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Inflation

Problems of the hot Big Bang theory revisited
Friedmann-Lemaitre-Robertson-Walker (FLRW) models are able to describe the
Universe expansion but they imply a decelerated expansion for any fluid component
with an equation state parameter w = p/pc? > —1/3.
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Since common matter and radiation have equations of state parameters with w >
— 1/3 this leads to the fatal conclusion that the Universe’s fate is to expand in a
decelerated way.

This leads to a number of difficulties known as the hot Big Bang problems (see next
slides). A way to solve these problems is to develop a dynamical framework where
the FLRW Universes may be allowed to expand in a accelerated way, at least during
some periods of the Universe’s history. These periods are called inflationary and
allows one to define inflation as any phase of the universe’s expansion when:

Inflatione a >0 4
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FIGURE30.4 Theevolution of the temperature of the universe and the scale factor, without and with
inflation. Except for the bottom value, the temperature is given in terms of k7. (Figure adapted from
Edward W. Kolb and Michael S. Turner, The Early Universe (page 274), ©1990 by Addison-Wesley
Publishing Company, Inc., Reading, MA. Reprinted by permission of the publisher.)

Inflation

Problems of the hot Big Bang theory revisited

FLRW models with decelerated expansions are inconsistent with some important
observational evidences facts and pose a number of puzzling questions:

The horizon problem: The FRLW models allow one to compute the particle horizon

of observer at any given time/redshift. The sky angular size of the particle horizon of
an observer, 8y, at high redshift can be approximated by:

180 [Qq
O ~ L \/ ,{U deg
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so an observer at z = 1100 (living at epoch of CMB decoupling) has a particle horizon
with an angular size on our observed sky of about, 8y =~ 0.95 deg.

This means that there are about age of universe

54000 casual disconnect regions We can see gas at

. . ints A and B bef
in the sky at CMB decoupling. {ay Knaw Bbouit sach

other.

So, why is CMB
intensity spectrum so
uniform temperature
(2.725 OK) in all Sky —— distance

. N Gas at point A has received signals Gas at point B has received signals
dlrectlons? from this part of the universe. from this part of the universe.
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Inflation

Problems of the hot Big Bang theory revisited

The flatness problem: At early times the Friedmann equation can be written as
Q=0,+9,):

Since a(t) decreases with
f ’ A| | k | time (because d < 0) this
Q(t) — l| = () H ~STINTIZ (o 0 ~—| denominator increases
ast—-0

So the left hand side term should approach rapidly to zero as t — 0 (actually

a(t - 0) - o). Fort =~ 1x10~*3 (~Planck time) Q should deviate no more than ~
1x107%° from the unity.

So, why is the Universe “starting” with a energy density parameter
so extremely close to 1?

The universe might take
one of these shapes
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Inflation
Problems of the hot Big Bang theory revisited

The monopole and other exotic particles problem:

Quantum field theories (e.g. GUT, superstring) predict that a variety of “exotic” stable
particles, such as magnetic monopoles, should be produced in the early Universe and
remain in measurable amounts until the present.

No such particles have yet been observed. Why?

This either implies that the predictions from particle physics are wrong, or their
densities are very small and therefore there's something missing from this
evolutionary picture of the Big Bang.




Inflation

Problems of the hot Big Bang theory revisited

The origin of density fluctuations problem:
On large scales our present universe is fairly isotropic and homogeneous.

Why is that so?

At early times, that homogeneity and isotropy was even more “perfect” (due to the
flattening effect effect at early times). Moreover, the FLRW universes form a very
special subset of solutions of the GR equations.

So, why nature “prefers” homogeneity and isotropy from the beginning as opposed
to having evolved into that stage?

Distant Objects in the Hubble Ultra Deep Field

CMB T=2.725 The APM Galaxy Survey

Inflation

Problems of the hot Big Bang theory revisited

The origin of density fluctuations problem:

Locally the universe is not homogeneous. It displays a complex hierarchical pattern of
galaxies, clusters and super clusters.

What'’s the origin of cosmological structure?
Does it grew from gravitational instability?
What is the origin of the initial perturbations?

Without a mechanism to explain the
existence of fluctuations one has to
assume that they “were born'" with the
universe already showing the correct
amplitudes on all scales, so that gravity can
correctly reproduce the present-day
structures?




Inflation

Conditions for Inflation
If the Universe experience periods of accelerated expansion

Inflatione a@ > 0

This requires that during these periods the Universe has to be dominated by a fluid
component with an equation of state parameterw < —1/3:
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Let’s us first look at the acceleration condition

o a d | d —1 d —1
S —— s — = — H = — H
a>0 .2<0 t(a ><O t(a ) <0 t(C /a)<0

The quantity Ry = cH™1 is the Hubble radius (v; = ¢ = HRy).

