described by the familiar Hamiltonian, 

2 = -J % .s+s~+~ - H 5 si - NE,,(J, H). 
i=l i=l 

(3.4) 

The function E,(J, H) represents a “zero-spin” or “background” contribution 
to the energy which plays a role in the description of the linear Ising chain in 
terms of a renormalization group; initially, we may take E,, to be a constant. It is 
most convenient to work with the reduced Hamiltonian 2 defined by 

c@ = -iF]kBT = K c s~s~+~ + L c s< + NC(K, L), (3.5) 
i=l i:=l 

where 
K = J/k,T, L = H/k,T, C = E,lk,T. (3.6) 

By dedecorating every other spin along the chain [15] we now generate an 
elementary example of a renormalization group transformation with b = 2. The 
effect of this dedecoration transformation on the partition function Z,(C, K, L) is 
given by 

Z,(C, K, L) = Z,,,(C’, K’, L’), (3.7) 

where K’ represents the new (effective) coupling between the remaining spins 
while L’ represents the corresponding transformed ordering field. If, temporarily, 
we ignore the spin-independent terms C and C’, the dedecoration group simply 
maps the point (K, L) specifying the initial Hamiltonian onto a new point (K’, L’) 
describing the renormalized Hamiltonian. 

In the process just sketched the physical subsystem removed by decoration 
was a single spin. Other renormalization groups can be constructed by applying 
the dedecoration transformation to more complicated objects. In the following 
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analysis we will study the effects of removing two adjacent spins out of every 
three spins in a linear chain, and of removing alternate “rungs” in a “ladder” 
(or double chain) of spins. 

3.2. Recursion Relations for Dedecoration with b = 2 

Dedecoration of every other spin in a linear Ising chain generates a renormaliza- 
tion group with spatial resealing factor b = 2. The conditional partition function 
for decoration is 

#(.Q , s,> = 2 cosUK(s, + ~2) + Ll. (3.8) 

It is convenient to work with the new set of variables, 

w = e-4C 9 x = e-4K 3 and y = eezLm (3.9) 

In terms of these variables the dedecoration relations (3.1) to (3.3) yield the basic 
recursion relations 

w’ = w2xy2/(1 + y)” (x + y)(l + xy), (3.10) 

x’ = x(1 + Y>“/(X + YXl + XY>, (3.11) 

Y’ = Yb + YMl + XV>> (3.12) 

and (3.7) likewise applies in terms of w, x, and y. 
Evidently the parameters x and y move in the (x, y) plane independently of w; 

the spin-independent term w  is thus “driven” by the interaction terms. This is a 
general feature of the renormalization group. Clearly, fixed points may be obtained 
by study of the last two recursion relations alone. Restricting attention to the 
unit square (0 < T, H < co), for J > 0 we find a “paramagnetic” line of jixed 
points at x* = 1, independent of y, corresponding to T = co (or equivalently, 
J = 0). There is also an isolated “fully aligned” or “frozen,” infinite-field fixed 
point at (x*, y*) = (0,O). Lastly there is “ferromagnetic” fixed point at (0, 1) as 
shown in Fig. 2. Since we are interested mainly in the “critical” behavior of the 
system near T = 0, H = 0, where the correlations become long-ranged, we will 
study the “ferromagnetic” fixed point, (0, 1). Under iteration of the transformation 
an initial Hamiltonian specified by (x0 , y,,) describes a discontinuous trajectory 
in the (x, y) plane; typical trajectories are sketched (as if continuous) in Fig. 2. 

On linearizing about the ferromagnetic fixed point (x* = 0, y* = 1) with 
dy = y - y* = y - 1, the recursion relations become 

x’ w  4x, Lly’ w  2dy. (3.13) 
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t u=n-. 

0 I I I.1 / I 1-1 I t 
0 0.5 1 1 

H=m x2 = e-2K 

FIG. 2. Trajectories and fixed points for the dedecoration renormalization group applied 
to the linear Ising chain. Isolated fixed points occur at (x*, y*) = (0, 0) and (0, l), while a line 
of fixed points appears at x = 1. The dots represent sucessive applications of the b = 2 trans- 
formation. Different initial conditions would give different sets of dots, all of which would fall 
on the continuous curves sketched here. The trajectories are the same for the b = 3 dedecoration 
group: see Section 3.5. 

These relations are already diagonal so we find the eigenvalues 

A, = 4, A, = 2, (3.14) 

A, = 2, A,= 1, (3.15) 

so that both critical fields x and dy are relevant. 
Formally from (3.9) the ferromagnetic fixed point vaIue of w is w* = co: this 

indicates that a change of variable is appropriate. If one multiplies (3.10) and (3.11) 
together one obtains 

(4’ = (wx)” Y”/(X + VI” (1 + xv)“, (3.16) 

which near the fixed point reduces to (wx)’ = (wx)“. The appropriate fixed point 
is (wx)* = 1 and the eigenvalue is A,, = 2. It is convenient to interpret this result 
by imagining the temperature T is unaffected by the transformation. When one 
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is near the fixed point, so that x, and dy, are small, one may take the logarithm 
of (3.16) to find 

(E + J)’ - 2(E + J), (3.17) 

so that A,,, = 2 or X,,, = I = d; this confirms the general observation about 
the eigenvalue of the constant term made in Section 2.2. Furthermore if one 
chooses E, = -J, the fixed point value, one has E, = -Jl throughout the linear 
region. This choice of E corresponds to setting the ground state energy of the 
system equal to zero. 

It should be noted that the recursion relations (3.10) and (3.11) are invariant 
under the replacement y 3 y-l as expected by the symmetry of the initial Hamilto- 
nian. (However, we will examine a renormalization group which does not respect 
this symmetry.) If, however, one starts with x,, > 1 (corresponding to antiferro- 
magnetic coupling J < 0) one finds that x0 is immediately mapped into a value 
x1 -=c 1. This is because the effective interaction between alternate spins in a 
antiferromagnetic chain is, indeed, ferromagnetic. The effective interaction remains 
ferromagnetic under further iterations. Thus no specifically antiferromagnetic 
fixed point appears. Furthermore, the uniform magnetic field H is expected to 
be a thermodynamically irrelevant variable near an antiferromagnetic critical 
point (i.e., to have a fixed point eigenvalue (1, less than unity). After one iteration 
step, however, the uniform field is transformed close to the ferromagnetic fixed 
point (x* = 0, y* = I), where it is apparently thermodynamically relevant. Thus 
an irrelevant variable is projected onto a relevant one. The resolution of this 
paradox in treating antiferromagnetic coupling is presented in Section 3.7. 

3.3. Scaling Relations for b = 2 Dedecoration Croup 

The transformation of the reduced free energy 

AC, K ~9 -f( W, x, ~1) = ji+i N-l In Z,(C, K, L) (3.18) 

of the chain follows from (3.7) as 

f(w, 4 v> = i&w’, VT’, v’)* (3.19) 

If we choose E, = --J and then neglect the w- or E-dependence (as is valid in the 
linear region) we obtain on iteration I times 

fk 4) = 2-w% 7 MY,). (3.20) 

But from the linearized Eqs. (3.13) one has 

Xl = 41x and Lly, = 21 dy. (3.21) 
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We now choose I so that 221x = k < 1 for x close to the critical value x, = 0, 
where k is small enough that the linearized recursion relations are valid. On 
substituting into (3.20) and using the approximation dy .w 2L valid near the 
critical value L, = 0, we obtain the scaling prediction 

f(x, y) = f(T, H) R3 e-2KY(#wK), (3.22) 

where, as before, L = H/k,T and K = Jjk,T, while the scaling function is given 

by 
Y(v) = k-lf(k, 2kv). (3.23) 

In principle x = e-4K can take only the values k/2-2z for I integral so that k,T/J 
takes only values of the form l/(c,l + c,), but since these values become closely 
spaced near the critical point this is not a serious drawback. However, further 
investigation is needed to check that no “ripple” is, in fact, generated in the 
thermodynamic functions. The analysis of Section 6, however, shows how to 
construct an analytic continuation in b. 

The low temperature properties of the Ising chain follow immediately from 
(3.22). Thus, the zero-field energy approaches its “critical” value UC = 0 as e-2x. 
By differentiating twice with respect to L the zero-field susceptibility, 
x = (aiv/aH), - a(s,yaL, is seen to diverge exponentially as e+2K as 
K-l = k,T/J+ 0. 

