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Basic Calculational Rules

1. Vertices and propagators

Rules for fermions:

(i) / Us(p f )
Pi D Py
_P/p]fm = ip%érgp \_\pf

Us(—pi) vs(—py)

Zs us(p) ﬂs(p) :ﬂ—i_ m-, Zs Us(p) @s(p) :ﬂ_ m

Rules for gauge bosons:

- G —quau ] (?— M2 .
culg) by i St D 0
qu qv
q

Zpol — E;E,u - _(g/w - Qqu/MXQ/)
For the photon, discard everything which is longitudinal (¢"¢")
above. Note that the trasversality of the photon implies: ¢,-¢" = 0.

—ieyu(vf — agys)

f

V,u 7 Vf = (2[? — 4efs%v)/(4swcw) , af = 2[53/(4SWCW)
_ W vy =ay =1/(2v/2sw)
f

v ovp=ep,ar=0



2. Diracology: contractions and traces of v matrices
Basic relations:

{’Vu 3 ”YV} =YY + V%V = 29w and 7= p,uf)/ﬂ

1
V5 = — 'y2y3 and {7,795} =0

17 "V =iy
TH(1) =4, Tr(y,) =0, Tr(35) = 0
Tr(A1Ag) = Tr(AA;) , Tr(A1As--- Ay) = Tr(Ay- - AvAy)
Contractions of v matrices

v

YWY = 29, — v = A =0, =4
V%Y = Y2 — V) =27 — 4y = 27
YA Ay = (26" — ") (29, — 1,7
= A9 = 20" = 2" Ay = Ag™
Traces of v matrices:
Tr(y"9") = Tr (29" — "y") = 29" Tx(1) — Tr(v"y") = Tr(v/y") = 4g"”
Trace of an odd number n of v matrices (using 2 = 1):
Tr(y" - o) = Te(y" - - 4#y%y%) = (=1) Te(y" - - - 47 Hy°)
= (=1)" Te(y°" - - y#9°) = = Te(y°AH1 - - - yny®)
= Tr(4" - 4fm) =0
Tr(y"y5) = Te(y#9"y7y5) = Te(y" -+ - 4#77°) = 0

1% 1 8] 1% 1% 8]
Tr(v*"y5) = =Tr (YY" v5) = (1/4) Tr(ya "y 157%)

4
= —(1/4) Tr(vav" "7 y5) = =Tr(v"7"5) = 0
Using the same tricks as above, proof the trace of 4 v matrices:
Tr('9"v"7) = 4(g" 9" + 9" 9" — 9""9"")
Tr(v/9"7"77s) = —4ie™"



3. Cross sections and decay widths

The differential cross section for a 2 x n process 7115 — f1--- f, is

| M(ivis = fi..fo)]? &y, o
A(p1 - p2)? — mim3]|'/? (H”W) (27)°0%(Xp; — Xpy) S

e In the amplitude squared |V |?, one has to average (sum) on

do =

degrees of freedom (polarisation, color) of initial (final) particles.
e There is a symmetry factor S = 1/n! for n identical particles.

e The flux factor is 2(p;+p2)? = 2s for 2—n process with m; = my = 0.
It is 2M for the decay of a particle with a mass M (1—n process).

Calculation of phase—space for a two—body process a +b — fi + fo:
1 d’pyd®p;

dPS2 =
167T2 €1 €9

5 (pa + py — 1 — p2)

d’ P2 1

/ 54(10@ +pp—p1—p2) = —d(eq + e — e — e3)
€92 €2

with : [P = |pa + Py — Pa| and 62 |po|? + m53

‘2

and d’py = dQ |p1[* d|py| with ef = [pi[* + m)

Dol

In the c.m. frame: w=e¢,+ ¢, W =e; + ey = (M3 +p2)%(m% + p?)2:

dw’ 11 1 1
- zp(—+—) :>dw':pdp(—+—) 261d6161+62

dp e1 € e1 € €169
dQ | eide dQ | duw dQ |p|
— S(w—w') = o(w — = ——
1672 P €169 (w—w) 1672 P w' (w —w) 1672 /s

(for the last equality, the integral over duw’ has been performed).
The differential cross section for a two body process is then:

do 1 . 1 1P|
— = — x %M ’
10~ 35 % FMah = Sl X 3 (\/5) <5

Note that |p| = 3/sA = 3v/s[l — mi/s — m3/s)? — 4dmim3/s?]z.