So inflation can also be defined as any period of the universe history when the )

commoving Hubble radius Ry is decreasing (shrinking). '

Inflation

Cosmological scales and horizons
During inflation

* any comoving cosmological scale, A, is fixed in time as: 1, = 1/a(t)
* but the comoving (particle) horizon ~ Ry = (aH)™! decreases with time

So during inflation scales inside the horizon at a given time grow faster and may
become larger than (go beyond) the horizon.
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Inflation

Conditions for Inflation

The inflation conditions can be expressed in terms of other conditions. Let us first note
that: ) .
d 1 aH +aH 1 _ H
d7t( H) :—W:—a(l—b:), where E:_ﬁ
from

d 1
. _ _1 _ _
a>0=>dt(aH) <0& a(1 €)<0

So we conclude that inflation happens whenever

E:_ﬁ<1

€ is known as the slowly-varying Hubble parameter. As long as it is smaller than 1
inflation happens. The case € = 0 is known as perfect inflation:

« The commoving Hubble radius is constant: H = 0 & H = constant
* de Sitter Universe expansion:g =Hea(t) =a;exp(H(t—t;))
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Inflation

Conditions for Inflation
The inflation condition can also be written as:

H _H/H_ _dIn(H) _  dlIn(H) <

€= ——= = =
H? aja d In(a) dN

0
Where dN = d In(a) is known as the e-fold number:

N = j c.ld In(a) = 1In (g)

The e-fold number is used to quantify how long the inflationary period must be in
order to solve the Hot Big-Bang problems (usually N ~ 40 — 70).

During the inflationary period, €, needs to remain small (below 1). It is then useful
introduce a new parameter that measures how € changes during inflation:

_dlne €
~ dN  He
Since € needs to remain small this means that 1 needs to remain small.
In general one should have:n < 1land e <1

14



Inflation
Conditions for Inflation
The Friedmann and the continuity equations
H? = p/3M},
p=-3H(p+p)
Can be combined to relate, €, with the equation of state parameter.
One has:

€= £_§ 1+B <1l & w—£< !
- H? 2 p op 3

Combining this equation with the continuity equation It is also possible to conclude
that:

=2 <1

dlnp
dlna

Which shows that for small € the energy density of the universe remains
approximately constant. Conventional matter sources would dilute with the
(exponential expansion). The energy density of whatever causes inflation needs to be

an unconventional/unusual form of matter/energy.
15

Inflation

Basic Picture
Let us now look intuitively how the inflation condition

inflation & d > 0 & =~ (cH™!/a)<0

may be used to solve the Hot Big-Bang problems

Flatness problem:
If the expansion is accelerating, d > 0, the derivative of the scale factor a is an
increasing function of time. So it decreases as we go back in time

’ k ‘ ‘ k Is an increasing

Qt) - 1] = 2OH2(D) =/ function of time,

so:a(t—-0)-0

the flatness problem is therefore solved because...

The Universe can in principle “start” with a energy density
parameter far from 1.

16



Inflation

Basic Picture
Let us now look intuitively how the inflation condition

inflation © d > 0 © %(cH"l/a)<0

may be used to solve the SMC problems

The horizon problem: If the accelerated expansion happens in a early phase of the
Universe, during a long enough period, in principle, all causally disconnected sky
patches of the CMB can be put in causal contact.

time us

our Present UniVerse
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distance
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Inflation

Basic Picture
Let us now look intuitively how the inflation condition

inflation © d > 0 %(cH"l/a)<0

may be used to solve the SMC problems

The monopole problem: If the universe expands sufficiently after monopoles are
produced their abundance can be too low to be observed.

The homogeneity problem: our visible universe comes from a causally connected
region that expanded a lot so it looks fairly isotropic and homogeneous
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The Theory of Inflation

Inflation also provides a mechanism
for the origin of fluctuations...

... fluctuations (density and grav.
waves) are due to quantum
fluctuations about the vacuum state
of the inflationary potential.

The inflation (inflaton) field has energy density
fluctuations allowed by the Heisenberg
uncertainty principle:

AEq > h/(4mAt)

During inflation fluctuations are “inflated” to
macroscopic scales > physically connected
scales become larger than the horizon scale
and “freeze”.