Now the exact free energy of an Ising chain with E, = -J < 0 is well known [25] 
to be 

f(K, L) = -K + In]@ cash L + (e2K sinh2 L + e-2”)1/2], (3.24) 

which near L = 0, K-l = 0 reduces to 

f (K, L) = e-2K(1 + L2e4K)1J2 + 0(L*, ec4K). (3.25) 

From this we may identify the scaling function (3.23) as 

Y(u) = (1 + U2)1/2. (3.26) 

The spin-spin correlation function 

G(R, T, H) = (s,,sR) = Z-,’ C .so,yRe*(SsI, 
{si=il) 

(3.27) 

may be analyzed similarly. (We measure R in units of a lattice spacing.) If one 
takes s0 and sR as spins which are not removed by decoration, one finds the exact 
recursion relation 

G(R, x, dy) = G($R, x’, dy’), (3.28) 
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as is intuitively obvious from the nature of the dedecoration transformation. 
Evidently the dedecoration renormalization group is “linear” in the sense explained 
in Section 2. Furthermore the spin resealing factor, c, is simply constant and equal 
to unity. [See Eq. (2.9).] On iteration within the linear regime, where (3.13) apply, 
we obtain 

WC x, AY) m G(2-zR, 2%, 2z Ay), 

which leads to the scaling expression 

(3.29) 

where, with k < 1, 

WC x, 4) w D(Re-2K, Le2K 12 (3.30) 

D(u, v) = G(u/k, k, 2kv). (3.31) 

Identification of the scaling combination u = Re-2K as R/&T), shows that the 
zero-field correlation length f(T), diverges as e2K when T -+ 0. The correctness of 
this result is easily checked from the exact expression [25] G(R, T, 0) = (tanh Q?. 

The complete exact expression for the correlation function may be obtained 
via the transfer matrix approach [25] which yields 

G(R, K, L) = [sinh2 L + (h+/hJR]/(l + e4K sinh2 L), (3.32) 

where 
h* = eK cash L -& (e2K sinh2 L + e-2K)1/2. (3.33) 

The constant term in (3.32) merely represents (sJ2, the square of the magnetization. 
On extracting the behavior for L, K-l + 0 the scaling form (3.30) is confirmed with 

D(u, v) = (1 + zP-~{Y~ + exp[-2u(l + z?)~‘~]}. (3.34) 

3.4. Critical Exponents in One Dimension 

The zero-field critical exponents 01, p, y, and v are normally defined in terms of 
the reduced temperature variable t = (T - TJ/Tc via 

Of = f - fc N Pa, (so) - ta, 
x - t-y, E - t-“. (3.35) 

In the present case, where T, = 0, these definitions clearly fail. Alternatively if 
one replaces t by AT = T one would conclude that 2 - 01, y, and v are all equal 
to +co. However, one can define reduced critical exponents in terms of the 
correlation length by writing 

Af - t--(24/v, 00) - c?lv, x - p/v. (3.36) 
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The results Of- e-2K, and x - ,$ - ezK then imply 

y=v=2--0i. (3.36) 

The last equality here is consistent with the hyperscaling relation [22] 
dv = 2 -- 01 for d = I. The first equality combined with the scaling relation 
y = (2 -- q)v implies 

rj = 1. (3.37) 

However, this can be checked directly through the usual definition 

G,(R) - 1/Rd-2fn N R1-R, (3.38) 

where the last relation applies for d = 1. Since G(R) = (tanh K)R in zero field [25], 
one has G,(R) z 1 which confirms (3.37). This value of 7 is also consistent with 
the spin resealing factor c* = c = 1 noted above, as follows from (2.29). 

The hyperscaling relation d(6 - l)/(S + 1) = 2 - 17 now leads to the prediction 
6 = co. This result makes good sense if one examines the magnetization isotherms 
which follow from (3.24) or (3.22) and (3.26) namely, 

M(T, H) = <so) = sinh L/(e4K + sinh2 L)lj2 m L/(x + L2)lj2. (3.39) 

For x or T > 0 this describes a normal, analytic paramagnetic magnetization 
curve saturating at M(T, f co) = &I. For x = T = 0, however, one obtains 
M(0, H) = sgn(H]: this discontinuous critical point variation is well described 
by6 = co. 

Finally we note that M(T, H) always vanishes as H + 0 for T # 0, even if 
x < 0; thus there is no spontaneous magnetization. However, following (3.36) 
one may define j3 through the scaling form [22] 

M m ~-B~yW(L~Aly). (3.40) 

Comparison with (3.39) yields 

p=o and A == v. (3.41) 

These results are consistent with (3.36) and the usual exponent relations 
01+ 2p .f y = 2 and A = p + y. 

3.5. Dedecoration Group with b = 3 

We now discuss an alternative dedecoration renormalization group with b = 3 
generated simply by removing the first two spins out of every triple of spins along 
the chain. Since the renormalized interactions between the remaining spins retains 
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the sign of the original nearest neighbor coupling, this group provides a natural 
framework for discussing antiferromagnetic as well as ferromagnetic chains. 
Thus we include a staggered field 

Hi = k,TG (3.41) 

and take the reduced Hamiltonian to be 

2 = K 2 sjsj+l + L 2 ~j + G 5 (A)’ Sj + NC(K, L, G). (3.42) 
j=l j=l j=l 

The object to be removed by dedecoration is now a block of two spins with 
conditional partition function 

#(sl , s2> = 2eK cosh[K(s, + .sJ + 2L] + 2e-K cosh[K(s, - s2) + 2G]. (3.43) 

Insertion of this into (3.1) to (3.3) yields the recursion relations 

where 

and 

w’ = w3x3Y3z3/*l*2hh, 

x’ = &dJ2/$3#4 3 Y’ = Y$4/$3 3 z’ = z*1/*2 

z = e-2G = exp(-2H+/k,T) 

(3.44) 

(3.45) 

(3.46) 

$4 = Y(1 + xz3 + 4 + Y”), $2 = Y(X + z"> + -41 + Y”>Y 

$3 = XY(l + z") + dl + XY3, #4 = xy(l + 2") + 4x + y">. 

(3 47) 

. 

The three recursion relations (3.45) are independent of w  and determine the 
fixed points. In the cube 0 < X, y, z < 1, which describes ferromagnetic inter- 
actions, we find a plane of paramagnetic, infinite-temperature fixed points at 
x* = 1, 0 < y*, z* < 1, as shown in Fig. 3. There is also a line x* = 0, y* = 0, 
0 < z* < 1 of frozen, infinite-field fixed points and, finally, an isolated ferro- 
magnetic tixed point at x* = 0, y* = z* = 1 (see Fig. 3). Linearization about 
this ferromagnetic fixed point with dy = y - y* and AZ = z - z* yields 

AX’ = 9Ax, Ay’ = 3Ay, AZ’ = &AZ. (3.48) 

Thus the eigenvalues are 

A, = 9, A, = 3, A, = 4, (3.49) 
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Z 

FIG. 3. Fixed points for the b = 3 dedecoration group applied to the linear Ising chain in 
both staggered and uniform magnetic fields. (The front face of the cube with Ht = 0 corresponds 
to Fig. 2). Isolated fixed points occur at (0, 1, 1) and (0, 1, 0), a line of fixed points at (x = 0, 
JJ = 0), and plane of fixed points appears at x = 1. 

or recalling that b = 3, 

h, - 2, Au = 1, A, = ---I. (3.50) 

Evidently, as anticipated on physical grounds, the staggered field variable z is 
irrelevant at the ferromagnetic fixed point. More strikingly the eigenvalue exponents 
X, and h, are precisely the same as in the original B = 2 dedecoration group (and 
correspond to the same critical variables or eigenoperators). This confirms the 
expected independence of the critical exponents on the particular renormalization 
group and partially checks the semigroup property of the dedecoration class of 
groups asymptoticalIy in the linear region. 

We may note in passing that a dedecoration type of renormalization group for 
a one-dimensional, continuous spin Gaussian model [26] yields a finite T, , and 
the eigenvalues A, = 2, A, = # and A, = -4 with exponents y = 2v = 2(2 - OZ) = I 
and q = 0. 

It is easy to check that the recursion relations (3.44) to (3.47) are invariant 
under y 3 y-1 and z 3 z-l as is to be expected. More importantly, if we let 
x * x-1, corresponding to the change of ferromagnetic into antiferromagnetic 
coupling, the recursion relations are reproduced except that the roles of y and z 
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are interchanged. Thus the analysis of the antiferromagnetic chain exactly parallels 
that for the ferromagnetic chain. In particular there is an antiferromagnetic fixed 
point at T = 0, Ht = 0, at which the parallel field H (or v) is an irrelevant variable 
with eigenvalue A, = - 1, while the staggered field becomes relevant with exponent 
A, = 1. 