4




4. Calculation of loop integrals

e Measure of loop integral over internal momentum: [ d*k/(27)"

(For fermion loops: take trace and factor (—1) for Fermi stats).

d*k 7 7
T = (4 2
‘ (ig) / 2m)* (p+ k)? — m? k? — m?

T ,2/ d*k 1 1
=i
g 2m)* (p+ k)?> — m? k2 —m?

e Symmetrize the integrand using: 1/ab = fol dz/[a + (b — a)z]?

&'k ! 1
[=ig” d
" / (27)4 /0 x(k2 + 2pkx + p?x — m?)?
e Shift variable & — k' = k + px (integrand becomes k* symmetric)

d4k [t 1
= ig° d
*9 / (2m) /0 Y02 pe(l —z) — m2)

e Wick rotation ky — iky to go to Euclidean space (k* — —k?)

'k ! 1
[=—¢° d
J / (27)4 /0 x(k:Q —p?x(l —x) + m?)?
o Polar coordinates for d'k: [ d'k F(k?) = n° [ dk® k* F(k?)
2 1 00
g 1
[=———— ] d d
1672 J, X/O Y y(y — p?x(1 — x) + m?)?
e Perform the integrals over the variables y and z:

— If integral divergent: cut-off at the energy A ( fOA2 dk?).

— Eventually, use the on—shell mass relation p> = m?.
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Higgs production and decay mechanisms

1. Higgs bosons decays
1.1 Decays into fermions: H — ff

. < f(p1) —iM = @ (py) (im V)02 (—po)

f(=p2) +iMT = 0%2(—po)(—imy/v)u(p:)

STMMT = N (L) ST o) (1) 10—

51,89 51,52
with N, = 3(1) for quarks (leptons). Only one polarisation for H.
(v/m)*/Ne x SIM[* = Ta(gh +m)(— po —m)
= Tr(yupy +m)(=7py —m)
= —pipyTr(y,) — m*Tr(1)
= —dpi.py — 4m”
Using ¢° = (p1 — p2)* = me — 2p; - p» = M% and defining the velocity
of the final fermions [ = 2|py|/My = (1 — 4m3 /MF)'/?
= |M|* = N, (my/v)* 2(Mf; — 4m3) = 2N, (m}/v*) Mp 55
The differential decay width is then simply given by:
dl’ 1 1 2|ps
= Y| M|?
00~ oagy < EMEx s
Integrating over df) = d¢d cos € (and since there is no angular
dependence, f dQ) = 47), one obtains the partial decay width:

fMH

NH = ff)= 5 7
H decays dominantly into heaviest fermlon and width oc M.
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1.2 Decays into massive gauge bosons

q Ni:;wpl) —iM = €(p1) (—2iM /v g") €;(—p2)

Vi (—py) FIMT = eulpr) (=2iM3 /0 g"") €,(—p2)

4M4 v /7// % *
ST P = g g S e Y il -poles (o
pol pol pol

(V/AME)S = " g (g —pmpw/Mﬁ)(gw — pavpa [ M)
= (g,uu’ - pl,upl,u’/M\Q/)(gM - p2p2 /MV>
= 4 —pi/My; — p3 /My + (pr - p2)* /My
= (Mp/4My) [1 - 4M12//M§1 + 12My /M)
The dlfferentlal decay width = X |M? x 2l g with

’ dQ 2M 3272 My
S = oy = 5 for two identical final 7 bosons. This finally gives

([ dQ = 4m):
Sy M3 AMEN ME ME
['(H 1 — 1 —4—Y 4192V
= VV) = 62 ( M3, M T
The dependence on My is hidden, since v = 2My /9o = 2M ey / go.
For large enough My [recall that H — ff o« Mpy], one has:

I(H— VV)~§yM/(87v*) = T(H — WW) ~2I'(H — ZZ)

The decay widths grows like M3, i.e. is very large for My > M.
For small My, one (two) V bosons can be off-shell, the width is

Ly [Mi dgi My Ty / M=t dgs My Ty
2l @ORPRT ), @M IR

2
P WMy (124G (4 @\ A4
P 8m? My ) My M, M},

F:
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1.3 Decays into photons and gluons: H — 77, gg

H does not couple to massless particles at tree-level: loop induced.
We have vertex diagrams with fermion (top) and W exchange
for H — vy(Z7v); only top for H — gg: calculation complicated.
However it is simple if H momentum is small (i.e. My < Mp):

g = 0
p p .
? m ‘Z' = %( i ) s (T)
p—m (7) p—m p—m
! p+k
, p p
_ZMfVWZ H<[:X(T) %WW@MAM —i( . )8mnm
Y k

Let’s calculate the derivative of the fermionic photon self-energy:

1 1
—il0(p N/ zeef’yu)% m(—zeef%)ﬂ i m

o) — i N2 d*k Try, (K + m)v,(p+ i +m)
ulp) = i e / )t [+ F)? = m?) (k2 = m?)

Using the rules for Diracology and loop integral calculations:

e /1 dx _ /1 dx
o (K? 4 2pkx +p?x —m?)?  Jo [(k+ px)?+ p?x(1 — z) — m?]?
N = Ty, vt K) +mPym] = K (k + p) Telym,m 70 +m 0]
= A2k, k, + (m* — k* — p.k)g,)
Shift £ — k£ + pzr, Wick rotation ky — 1k, for Euclidean space =
k* — —k? and sym. integrand with [ d'k F(k?) = 7* [ dyyF (y)
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[also use of symmetry relation [ d'k(k,k,) = 1g., [ d*k(k?)]

i 1 00

A X /0 dx 0 ydy

[%kQ +m® — r(1— x)pQ]gw +2x(1 — :E)[gpr — Puby]
y+m? —px(l —x)?

Because of gauge invariance, photon is transverse ( ng2 — Puby):

the first term (o< g, should vanish” and we are left with:

N.e2%e? 2¢(1 — )
M(p) = —L (g ) [ d d
,ul/(p) 47_(_2 (g,u p pup / .CU/ Y y y + m2 pr(l . .CU)}2
We can now calculate the Hvy~y vertex [photons to symmetrize
— 2; they are on—shell and p;, # p but p* = p; - p» = s ME]

M(p) =

0 4m? 0
Hyy _2@ —HW - HW
MW v om (Pl Pz) D Om2 (Pl Pz)
2m? Nc62 62( ) / q / —2x(1 — x)ydy
- JD1.D2 — y T

Inside the integral, we can suppose m? > p*(M?7) and integrate
over z and y [[z(1 — z)dz = 1/6 and [y/(y +m?)*dy = 1/2m?]
2 «
Mﬁuw = 3v N, 6?@ p (g;wpl-pz - plumy)

Now we use the same machinery as for decays into gauge bosons:

4 a® M} 2M* o’
2 2 4 H v % 2 __ H ar2 4
|./\/l| = WN 2 2‘9” € (pl) (p2)| T 02 NcefWQ

Integrating over phase space (with factor % for identical photons):

3 2

M Q
['(H = yy) = 9 §N26§167r3

“This statement is not trivial to prove and we will come back to this discussion later on.
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Several remarks to be made:

e The amplitude was of course finite (no tree level contribution)!
e The approximation m ;> M is in practice good up to My~ 2m !
e Only tops contribute, other f have negligible Yukawa coupling.
e Infinitely heavy fermions do not decouple from the amplitude:
a way to count the number of heavy particles coupling to the H!

e There are also contributions from W bosons. Also in the
limit My < My, (valid for My < 140 GeV), one has:

_ My o 21

4

e The W contribution is larger (~ 4) than the ¢t quark contribution
and the interference of the two is destructive.