3.6. Scaling with an Irrelevant Variable 

The spin-independent term w  can be handled as before. If the initial zero-spin 
energy is taken as E,, = -J then (E + J)z = 3z(E + J),, remains zero throughout 
the linear region. If attention is concentrated on the equation of state M(T, H, H+) 
rather than the free energy one can, in fact, avoid all consideration of the spin- 
independent term. This is because the recursion relation for the magnetization is 
simply 

M(x, Lly, AZ) = M(x’, dy’ AZ’) (3.51) 

independent of w. Of course this is just another reflection of the simple linearity 
of the dedecoration groups with c = 1 already noted in Section 3.3 in connection 
with the correlation functions; it shows that the renormalization group trajectories 
form curves of constant magnetization. On using (3.48) for the linear region this 
yields the scaling expression 

M(x, dy, AZ) m B(Le2K, Ge-zK). (3.52) 

This result may be compared with the exact result 

A4 = e2K sinh 2L(2 + 2 cash 2L cash 2G + egK sinh2 2L + e--4K sinh2 2G)-lJ2. 

(3.53) 

Comparison with (3.52), near the fixed point x = 0, L = G = 0, shows that the 
scaling function is 

B(v, v’) = v/(1 + v2 + v+~)~/~. (3.54) 

Since G is an irrelevant variable v+ = e-2KG --f 0 as T+ 0 and so asymptotic 
scaling is obtained by replacing B(v, v+) by B(v, 0). By expanding B in powers of 
v+ one is tempted to conclude [following the argument sketched after Eq. (2.26)] 
that the leading corrections to the asymptotic scaling form due to the irrelevant 
variable G should be represented by 

+ O(G4x2)/. (3.55) 
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However, expansion of the exact result (3.53) neglecting corrections of order L2 
(arising from the sinh 2L and cash 2L terms), yields a true correction factor 

j 1 _ G2(l + x) 
I 2{1 + (LZ/x)] + G(G4$ (3.56) 

which in order G2 is larger by a factor of about x-l = e4K, which actually 
diverges as T--f 0. At first sight this severe discrepancy is quite puzzling. However, 
in deriving the scaling relation (3.52) from the exact recursion relation (3.51) we 
used only the linearized recursion relations (3.48). We conclude that the most 
significant corrections are “nonlinear” corrections rather then “irrelevancy” 
corrections. We will discuss such nonlinear corrections in Section 6. For the 
moment, we merely observe that replacement of the scaling field x by 

I = x cosh2 G ,Q x(1 + G2) (3.57) 

enables one to use the reduced or asymptotic scaling form 

M(T, H, H’) SW B(LW, 0) = [l + (P/L2)]-112, (3.58) 

and reproduce the leading part of the correction (3.56) correctly. 
It is clear that for an antiferromagnet we merely have to interchange Hand H+, 

or L and G, in the foregoing analysis. 

3.7. Pseudorelevant Variables: Antiferromagnetism with the b = 2 Dedecoration 
Group 

The renormalization group treatment of the antiferromagnetic chain led to the 
difficulties noted in Section 3.2. Specifically if one starts with 

-1 
x0 = X0 = ep41K' < 1 (3.59) 

as appropriate to antiferromagnetism, then one iteration of the recursion relation 
(3.11) yields 

X0(1 + Yo12 x1 = (l + xoyo)(xo + yo) = 4Xo[l - 2x0 + ..*I, (3.60) 

which represents aferromagnetic coupling which remains so after further iteration. 
On the other hand the initial parallel field variable y. = 1 + dy, , which should 
represent an irrelevant variable at the antiferromagnetic critical point, X0 = 0, 
is by the recursion relation (3.12), transformed again into a parallel field. However, 
a parallel magnetic field is a relevant variable at the ferromagnetic fixed point 
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and we accordingly expect the scaling relation (3.22) to hold with K merely 
replaced by 1 K I. Two derivatives with respect to L would then indicate a sus- 
ceptibility diverging strongly at T--f 0. 

This conclusion must be false! To find the gap in the reasoning let us rewrite 
the recursion relation for y in terms of the critical point deviation dy = y - 1; 
this yields 

Al,’ = 2441 + BAY) 
1+x+x4 

= 2dy[l - x + @ly + . ..I. (3.61a) 

so that in the ferromagnetic case dy, = 2~ly, near the critical point, as expected. 
However, using (3.59) for antiferromagnetic coupling yields 

dy, = 2% ~Ydl + UYO) _ = 2X, dy,[l - X, - @ly, + ..*I. 1 + x, + dy, (3.61b) 

It is now clear what happens: after one iteration the field L, w &ly,, is replaced 
by L, m &dy, m X0 L3y, w 2e-41KIL, . We may then use the scaling relation (3.22) 
with K replaced by 1 K 1 and L replaced by $L, which yields 

f(K, L) M e-21RI Y(L,e 21~1-41~1) = e--2lK/ y(&-2lKl). (3.62) 

As T + 0 the argument v = L,e-21KI vanishes for any fixed L, . Thus the variable 
L, is only a pseudorelevant variable. One step of the iteration has multiplied it by 
the factor X0 = e-41Kl which, “by accident,” vanishes strongly at the critical point 
and so converts L, from a relevant into an effectively irrelevant operator. 

This analysis indicates the potential importance of the first few iteration steps 
in obscuring the true nature of the critical behavior. It illustrates that for a straight- 
forward interpretation one must always attempt to chose a renormalization group 
which focuses on the critical behavior of interest and represents it by a fixed point 
of corresponding character. 

3.8. Attracting Fixed Points and the Free Energy 

If all its critical variables are irrelevant a fixed point may be termed an attracting 
fixed point since all trajectories flow into it while none leave it. It is evident from 
Figs. 2 and 3 that the paramagnetic high-temperature fixed points form such an 
attracting set. Since it has no relevant variables, an attracting fixed point cannot 
describe genuine critical behavior. However, since all, or a large class, of trajectories 
flow into an attracting lixed point one can use the basic recursion relation [(2.7) or 
(3.19), etc.] to find an expression for the total free energy. 

We will illustrate the procedure by analyzing the simplest, zero-field situation 



LOW DIMENSIONAL ISING SYSTEMS 247 

with H == H+ = 0 or y = z = 1. The attracting fixed point is then x* = 1 or 
K = 0. After iteration the basic relation reads 

f(% 2 x0) = 2-zf(wl 3 4. (3.63) 

As I--f co the attracting fixed point is approached. The partition function near 
the fixed point is easily found to be 

ZN(G 7 Kz) - 2” exp[NC + $NK,2 + O(NK,4)], (3.64) 

so that, as I+ co, 

f(wz , Xl> = In 2 + C1 + $K,2 + ..., 

M - ln(&wt’4) + O(Llx’), 

where dx = x - 1 NN -4K. By combining with (3.63) we conclude that 

(3.65) 

(3.66) 

This demonstrates explicitly what is, in fact, a general result [I], namely, that the 
free energy can be expressed wholly in terms of the development of the spin- 
independent term w1 (or C,). 

To evaluate (3.66) we introduce the variables 

21 = &(wx)l/4 and v = tanh K = 
1 - xl12 
1 + xl/2 ’ 

in place of w  and x. The recursion relations (3.10) and (3.11) [with y = I] then 
become 

zl’ = U2(1 + q/(1 + ?Y), (3.68) 

v’ = v2. (3.69) 

The simplicity of this second recursion relation provides, of course, the justification 
for this choice of variables. Since x2 + 1 the result (3.66) becomes 

f&l 3 wO) = - I~+JI 2F In uI . (3.70) 

Iteration of (3.68) and (3.69) reveals that 

In u2 = 2’ In u0 + 2” ln(1 + 23 - ln(1 + L$“). (3.71) 
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For o0 < 1 (i.e., T # 0) substitution in (3.70) yields the final solution 

f(% > X0) = - In[u,(l + vO)] = - * In trO + ln(xk’4 + ~;l’~) 

= Co + ln(2 cash K), (3.72) 

which is the known exact answer [25]. 
It is clear that the same procedure will work more generally although the 

difficulty of solving the recursion relations analytically may be insurmountable [27]. 
In principle, however, a numerical solution could still be used to explore the critical 
region along these lines. 

4. FURTHER LINEAR MODELS 

4.1. Alternating Coupling Strengths 

By enlarging the space of Hamiltonians to allow for nearest neighbor coupling 
constants which alternate along the linear Ising chain one discovers examples of 
a fixed point with a marginal operator. (Examples of relevant and irrelevant opera- 
tors were, of course, discussed in Section 3.) As explained in Section 2, a marginal 
operator is characterized by a renormalization group eigenvalue (1 = 1 or h = 0. 

We will utilize the b = 3 dedecoration group in which two out or every three 
spins are removed. The recursion relations may be derived quite straightforwardly 
as explained in Section 3.1. If K, and Kb are the alternating coupling constants, 
the recursion relations in zero field are most simply expressed in terms of the 
variables 

v, = tanh K, and vb = tanh Kb (4.1) 

as introduced in (3.67). The recursion relations are then 

0, ’ = va2Q) ) VO’ = Vb2V, . (4.2) 

Linearization of the equations about the ferromagnetic fixed point v,* = Q,* = 1 
yields 

Au,’ = 2dv, + Au, + O(Av2), 

dub’ = AZ,, + 2Avb + O(Av2). 
(4.3) 

By diagonalizing the linear part of these equations the critical fields are seen to be 

h, = Au, + Au, and h, = Au, - Au, (4.4) 
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with eigenvalues A, = 3 and (1, = 1 or 

A, = 1 and A, = 0. (4.5) 

Thus h, ,V K, - Kb is a marginal field; the corresponding eigenoperator is 
essentially 

P2 = c d%i+1 - &i-l>- (4.6) 

(The value A, = 1 is consistent with the earlier result A, = 2 if we note that 
Au c? --2x1/2.) 

The marginality of h, can be understood by noting that there is actually a line 

(or curve) of critical fixed points given by u,* = l/z+,*, which just touches the 
physical region 1 v, 1, I vl, j d 1 at v,* = &, * = 1. This is illustrated in Fig. 4 

FIG. 4. Trajectories and fixed points for a linear Ising chain with alternating coupling strengths 
J1 and Jz . A line of fixed points is determined by v1v2 = 1 [with ZQ = tanh(J&J)J, and an 
isolated attracting fixed point occurs at (0,O). 

which also shows the trajectories. The fact that the other fixed points lie outside 
the physical region, means, correctly, that one cannot achieve criticality and long 
range correlations unless dv, and dvb --f 0, i.e., unless both K, and Kb -+ co; but 
one can still have J, # Jb as k,T + 0. Nevertheless the eigenvalues at the other 
fixed points are the same as about the physical point. This can be seen most easily 
by defining new variables CLL = v,/v, * for p = a or b. The recursion relations (4.2) 
are unchanged in terms of the fiU so that the subsequent analysis, including (4.5), 
remains valid with U, replaced by V, . 
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The invariance of the eigenvalues and, hence, of the critical exponents along 
the line of fixed points is in contradistinction to what is presumed to happen in 
the two-dimensional eight-vertex or Baxter model [28, 291 where the eigenvalues 
vary along the line of fixed points so that the critical exponents vary continuously 
with the marginal field l-281. 

4.2. Second Neighbor Interactions 

The Hamiltonian of the linear chain with nearest neighbor interactions Jr and 
second neighbor interactions JZ in zero field is 

If we rewrite SiLTi+, as (s~s~+~)(s~+~s~+~) and introduce new spin variables 

Ui = SiSi+l 3 

the Hamiltonian assumes the form 

Af = -J1 i cri - J, 5 uiui+l . 
i=l i=l 

(4.7) 

(4.8) 

(4.9) 

Furthermore for an open chain the ui take the values &l quite independently. 
Thus the problem of second neighbor interactions in zero field has been reduced 
to that of first neighbor interactions of strength J = J, in a field H = J1 . 

We can thus take over the analysis of Section 3.2 for the b = 2 dedecoration 
group removing alternate 0 spins. In particular the recursion relations (3.10) to 
(3.12) apply but with 

x = e-4K2 = exp(--4J2/kG9 and y = pK1 = exp(--2J,/k,T). (4.10) 

The original ferromagnetic fixed point x* = 0, y* = 1, now corresponds to zero 
first-neighbor coupling (so that the chain decomposes into two disconnected 
second-neighbor chains with Jz > 0). But this fixed point is unstable to perturba- 
tions with dy = y - y* # 0 (or J1 # 0) and so the system crosses over to the 
fixed point at x* = 0, y* = 0 (originally termed the “frozen” fixed point). However 
one cannot directly linearize in terms of x and y about this fixed point owing to 
the factor x/(x + y) in (3.11). This difficulty can be circumvented by eliminating x 
in favor of 

z = xy = e--4Kz--2K~, (4.11) 
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which leads to the new recursion relations 

Y’ = (Y” + Nl + 4, (4.12) 

z’ = Z(1 + y)2/(1 + z)“. (4.13) 

(Note that we use z here with a different meaning than in Section 3.5). These 
equations are easily linearized to yield 

y = z + w2, z2), (4.14) 

z’ = z + O(y2, z2), (4.15) 

from which critical fields are 

h, = z and /j 
2 

= y - z = e-‘K’(l - e-4K2> , (4.16) 

with eigenvalues (1, = 1 (h, = 0) and (1, = 0 (X2 = -co). Thus the first variable 
is marginal while the second might be termed totally irrelevant! Evidently h, 
vanishes faster than any exponential, which suggests that K2 converges extremely 
rapidly to zero. To check this we form the recursion relation for the variable 

and find 
u = h,/z = (y/z) - 1 = edK2 - 1 (4.17) 

2.4’ = z?z/(l + z + UZ)2, (4.18) 

from which one can show that U’ is always less than U. Furthermore once u2z < 1 
or K, < &, the value of u goes very rapidly to zero, which implies that K, 
also vanishes rapidly (even though ICI may be large). The fixed point is thus 
described by only nearest neighbor interactions. 

Since the remaining variable h, = z is only marginal rather than relevant, as 
might have been expected, we learn nothing immediately from the general linear 
analysis of the renormalization group given in Section 2. As a matter of fact z is 
weakly relevant (for J, > 0) since its recursion relation can be written 

z’iz = (1 + -j+Jz = (1 + -+)2 > 1, (4.19) 

for z f 0; however, this variation does not contribute significantly since h2’ m h22 
so that hhE) goes rapidly to zero. 

Nonetheless we can obtain information if we recall the recursion relation (3.10) 
for the constant term w  = e-4c. This becomes 

w’ = (1 + v)2 (;27y2)(1 + z) a (lWTz)4 ’ 



252 NELSON AND FISHER 

where the second part follows since h, = y - z is so strongly irrelevant. Iteration, 
using the fact that z is marginal, so that ztz) m z, then yields 

,$.(Z) m [wz2/(1 + z)“]“” z-2(1 + z>*, (4.21) 

while the free energy renormalization relation gives 

f(w, y, z) m 2-Ef(w’l’, z, 2). (4.22) 

Now we choose I so that wtz) = k and so obtain 

f(w, y, z) M [ln wz2 - 4 ln(1 + z)]f(k, z, z)/ln[kz2/(1 + z)“] 

5% -4[C + 2K, + Kl + z + U(z2)1 Q(z), (4.23) 

where we have used (3.9) for w, and (4.11) for z, while Q(z) stands for the residual 
function of z in the first line. However, we know on general grounds that the 
constant term C can enter intofonly linearly and with coefficient unity! It follows 
that -4@(z) = 1 (at least for z < 1) and so we finally conclude 

f(w, Y, z) m C + 2K, + Kl + z + U(yz, z2), (4.24) 

where the correction of order yz is anticipated directly from (4.19). Recalling the 
identifications K = K, and L = Kl , obtained by going to the 0 variables, this 
expression agrees precisely with that following from the exact result (3.24) in 
the limit T + 0 with J = JZ and H = J1 fixed. We conclude that even though 
the standard linearized renormalization group analysis of Section 2 fails, the 
general formalism can still be used to derive the asymptotic free energy from 
behavior near an appropriate fixed point. 

4.3. Braced Ladder 

To illustrate a more complex but still exactly realizable renormalization group 
involving many-spin interactions we consider the “braced ladder” of spins 
illustrated in Fig. 5. This consists of two parallel one-dimensional chains of spins 
with interactions along the nearest neighbor bonds (sides and rungs) and second 
nearest neighbor bonds (braces) plus a four-spin interaction of strength J4 = k,TK, 
around each braced square (as indicated in the figure by the dotted loops). With 
the notation of the figure, and supposing all bonds to be ferromagnetic (Ji > 0), 
we may define 

xi = e-4K: = exp(-4Ji/k,T). (4.25) 

If we now remove alternate pairs of spins (which form a ring) as indicated in 
the figure, we generate a b = 2 dedecoration group as before. Even if J4 was 
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FIG. 5. Dedecoration transformation for a braced ladder of spins; J4 denotes a four-spin 
interaction. 

initially zero we would be forced to introduce a four-spin coupling at this stage. 
This effect of “induced interactions” is, of course, a very general feature of 
renormalization groups which, indeed, normally prevents their construction in 
explicit closed form. If we define 

$1 = $(l + Xl”Xf) + X1X&Xq , 

#2 = &(x1” + x32) xz3 + x,x,2x,x, 

$3 = ~1x*2~3(x2 + x,), 

$4 = x,x3(1 + x,xI>, 

$5 = &x,x,3x,x,[l + XIX2 + XIX3 

the required recursion relations become 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

x2x312, (4.30) 

x;” x lfi3~4h4 9 XL2 = ~21fi3/&%~4 > (4.31) 

x;2 = b%4/~1~3 9 xi” = ~52/~1+2~3~4~ (4.32) 

These formulae define trajectories for the Hamiltonian in the four-dimensional 
space (x.~ , x2 , x3 , x,), which eventually terminate in a line of attracting para- 
magnetic fixed points given by x1 = x3 = xq = 1, 0 < x2 < 1. 