e With the same calculation, one can get the amplitude for H —
Z~. Only difference, Zff, ZWW couplings and M, in phase space.
Here again, the W contr. is much ( £ 10) larger than that of top.

e The calculation holds also for gluons if we make the changes:
Qce — gsT, which means a — o, and N? — |Tv(T,T,)|* = [56u]* = 2
Mj; o
9v? 873

Decay width and branching ratios:

P(H = g9) =

The total decay width of the Higgs is the sum of partial widths:
Ciot(H — all) = S,T(H — ff)+ SyD(H = VV)
and the branching ratio for Higgs decay into a given final state is:

BR(H — X) =T'(H — X)/Tioi(H — all)
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2. Higgs bosons production in ete~ Collisions

2.1 The Higgs—strahlung process:

- 2\ s
1y i/ M) N —py
2_M% N

. . . . —i(g" —q"'q" /M%) ,—2i M3 .
0 =T il = oy S 2, )
Z

First thing to use for simplification is Dirac equation J/u(l) = m, ~ 0:
V(i) Vud wyy = V(= B+ Ulug,y = 2me ~ 0= quq, — 0
where m, is supposed to be much smaller than /s = \/? Then:

2774
4e*Myv =2 s

2 s —s S
M = T a0 oo Pl Yl Ve = @05)U(0 i 1o (Ve = ac75)0

Average over polarizations of e* and sum on those of photon:

1 L vy P p
PP = T (v = acrs )= ) — e~ 0+ )

—Tr = (v] + )Tt Uy, Yy — 2a00.Tr Uy s
— 402 + a})[lday + loplry — 11.0og,0) — 8iacve 1810 €nyupy

1 L1.p1)(1s. P
[EIMP = k(0 + a?) [2000) ol 1%(22 PU y10) + (1) 2L M2

Z
= k?(?)g + ag) [-(lylg) — 2<llp1><lgp1)/M%]
where we have used the fact that (¢,,3,) ¢ —p|pY} is (anti)symmetric.
In the c.m. frame, one has (with E7, = M7 ;+[p|*) and [p| = /s/2)):

3

—(1,0,0,%1) and p12 = (Ezpm,0,%£|p|siné, £|p| cosb)

lio=
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E% — |p|? cos? 0)
E(o? + a2 b s(E7
= k(v; + a?) [2—|— INE

The differential cross section is given by:

do 1 [462M§(v§ + a?)s <M§ N 1)\2 2 9>] A

dcosOde 25 | v2(s — MZ?2MZ \ s 8 3272

with [d¢ =27 and [sin®fdcosf = 4/3 one gets the cross section

s [M% A2 sin? 9]

— k 2 2
] (/Ue_‘_ae)M% S + 8

aMi  v?+ a?
1202 s(1 — M2%/s)?

olete” = HZ) = A2 +12M2%/s)

A few remarks:

e The cross section drops like 1/s at high—energies (typical of an
s—channel process). The maximum is reached at /s = My + V2My.
e At the maximum LEP2 energy, /s = 209 GeV, the cross sec-
tion for My = (100) 115 GeV is given by (using the fact that oy, =
4ma?(0)/3 = 86.8 nb with a(0) = 1/137, a(s) ~ 1/128 and sin* fy = 0.232):

o = 0.42 (0.16) pb for My =100 (115) GeV

If we have an integrated luminosity of [ £ ~ 100 pb~!, this means
that we have N =0 x [ £ ~ 42(16) Higgs boson events.

e Since for My ~ 100 GeV, BR(H — bb) ~ 90%, the signal is
ete” — ZH — Zbb and the main background is efe™ — ZZ — Zbb.

e At high energies s > M2, one has a differential cross section

do ) aMz v’ + a?
~ in“ 0 with o ~ Z < °
deosf  do 0 VO T g2 s(1—Mz2/s)

3
5 A

the behaviour in sin’6 of the angular distribution and in \? of the
total cross section is typical for the production of two spin—zero
particles (here, the Z boson is almost a Goldstone boson).
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2.2 The vector boson fusion mechanism:

7S

u | By )
I, q1 o
b 42
F(SZQ) =2 U(Sm)
N2 N2 95 N2 ul \yu(v — avys)u? (g“ﬂl—ﬂlgl)
M- i(—ie)*(—i)"(—2iMy /v) (p1) 11 (1) M2

10 X
2 M2\ (2 — M2y s (g
(i = My = My) ) YoV = @75)T(s) (g %2 )

Using the relations ¢/'y, = ¢ =}{— 1 x m. ~ 0 and gW/g““/g = gh:

= e o=
DiD; g > V(v = @)y, D7) ¥ (0 — 5)V]_y,
_AetMy/v? T Yy (v — avs) Hivulv — as)
T TDIDE T Ty (v — ays) (v — ans)
_ AetMy /ot (0% + a?)Tr Yy g — 2va T oy By
-~ D?Dj (v* + a®)Tr Iby” oy — 2vaTr Iy poy™ s

Performing the trace and product using e“”o‘ﬁew,a/ﬁ/ = (526(5?, — (52‘,55/

32et M2 Jv?
S = Z I g ) ta.pn) + 9a01o) 1.2
12

with gs = (v? 4+ a?)? + 4a*v? and g4 = (v* + a*)* — 4a”v?

Let’s write the momenta of the particles in a convenient way:

L= (E.0,0,E) ,p1 = (/1B + py, prasin b1, pri cos by, 01 E)

lo = (F,0,0,—-FE) ,ps = (\/SU%E2 + Pio, Dr2sin by, pry cos 0y, —xo F)
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and assume high energies s > M‘Q/ so that pr o/ E are rather small:
l;.p; ~ p%i/Qa:Z-  lpy ~ 2E%xs | lopy ~ 2F%x, , p1.py ~ 2FE 19
hold, together with 2/,.[y = s and the Higgs momentum squared:
Mpr = (q—p1—p2)* = s — 2q.p1 — 2¢.p2 + 2p1.p2 = (1 — z1)(1 — z5)

Using these products, one has then for the amplitude squared:

1\M|2 32 My y AEY(gs + ga)z1ms
4 v? (P71 /71 + M)A (pro/ T2 + M )?
8et M (95 + ga)s”xias

X
v’ (P71 + 21 My )2 (g + 2o My, )2
Let us now deal with the three body phase space:
1 d’py PPpy dPp

dPS3 =
(27’(’)5 2E1 2E2 2EH

0 g —p1—po—p)

Defining 74 = M7 /s and using the known relation for ¢ functions:
d’p 4 2 2 4
—— = [ &pd(p" — Mpy) = [ d'pd[s(l —z1)(1 — 22) — s74]
2Fy
and decomposing the momenta along the 3 directions, one obtains:
1 d($1E> 9 d(ﬂj‘gE)
5 d"pr1
(27)° 22 E 209 F

Noting that [ dp3,/(p3, + v ME)* =« [;° dp?/(p* + v MP)? = 7 /(2 ME)
and using My = ev/(2sy ), the differential cross section is given by:

1 8O MA 1 dzidey 72
do = — x [ ——L + 20303 % )
’ 25 <4M%/ %) (95 + ga)s 2125 (27)° 2x1 229 Ty M

dPS3 =

d*pro 0[s(1 — 1)(1 — x2) — s74]

043

T M2, 5 (95 + 94) /dﬂ/dxﬂlx?&s[ (1 —21)(1 — 22) — s7H]
it Sii
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Now perform the integrals using [ d[f(z)| = |f'(x)|.L,, with f(z)) =0

1—TH 1
/dxlfdxg...:/ Ay (1— —2 ) st —
0 1—[171 8(1—331)

1=7n 1+ 7q TH 1
= [ du|-14 + = (14 7y)log— — 2(1 —
/0 x[ Sl (1_951)2] (1 il = 2(1 = 72

where the boundary conditions are obtained by requiring that
P1z = P2z = $1’2E =0= r = 0 and Ty = 1—7'H/(1—£L'1) =0— xr = 1—7‘H.
Collecting all results, one obtains then the total cross section:

043

1
= 1 log— — 2(1 —

Let us now make a few remarks:

e The cross section rises as log(s/M?%): small at low /s and large
at high \/s. Dominant Higgs production process for s> M7,.

e This approximation is good only within a factor of 2 and works
better at higher energies. It can be obtained in an easier way
using the effective longitudinal vector boson approximation.

e In the case of WW fusion, g, = 8/(2v/2)* = 1/8 and g4 = 0, one has:

3

a (1+ 7'H)logi2 —2(1 —7g)

U(€+€_ — HDV) = m MH

e At LEP2 energies, /s ~ 200 GeV, the cross section is o ~ 5(2)-107%
pb for My = 100(115) GeV, i.e. less than one event for [ £ = 100
pb~!. This process is not very useful for Higgs searches at LEP2.
e For ZZ fusion with s¥, ~ 1/4, g5 ~ g4 ~ at ~ 1/(16 x 9): the cross
section o(ete” — ete” H) is ~ 9 times smaller than for WV fusion.

“This calculation, including details is done in: G. Altarelli, B. Mele and F. Pitolli, Nucl. Phys. B287 (1987) 205.
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3. Higgs bosons production in hadronic Collisions

3.1 The gluon—gluon fusion process’

P X
g _H
g
P X
The cross section of the subprocess, gg — H, is given by:
1 1 1

d’pr
— 2 T PH o Mshg
2§X2-8X2.8‘MH99‘ (27%)0" (¢ — pn)

Using the fact that [ d’py/(2Ey) = [ d*pud(pf, — M}) and that
|Mp,,|° = 32rMpl'(H — gg) calculated before, one obtains for 4:

M
b= WSAHF(H 5 gg) 8(5 — M)
S
Convolute with gluon densities to obtain the total cross section

1 1 7T2MH
o :/ d.CL’1/ das ¥ I(H — gg)g(z1)g(x2)6(5 — M)
0 0

with § = szy19, implying s — M7 = s(x1x9 — 7) with 7y = M7 /s:

02/0 d931/0 dzy——T(H = gg) g(1)g(x2)3[s(x125 — 711)

do =

SMp

We perform the integral on z, [[d[f(z)] = |f'(z)|,2,, with f(z) = 0]
e bz 1 o dLv
= I'NH — — = =
7= g "H = 09 | Tol@lote/m) = g '
where the integration bounds are 7" = 1,z = z;(for 2, = 1) = 7.

At LHC, gg luminosity is large and gg -+ H dominant process!

*Calculation to be checked!!!
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3.2 The Higgs strahlung and vector boson fusion process

The cross sections for these processes are the same as in ete”
collisions, provided that the following changes are performed:

— The total energy +/s is replaced by the subprocess energy 3.
1.1

— The average over the quark colors is made: factor 3 - 3.
— In the bremsstrahlung process, possibility of q¢/ — W* — W H.
— The couplings of the electrons are replaced by those of quarks:
in qq — VH: a2+ v? —>a?]+v§.
in qq — Hqq: gsa — [(v* + @) (v + a?) £ 4(av)(a'V').
The cross sections for a given initial state, are given by:
_ 1O‘M\2/ 024—&?] Y ()2 2 /a4
o(qf — HV) = 91202 5(1— MZ/3)° AN+ 12M5:/3)
1 o

. 1 .
o(qq = qqH) = §m(gs + ga) [(1 + TH)logE —2(1 —7q)

Summing over all possibilities for quark/antiquark initial states
and folding with the proper densities, the total cross sections are:

1 1
H+ X| = d d / 5lad H+ X
olpp — H + X] Z / " / waf (1) fy(02) 5lad’ — H + X]

Remarks:
e At LHC, q¢ — Hqq is the dominant process but not as gg — H.

e The cross section for ¢q¢— HV is OK for low My; o(HW)~2(HZ).
e At Tevatron, Higgs—strahlung (esp. ¢¢ — HW) more important.
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