For special parameter values, specifically x2 = x3 = x4 = 1 and x1 = x2 = 
xq = 1, the equations degenerate into versions of the simple linear chain dedecora- 
tion group discussed in Section 3. However, at the interesting ferromagnetic fixed 
point x1 = x2 = x3 = xq = 0 the equations are nonanalytic as in the linear second 
neighbor case discussed above. 

Investigation indicates that after a few iterations x, becomes closely equal to x, . 
In fact the condition x1 = x3 or Jr = J3 is preserved by the recursion relations, 
as must be so on the grounds of symmetry. We conclude that AJr3 = Jr - J3 is 
an irrelevant variable and confine ourselves to the case x1 = x, . However, the 
recursion relations are still nonanalytic about the ferromagnetic fixed point. 
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Accordingly we work with x1 and the variables 

3’ zzz x2/.x1 = ,-2(K~-Kl), 

z = x2x4 = e --?(Kz+KJ 
> 

(4.33) 

(4.34) 

and obtain the new recursion relations 

Xl’ = 2/z x,(1 + z)‘l”/(l + 2x,% + x,4)1/2, (4.35) 

Y’ = (WJ + Ml + 4, (4.36) 

z’ = &z(l + x12 + 2x,9)/(1 + z)(l + 2X,22 + x14). (4.37) 

From these it is evident that x1 is a relevant variable with X, = 4, while w  is an 
irrelevant variable with h, = -1. Linearization of (4.36) with (4.37) shows that 
w  = y - 22 is a totally irrelevant variable with X, = - co. What happens therefore 
is that the difference between y and 22 goes rapidly to zero so that J4 is forced 
to equal $(ln 2) kBT - Jz which, for small T involves a change of sign of the 
four-spin interaction. 

The significance of the eigenvalue X, = & can be understood in terms of the 
linear Ising chain if we study the correlation length, 

.$ - t-u, (4.38) 

where Y = I/h, and t represents the temperature-like variable e-4K1. For the 
simple chain, h, = 2 and we predict f - t-!’ m e2K1. The recursion relations 
(4.35)-(4.37) indicate that K, quickly diverges whereupon the sides of the ladder 
become “locked” together. The four-spin term K4 now only contributes a constant 
to the free energy, and the ladder reduces to an Ising chain with an effective nearest 
neighbor coupling 4J, (assuming J1 = J3). This is precisely the information 
conveyed if we apply (4.38) with h, = 4: 

,$ N t-” m e+8K1. (4.39) 

As in Section 4.2 we could go on to analyze the free energy but this does not 
seem worthwhile. 

5. TRUNCATED TETRAHEDRON MODEL 

The truncated tetrahedon model is a planar Ising model of coordination number 
three defined through the decoration and star-triangle transformations [17, 181. 
It is simply related to another planar model that is four-coordinated. To describe 
the truncated tetrahedron “lattice” we start in zero order with a tetrahedron of 
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FIG. 6. Conversion of a tetrahedron of Ising spins into a truncated tetrahedron lattice of 
order n = 1 by successive application of decoration and star-triangle transformations. 

four Ising spins. This system is then decorated by putting two spins on every bond 
as indicated in Fig. 6. To complete the transition to the first order lattice, a star- 
triangle transformation is made in order to remove each of the original four vertex 
spins. We are finally left with the first order “truncated tetrahedron” shown in 
the last part of Fig. 6. 

The next order lattice in the hierarchy is obtained in a precisely similar fashion. 
To generate a lattice of order n + 1, we decorate every bond in a lattice of order IZ 
with two spins and then make a star-triangle transformation to remove all spins 
at three-coordinated vertices. If we define the order of the initial tetrahedron of 
spins to be n = 0, then a lattice of order n is three-coordinated, and contains 

FIG. 7. Section of an infinite truncated tetrahedron lattice. 
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N = 4 x 3” spins and 6 x 3” bonds. We pass to the thermodynamic limit by 
letting n --f co. A section of an infinite truncated tetrahedron lattice is shown in 
Fig. 7. A lattice of order n will contain polygons of sizes 3, 6, 12,..., 3 x 2”, but 
will always have a connection number [19] of only 3. Thus the circumference [19] 
of a lattice of order n + 1 will be twice that of a lattice of order n; but a lattice 
of any order can still be cut into two pieces of arbitrary size by cutting three bonds. 
For this reason we may guess that the transition temperature will still be at T, = 0. 
However, the critical behavior should be quite distinct from the linear chains. 

The lattice described above is related to a similar lattice of coordination 
number 4. If we take a truncated tetrahedron lattice of order it and decorate every 
bond with a single spin, and then make a star-triangle transformation at every 
three-coordinated vertex, we obtain a four-coordinated lattice. The sequence of 
transformations used to arrive at this four coordinated “fully” truncated lattice 
from the truncated tetrahedron lattice is illustrated for a lattice of order 1 in Fig. 8. 

FIG. 8. Conversion of a truncated tetrahedron lattice (of order n = 1) into a “fully truncated” 
lattice of coordination number four by applying a decoration and star-triangle transformation. 
Note that only a single spin is inserted by the decoration while in Fig. 6 two spins are inserted. 

Now the decoration and star-triangle transformations yield an explicit relation 
between a lattice of order n and a lattice of order it + 1. However, because of the 
properties of the star-triangle transformation, this relation can be obtained only 
for zero magnetic field. Let 2, be the partition function of a truncated tetrahedron 
lattice of order n with zero constant term E,, (there being N = 4 x 3n spins in this 
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lattice). We assume there is a uniform spin-spin coupling of strength J, and 
introduce the variable, 

v, = tanh(J,/k,T), 

as before. Then, we find 

ZdhJ = k(bJ13n-1 Z-1(%-1) 
with 

g(v) = 256(1 - u + 2v2)/(1 + 0)” (1 - u,)~ (1 

and, with v replacing v, and v’ replacing u,-~ , 

V’ = zP/(l - v + 0”). 

(5.1) 

(5.2) 

v3y (5.3) 

(5.4) 

If we take the logarithm of (5.2), divide by N = 4 x 3”, and take the thermo- 
dynamic limit y1+ co, we obtain for the free energy the relation 

f(v) = 39(v’) + & In g(v). (5.5) 

Evidently we have constructed a renormalization group. The second term, 
depending on g(v), arises because we defined 2, , and hence f, with zero constant 
term, E,, . If we regard the dimensionality of the truncated tetrahedron as d = 1, 
on the grounds that it can be cut into indefinitely large pieces by only three cuts, 
then we should take b = 3. On the other hand, if we measure distances along the 
bonds, as is quite natural, we find that each step of the iteration corresponds to 
a length resealing of only b = 2. This can be seen from Fig. 7 where the number 
of points along the “side” of a basic triangular figure (on “tetrahedral face”) 
goes up as 2” while the number of points increases as 3”. i3y this argument the 
dimensionality of the lattice is d = log, 3 N 1.5850; however, although the 
dimensionality is, by this measure, larger than unity the critical point will still 
be at T, = 0. To see this, we examine the recursion relation (5.4). This relation is 
compared in Fig. 9 with the analogous relations for the linear Ising chain dedecora- 
tion groups b = 2 and b = 3 which are u’ = v2 [by (3.69)J and 8’ = v3 [say, from 
(3.45) with y = z = 11. All formulae have a infinite temperature attracting fixed 
point v := 0, and an unstable low temperature, ferromagnetic fixed point u = 1 
corresponding to T, = 0. However, since the slope of the graph for the truncated 
tetrahedron approaches unity as v --+ 1 we are dealing, as in Section 4.1, with a 
marginal operator, rather than a relevant one. 

If we set 

v=l-6, fi m ze-2” - 2&K + . . . 7 (5.6) 
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I  

I -  I  I  I  ,  

V’ 

0.5- 

FIG. 9. Recursion relations for two different models expressed in terms of o = tanh(J/ksT). 
Curves (a) and (b) represent the b = 3 and b = 2 dedecoration groups for the Ising chain, while 
(c) is the corresponding curve for the truncated tetrahedron model. Both models have fixed 
points at v  = 0 and v  = 1. 

we obtain the recursion relation 

jj’ - fi zzz fi2[1 - $(I - fi + q-q. (5.7) 

When V is small, i.e., near its critical value, we may approximate this relation by 
the differential equation 

dC/dl w ii2, (5.8) 

(see the Appendix for a justification of this step), where G(I) is the result of 1 itera- 
tions. This equation has the solution 

V(l) = i&/(1 - r&J. (5.9) 

Now, since b = 2, if we measure distances along the bonds, the correlation 
length transforms as 

[[V(Z)] = 2-C@,). (5.10) 

On writing V = 15(Z) and eliminating I with (5.9) one finds 

(5.11) 
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so that the correlation length diverges as the exponential of an exponential when 
T-t Tc, namely as 

t(T) - exp[&(ln 2) exp(2J/k,T)]. (5.12) 

This indicates the strong degree of cooperativity in the model. 
By casting the recursion relation (5.4) into an integral equation, we can formally 

extract the I dependence. Repeated iteration of (5.4) gives 

l-l 

Vl = u. + c <I?;, - VT,)/(l - jj,, + fi;,>. (5.13) 
I'=0 

Solving this discrete analogue of an integral equation for i$ iteratively, we obtain 

1’1 = co + ho2 + Z(Z - 1) V”3 + O(V,4). (5.14) 

The thermodynamic behavior near T, = 0 can be found directly from the 
basic relation (5.5). Expanding In g(V), we obtain 

In g(V) = 4 In 2 - 6 In E; + 3ti + F2 + O(I?~), (5.15) 

which leads us to form the expansion 

f(C) = A In C + B + CO + Dr! + 0(03), (5.16) 

Substituting this expression into (5.5), we obtain 

f(E) = -2 In V + & In 2 + $$ C2 + 0(03), (5.17) 

from which we conclude that the energy varies as 

as T-0. 

U(T) w -$J + $.Je-2K + 3Je-4K (5.18) 

Although this behavior does not look particularly anomalous one should 
recall that the lowest order temperature dependence of a two or three-dimensional 
lattice of coordination number q would be z = exp(--2qJ/k,T), as follows easily 
by overturning spins from the fully ordered state [25]. This would yield a leading 
variation of z = e-‘jK, whereas (5.18) yields d U - zI/~; this makes the anomalous 
behavior evident (a similar analysis of the linear chain yields d U - z1i2, again 
indicating “critical” behavior). 
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6. CORRECTIONS TO SCALING AND NONLINEAR FIELDS 

6.1. Introduction 

The problem of corrections to asymptotic scaling has been treated by Wegner [3] 
in terms of nonlinear scaling fields. We will apply his ideas to some of our simple, 
exactly soluble models. It will be convenient to work with the variable x = e-4K 
as before and the complementary variables 

j7 = 1 - y = 1 - e-2L, ,?j = 1 - z = 1 - e-20. (6.1) 

[See (3.9) and (3.45).] 
Consider first the case of a linear Ising chain in a uniform magnetic field (Z = 0). 

In terms of the variables x and 7, the recursion relations (3.11) and (3.12) for the 
b = 2 dedecoration group have the Taylor series expansions: 

x’ = 4x - 8x2 + 12x3 

7 = 2y - y2 - 2yx + 

+ xj” 

3xy2 

+ 3 
.  .  .  

t 2yx2 + *-- . 
(6.2) 

For the case b = 3 [see (3.45)], the expansions are 

x’ = 9x - 48x2 + 208x3 + 6y2x + -.. , 

7’ = 3j - 3y2 - 8jx + 20xJ2 + 24x2j + y3 + .a. . 
(6.3) 

The coefficients of these Taylor series are obviously b-dependent, and the 
leading coefficients have the form bAc, bAu, with X, = 2, and X, = 1 (as before). 
This form is expected from the semigroup property of the renormalization group. 
We will present a procedure for determining the b-dependence of the higher 
order terms in the recursion relations, given the recursion relations generally for 
a particular b. 

The scaling prediction of the renormalization group for the one-dimensional 
Ising model is that, in the linearized region about the fixed point, the magnetization 
is a function only of the ratio y”/x. (We consider the magnetization rather than 
the free energy to avoid worrying about the constant term for the moment.) 
Following Wegner, we try to find nonlinear scaling fields gZ(x, J) and g,(x, 3) 
which correspond to “exact eigenfunctions” of the renormalization group operator 
Iwb . These nonlinear fields are (i) to reduce to x and 7 near the fixed point and 
(ii) to transform simply under the renormalization group according to 

(6.4) 
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The result of iterating these recursion relations is obvious. The scaling prediction 
is then that the magnetization is a function only of the ratio gU2/g, . This prediction 
should hold exactly for all values of g, and g, , not just in the linearized region 
about the fixed point (g,*, g,*) = (0,O). 

Wegner [3,30] has presented a procedure for finding the expansions of g, and g, 
in powers of x and 9 given the recursion relations in d@rential form. We review 
this briefly. Suppose we know the derivatives with respect to b evaluated at b = 1, 
of the recursion relations for a set of fields (hi}, namely, 

The a,,,(b) are b-dependent coefficients appearing in the original recursion relations 
for b > 1, and the hi are the eigenvalues of the renormalization group. We assume 
we have chosen the hi so that the recursion relations are diagonal to first order, 
as indicated in (6.9, i.e., the hi are linear scaling fields as in Section 2. The problem 
is to find nonlinear scaling fields gi which behave in the simple manner indicated 
in (6.4) under the action of the renormalization group. Wegner [3, 301 assumes 
that the hi can be expanded in a power series in the gi , as 

ik 
(6.6) 

and then finds that the desired coefficients bijk are given by the set of equations 

(hj + h, - A,) bijk = (%j,/W,,, . (6.7) 

More complicated expressions are found [3] for the higher order coefficients in (6.6). 
For the special case where hj + hk - A, = 0, Wegner finds that logarithmic 
corrections must be introduced [3, 301. 

All the renormalization groups we have discussed involve only discrete values 
of b. Thus, it is impossible to determine required partial derivatives like 
(aa,,,/ab),_, . Accordingly we will develop a method for determining the nonlinear 
scaling fields gi when only a discrete renormalization group is given. The method 
follows Wegner’s general approach. 

6.2. Nonlinear Scaling Fields for Discrete Renormalization Groups 

We assume, as in (6.9, that the recursion relations for a set of fields have 
already been diagonalized to first order, so that we may take 

m 1 
hj’ = b”‘hj + 1 7 C ajr&7,(,) . 

n=2 n. l(n) 
(6.8) 
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Here, Z(n) is a multiindex which represents iliz **. i, , and 

lZ&) = h,,h,z *-. bin . (6.9) 

The fixed point is given by hi = 0 (all i). The coefficients Q,(,) are in general 
functions of b, but we suppose that they are given for a particular b > 1. The 
nonlinear scaling fields gj are, as before, to satisfy 

gj’ zz bAjgj . (6.10) 

Since the gi should reduce to the hi in first order, we try to express them as 

(6.11) 

The cjlcn) are to be determined, and are expected to be independent of the scale 
factor b. 

We will calculate the gj by obtaining a sequence gj2)(hi), gj3)(h,),... such that 
gj”)(h,) satisfies (6.10) to nth order. The function gj”(hi) is an nth order polynomial 
which agrees with gjvpl(hi) to U(h~~-‘). To calculate g(2)(hi) we form the product 

h’ I(Z) = bA’@‘h(2) + WQ,,), (6.12) 

where we use the notation 

h I(n) = hiI + ... + hin * (6.13) 

Forming the linear combination 

(6.14) 

and adding this to (6.8) we obtain 

zzz b”’ [hj + 3 C (bpA’ajr(z) + b 
I(2) 

Ar’2’-A’cjr(z)) ha,, + f ; 2 &,h,) . 1 n=3 . I(2) 
(6.15) 

The quantity 

(6.16) 
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will satisfy (6.10) to second order provided 

CjI(2) = clj,(2)/(bAl -  b”““ ‘).  (6.17) 

The a$,& result from adding the higher order terms in (6.14) to the higher order 
terms in (6.8). 

Suppose in general that we have recursion relations of the form 

gp’)(hJ = b”j,gj”“‘(hi) + (6.18) 

Repeating the procedure indicated above we can derive the fields 

gjm+l)(hJ = gfyh,) + @ ; 1), . ,& Wm+1hm+1) 3 (6.19) 

which are correct to order m + 1 provided 

Cj,(m+l) = LZjTLtl,)/(bA’ - bA’im+lJ). (6.20) 

Thus, we have obtained the desired sequence of functions gjm+l)(hi) which 
should converge to the scaling fields g, . The method breaks down if, at some 
stage, XI(3 = hj, which is precisely the case where Wegner [3, 301 rinds the need 
for logarithmic corrections. 

We note finally that in order for the ciro) to be independent of b as required, 
the relation (6.17) dictates the b-dependence of the recursion relation coefficient 
ail&b). Once we have evaluated the number cjrcz) for, say, b = 2, we simply 
obtain q,(,)(b) = cjr&b”j - bAl(Z)). The appropriate b-dependence of higher order 
coefficients can be found in a similar fashion. We will in fact check explicitly for 
the dedecoration groups that the same results for the gj follows for both b = 2 
and b = 3. 

6.3. Application to the Linear Ising Chain 

Applying the method outlined in the previous subsection to the recursion 
relations (6.3) and (6.4) we can deduce the nonlinear scaling fields for the linear 
Ising chain. We find 

(6.21) 
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The same results are found starting with either the recursion relations for b = 2 
or those for b = 3. Thus g, and g, are indeed independent of b, as desired. 

The expression for the magnetization obtained from the exact solution is, when 
expressed in terms of x and 7, 

M = [l + 4(x/77(1 - y)]-‘I”. (6.22) 

If we calculate gz/gV2 from (6.21) we obtain 

&/&/2 = (x/Y2)[l - 3 + w3, X2Y, XY2, r311* (6.23) 

Thus, terms proportional to X, ~7, x2, and y2 cancel exactly, and the scaling 
property of the nonlinear fields is verified explicitly to this order. Expansion of 
the nonlinear fields after substitution in the scaling function (3.54) (with U+ = 0) 
thus reproduces all the corrections to asymptotic scaling. 

We can also treat the case when both uniform and staggered magnetic fields 
act. The Taylor series expansions of the recursion formulae (3.45) are 

x’ = 9x - 48x2 + 208x3 + 2xZ2 + 6xjj2 + --a , (6.24) 

j’ = 3y - 3J2 - 8xj + 20xy2 + 24x27 + ji3 + *.a, (6.25) 

z’~fz+~~2+~xz+~z3-~~2r+~X2~+~xZ2+~~2z+ . ..* 

(6.26) 

Using the methods developed, one finds the nonlinear scaling fields are 

gz(x, 7, Z) = x + ; x2 + + x.2 -kx,:2+$3+ . ..) 

- - 
g,(n,~,z)=y+~Y2+~x~+~xy2+~X2~+~~3+..., 

- - 
g3(X,y,z)=~+~22--x~--x~2--x2~+~~3--il12,:+ . . . . 

(6.27) 

Again, one can take the appropriate ratios of these scaling fields and verify that 
they agree with the exact expression (3.53) found for the magnetization, to the 
order to which we have calculated. 

Note that, although these nonlinear scaling fields are unique with respect to 
the particular renormalization group we are using, they are certainly not unique 
as regards their ability to represent the exact-solution in a complete scaling form. 
For example, let /3(x, j) be an arbitrary analytic function subject only to /3(0,0) = 1. 
Then taking the case of the linear Ising chain in a uniform field, we could replace 
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g, by & I= /P(x, 3) g, , and gv by 6, = 6(x, p) g, , and the ratio &/i,” would have 
the same value as gm/gy2 and so reproduce the correct magnetization. These new 
“nonlinear fields” would equally diagonalize the linearized recursion relations 
(although they need not come from the solution of a full set of recursion relations). 
We will actually show in Section 7 that a continuous range of nonlinear scaling 
fields exists for a range of distinct renormalization groups. 

A natural question to ask is whether one can identify in closed form the func- 
tions expanded in (6.27). This we have not been able to do in general, but the 
following special cases can be found 

(6.28) 

g9(0, j, 0) = -ln(l - 7). 

More generally, however, the convergence of these series (in some appropriate 
sense) is an open question. 

6.4. Corrections to Scaling and the Spin Independent Term 

So far we have discussed corrections to asymptotic scaling only in terms of the 
magnetization. This was done for reasons of convenience; consideration of the 
free energy is complicated by the effects of the constant or spin-independent term. 
For completeness, we will show generally how the effects of the spin-independent 
term together with those of irrelevant variables can be taken into account; detailed 
calculations for the one-dimensional Ising model will not be carried out. 

Denote the spin-independent part of the Hamiltonian by h, . If g, , g, , g, are 
the nonlinear scaling fields discussed previously, then we have 

fks 3 g, , gz , 4,) = b-‘f@“go , bg, , b-h, 0) + h,(b), (6.29) 

and choosing b = b* = ljgtJ2 we find 

.f( gx 7 g, 9 gz 3 ho) = 81,” Y( g,/d’*, gz d”“> + Mb *I. (6.30) 

To find the b-dependence of h(b), we follow the procedure developed in 6.2, 
applying it to the linear Ising chain with z = 1. 

It was convenient to express the recursion relation for the spin independent 
term [see (3.16)] as 

(wx)’ = (WXY y”/(x + VI2 (1 + yx)“, (6.31) 

where h, = -4 In w. The fixed point is given by (xw)* = 1. On defining 
u = 1 - xw, this may be written as 

u’ = 2u + 4x + O(u2, x2, XJ) (b = 2). (6.32) 
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To determine h&b*), it suffices to find the b-dependence of this recursion relation. 
The corresponding scaling field g, is found to be 

g, = u - 2x i- O(u2, x2, x7). 

Application of the method explained after Eq. (6.21) yields 

(6.33) 

u’(b) = bu + 2(b’ - b)x + O(u”, x2, xy). (6.34) 

Expressing x and 3 in terms of g, and g, , we can find h,(b*) in terms of the scaling 
fields, and determine the additional contribution to the free energy on the right- 
hand side of (6.30). 

The division of the free energy given by (6.30) into a piece which scales and 
an extra term, is a general feature of the renormalization group [3, 321. One does 
not expect such a decomposition to be unique; the nonlinear scaling fields will, 
in fact, be seen to be nonunique in Section 7. (There is a trivial nonuniqueness of 
scaling fields, due to the possibility of constructing them around the different 
tied points of a renormalization group problem, but we will refer in Section 7 
to a nonuniqueness associated with different Hamiltonianflows.) 

7. SPIN RESCALING RENORMALIZATION GROUPS 

In the dedecoration renormalization groups discussed so far, the spin resealing 
factor c[%] (see Section 2) has been fixed at unity, consistent with the fact that 
7 = 1 in one dimension. There is, however, a different approach due to Wilson [20], 
which involves a variable spin resealing factor. Of course, to find a low temperature 
ferromagnetic fixed point for our one-dimensional models the spin resealing factor 
must approach unity as T + 0 in zero field. Using Wilson’s approach, we will 
generate a range of distinct, new renormalization groups for the Ising chain. 

7.1. Generalized Renormalization Group Transformation 

The idea of a renormalization group transformation is to eliminate a specified 
fraction of the degrees of freedom of a system by performing some sort of partial 
trace. The degrees of freedom eliminated could be alternate spins in an Ising 
chain, or the high momentum modes of a Brillouin zone [l]. If the transformation 
is chosen sensibly, fixed points describing critical behavior and the various critical 
exponents can be found. 

One way of writing a general renormalization group transformation is to define 
a new reduced Hamiltonian *‘[s’] by 

exp(s’[s’]) = Tr{B[s’, s] exp(s[s])j, (7.1) 
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where 

Tr{ } = C ... 
s Z*,{ > 

(7.2) 
Sl=fl 1\1 

for discrete Ising spins. The spins s’ replace the old spins s, and are a “thinned 
out” set of degrees of freedom which describe the renormalized Hamiltonian 2’. 
A minimal requirement that (7.1) describe a renormalization group transformation 
is that the transformation preserve the partition function, 

Tr’{exp(*‘[s’])} = Tr{exp(X[s])}, (7.3) 

This leads to a condition on P[s’, s], namely, 

Tr’(.!Y[s’, s]} = 1. (7.4) 

The Wilson approach embraces the Kadanoff idea [25] of block spin variables 
directly. With a block of two adjacent spins sBL and sZlc+l in the linear chain, we 

S2(k-1) .S?!. . . . .?;ktl . . . . . . . . . . : '2(k+2) 
. . . . . . . . . . . . . . . . . . . 

-. :,. 
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FIG. 10. A generalized renormalization group transformation. 

associate a new spin variable sit’ (see Fig. 10) which can assume the usual values 
Sk’ = i 1. We write the function P[s’, s] in the pair factored form 

N/2 

Pb’, $1 = JJ m;; S2k 9 SPkll) (7.5) 
k=l 

with the condition 

p(1 ; SZk , sZk+l> + p(- 1 ; s2k , S2kfl) = 1 (7.6) 

to insure that (7.4) holds. Since P(s’; s 1 , s2) is defined only on a space of eight 
states, we may write it generally as a product of exponentials containing eight 
independent constants [ 181, 

W; s1 , x2) x exp(ps’ + w’s1 + q2s’s2 + IS’+S~ + p + &s, + q2s2 + EJ~s~). (7.7) 
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The normalization condition eliminates four of these constants, and forces P 
to take the form 

P(s’; sl , s2) = exp(ps’ + qls’s, + q&s2 + rs’s,s,)/2 cosh(p + qls, + qts2 i- rs,s,). 
(7.8) 

The term exp(rs’.s,s,) in the numerator leads to a new Hamiltonian not in the 
space of those with nearest neighbor interactions and magnetic fields, so we set 
Y = 0 to obtain finally 

PCs’; xl , s2> = exp(ps’ + w’s, + q2s’s2)/2 cosh(p + qlsl + q2s2). (7.9) 

7.2. Realization of Transformations in Closed Form 

In order to do the sum (7.1) we write the denominator of P(s’; s1 , s2) as 

cosh(p + qlsl + q2s2) = g exp[Kw, + &s, + SL,s,l, (7.10) 

where g, K, 6L,, and 6L, are given by the formula (3.3) with #(.sr , s2) = 
cosh(p + q1 , s, + q2sZ). We can now express (7.1) as 

1 

ND 

exp(s’[s’]) = Tr n g-l exp[(K - K) S2kS2k+l + CL - %) s2k + (L -6L2) SZk+l 
k=l 

+ Ks2ks2k-1 + psk’ + qlsk’s2k + qas,‘s,,+,l 
1 

(7.11) 

For most values of p, q1 , and q2 , this transformation removes the Hamiltonian 
from the original parameter space of nearest neighbor couplings and uniform 
fields. If, however, we require 

e4K = [cash 2p + cash 2(q, + q,)]/[cosh 2p + cash 2(q, - q2)], (7.12) 

then R equals K, the summations can be performed analytically, and we stay 
within the original parameter space. The recursion relations for K and L are then 

where 
e2L' = e2P*l/$2 , (7.13) 

#I = eK cosh(ql + qn - 6L, - 6L2 + 2L) + e-K cosh(q, - q2 + h, - A,), 

$2 = eK COW1 + q2 f SL, + 6L, - 2L) + e-K cosh(q, - q2 - SL, + a~,), 

h = eK cosh(ql - q2 - 6-h - SL, + 2L) + e-K cosh(q, + q2 + 6~, - a~,), 

$4 = eK COW, - q2 f SL, + SL, - 2L) + e-K cosh(q, + q2 - 6~, + 6~~). 
(7.14) 
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The constraint (7.12) determines a two-dimensional surface of allowable 
renormalization groups in the space indexed by p, q1 , and q2 . 

When the parameter p is nonzero, we obtain an example of a nonlinear 
renormalization group [24] (see Section 2). This is seen by examining the effect 
of the transformation on the magnetization 

Ok’)’ = &nh(p + wzk + q2szs+dj 

and the spin-spin correction function 

(7.15) 

(Sk’SO’) = <taMp + wzk + q2SPkfl) tanh(p + es0 + q2s1D. (7.16) 

Here (*>’ denotes an expectation taken with respect to the primed spins. It is 
easy to show that (7.15) and (7.16) do not have the simple scaling properties 
associated with linear renormalization groups and discussed in Section 2. In fact, 
a nonzero value of p breaks the symmetry of a zero field nearest neighbor Hamilto- 
nian after one renormalization group iteration, and artificially shifts the magnetiza- 
tion as indicated by (7.15). Because of these features, the parameter p appears to 
be the Ising spin analogue of the spin “shift” used in calculations with continuous 
spins below T, [8]. A linear Ising chain is always above T, = 0, so it is doubtful if 
useful renormalization groups can be obtained from (7.13) with p # 0. 

7.3. A Continuum of Renormalization Groups 

With p = 0 we can readily analyze a continuum of renormalization groups 
dependent on a single parameter. The condition (7.12) now reduces to 

ezK = cosh(ql + q2)lcoWql - q2), (7.15) 

and we imagine cosh(q, + q2) is chosen to fulfill this requirement with 
cosh(q, .- q2) left as a free parameter. Using the usual variables x = e-4K, y = e--2L, 
we obtain the e-dependent recursion relations 

x82(1 + y)4 + (1 - P) 4v( 1 + >I)2 
x’ = (1 + y2)2 + 4x( y3 + y) + 4X‘$2 - (1 - B”x)(l - y2)2 ’ (7*16) 

1 + y2 + 2J?X - (1 - &x)1/2 (1 - JJ”) 
y’ = 1 + y2 + 2yx + (1 - e‘%)l/2 (1 - v”) ’ (7.17) 

where 

6’ = llcosh(q, - 4, o<eGl. (7.18) 

For 0 = 0, we recover the original dedecoration recursion relations (3.11) and 
(3.12). The flows and fixed points for 0 = 1 (ql = q2) are shown in Fig. 11. There 
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& = g2K 
1 

FIG. 11. Trajectories and fixed points describing the linear Ising chain under the action of a 
spin resealing renormalization group (with 0 = 1). There are fixed points at (0, l), (1, l), and (0,O). 

are fixed points located at (x*, JJ*) = (0, l), (1, 1) and (0, 0). The trajectories 
differ markedly from those for the dedecoration group (see Fig. 2) at large values 
of X. In particular, the “paramagnetic line” of tied points at x = 1 has vanished. 
All groups with 0 -=c 0 < 1 have the same general structure as depicted in Fig. 11. 

Linearization of (7.16) and (7.17) about the ferromagnetic fixed point at (0, 1) 
yields 

A, = 4, A, = 2, (7.19) 

A, = 2, Ar = 1, (7.20) 

independently of 0. Thus the eigenvalues and ferromagnetic fixed point are inde- 
pendent of the particular group chosen to describe the physics. This invariance 
of physically significant eigenvalues is, of course expected on general grounds [33]. 

Although both the sic’ and the s, attain only the values fl, by examining the 
way the magnetization transforms (an equivalent result derives from treating 
the spin-spin correlation function) we can see that there is an effective spin resealing. 
Analyzing (7.15) with p = 0 we find 

(Sk’) = (1 - xP)l/Z (S‘&. (7.21) 
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The spin resealing factor (discussed in Section 2) is thus 

c[&] = (1 - ?+)l/2, (7.22) 

and it changes with each iteration step. However, for any value of 8, c approaches 
unity as the ferromagnetic fixed point is approached, which is consistent with 
rj = 1. 

Just as in Section 6 one can now calculate e-dependent nonlinear scaling fields. 
The results are 

(7.21) 

g,(e; 4 3 = Y + i 72 + (f + i e2) .q + (a + & e2) xj2 

+ (f+~e2+&8+2~+$3+ . . . . (7.22) 

These expressions demonstrate explicitly that the nonlinear scaling fields are 
nonunique; they are e-independent only to order x and 7 so that the linear scaling 
fields are preserved. [For 0 = 0 they reduce to the previous results (6.21) as they 
should.] Thus although the linear scaling fields have a definite physical significance, 
the nonlinear fields cannot have a general significance. Indeed, the existence of 
distinct renormalization groups with differing global Hamiltonian flows necessarily 
implies distinct nonlinear fields. 

APPENDIX: DIFFERENTIAL EQUATIONS FROM DISCRETE RECURSION RELATIONS: 

TRUNCATED TETRAHEDRON MODEL 

It is interesting to determine to what extent the differential approximation (5.8) 
to the discrete recursion relation (5.7) for the truncated tetrahedron model is 
valid. Consequently, we present here a systematic procedure for calculating 
corrections to (5.9) and calculate the first correction term. 

The recursion relation (5.7) may be written as 

u = v + 3 - fi4 + O(65). 

We will treat only the truncated recursion relation 

(Al) 

iqI + I) = E(l) + 52(l). W) 

Making the change of variable 

w = v,/c, fio = E(O), (A3) 
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we obtain 

w(Z + 1) = w(Z) - 60 + tiJ[w(Z) + Q)]. (A4) 

Approximating the function w(Z) by the solution of &v/d1 = --i$ as was done in 
Section 5 gives w(Z) M I - i&Z. We obtain a correction to this result by substituting 
the expression 

w(E) = 1 - u,z + g(Z) (A5) 

into (A4). The resulting recursion relation for g(Z) is 

go + 1) = g(l) + &vl - v,z + fro + g(Ol. w 

We now approximate g(Z) by the solution of dg/dl = Go2/(1 - V,Z + a,) and obtain 

w(Z) = 1 - V,Z - 6, ln(1 - i$) + O[G02 ln(1 - U,Z)]. (A71 

Clearly, one can continue this process of successive approximations indefinitely. 
However, the next term produced by iteration of the procedure is of the same 
order as the error introduced by truncating the original recursion relation. Thus, 
higher order terms in the expansion (Al) have to be taken into account. 

The extra term in (A7) shows the correlation length of the truncated tetrahedron 
model varies as 

5 --xpMln 2) expW/bJ) + (In WVb7T, c48) 

which should be compared with (5.12). 
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