Standard Model of Cosmology (SMC)

Big Bang

SMC = Hot Big Bang + Inflation

Zud Ui liilaciyy

Radiation = Matter < il
Energy. 88

CMB
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3790 Last Scattering <0 I
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FLRW models provides a
provide a mechanism for
description for the origin of
the evolution of perturbations
the “background” to the
Universe “background
Universe”

fluctuations (density and grav. waves)

are due to quantum fluctuations about subeeny
the vacuum state of the inflationary 13.7 Billion Years
potential. after the Big Bang



Standard Model of Cosmology (SMC)

Big Bang

SMC = Hot Big Bang + Inflation

Zud Ui liilaciyy

After the end of inflation
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Inflation

Distances and Horizons

Let us consider the travel of light along radial (d6 = d¢ = 0) geodesics in a FLRW
metric

dr?
2 _ 2 2 2 2 2 2 12
ds® = dt° - a®(t) [l—kzr?_l—r(de + sin® 8d¢ )}

dt* - a®(t) [dx® + fi(x)(d6” + sin® 0dg”)] ,

written in a conformal way with the introduction of the conformal time dt = dt/a

ds? = a?(7) [dT2 - dx2]

(with dy = dr for flat geometries), So light rays (ds? = 0) travel along geodesics with

Ax (1) = £ AT
From integrating this we can define the notions of:
t
dt
* Particle horizon: Xph(7) =7—Ti= [ —= witht; =0
Ji, a(t)

bty dt
* Eventhorizon:  Xen(T) =T —T = / ——  Withtf = o
¢ a(t)



Inflation

Distances and Horizons

comoving particle outside

X the particle horizon at p T —T
Tf
event horizon at p
pe
particle horizon at p
Ti
>
T —Ti

Figure 2.1: Spacetime diagram illustrating the concept of horizons. Dotted lines show the worldlines of
comoving objects. The event horizon is the maximal distance to which we can send signal. The particle
horizon is the maximal distance from which we can receive signals.
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Inflation

Distances and Horizons
The particle horizon, y,p, the maximal commoving distance travelled by light until a

time t, can be computed as follows:
t a Ina
dt da
- = = = = H) 1d1
Xpn(7) /g a /a aa ) (aH) e

na;

with t; = 0; a; = 0. The commoving Hubble radius inside the last integral is (see
Freedman equation):

(aH)—l — Ho_laé(l+3w)

For any fluid component with an equation state parameter w. All familiar matter
sources have 1 + 3w > 0 (this is an implication of the so called strong energy
condition). So in the Hot Big-Bang theory model the commoving Hubble radius is
always increasing. Using the above expressions one finds (with ¢t; = 0):

2H; !

Xph(t) = (1—+-—3w) a(t)%(1+3w) _ L (aH)‘l

(14 3w)

But since during inflation 1 + 3w < 0, this condition has to be violated and the
commoving Hubble radius is a decreasing function of time. 2



Inflation

Distances and Horizons
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Inflation

Cosmological scales and horizons

During inflation

* any comoving cosmological scale, A, is fixed in time as: 1, = 1/a(t)
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* but the comoving (particle) horizon ~ Ry = (aH)™! decreases with time

So during inflation scales inside the horizon at a given time grow faster and may

become larger than (go beyond) the horizon.
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Inflation

Scalar field Dynamics
Inflation is usually modelled by a scalar field ¢ = gb(xi, t), called the inflaton field,
that can generally be a function of position and time.

V(o)

Associated with each field value A

there’s a potential energy, V(¢),
and If the field depends on time,
the field also carries kinetic energy.

Using the Noether’s theorem one can
Prove that the energy-stress tensor of
any scalar Field can be computed as:

Tp.u = p¢au¢ — Guv (;guﬁau(paﬂqﬁ - V(¢)>

Y

(0]

For a homogeneous and isotropic FLRW universe, without perturbations (ie
inhomogeneities) the field is only a function of time, ¢ = ¢(t). Computing, T = P
and Tji = —Py 6} one obtains:

1. 1..
Py = §¢2+V(¢) Py = 5‘752 - V(d’) 27

Inflation

Scalar field Dynamics: Klein-Gordan equation
Using the energy density of the inflaton filed in the Friedmann equation gives:

1 1,
H? = [¢2+V]
3M2 (2

Taking the time derivative one finds:
1

2HH = —
3M

[66+v'4]

where V' = dV /d¢.

Combining pg and py, in the acceleration equation, H = —(p, + P¢)/(2M§l) , one

obtains: :
1 ¢?

2 M2

H =

This shows that the acceleration of the universe is sourced by the kinetic energy of the
inflaton field. Combining these two last expressions one obtains the Klein-Gordan
equation that describes the evolution of the inflationary field:

b+3Hp+V' =0

28



Inflation

Slow roll inflation

Combining the expressions: =_2 and H = 1 4-52 ives:
g p . £ = _H2 - 2M§1 ' g .
1,2
€ = §¢
MSIH2

This means that inflation € < 1 only
occurs if the contribution of the kinetic
energy of the field to the total energy
is small. When this happens the field

is said to be slow rolling

The time derivative of € gives:

. 4 _ o
M%H? ~ M2H®

Which allows us to compute the 1 parameter as:

where § = —¢/H¢. ”

Inflation

Slow roll inflation
The conditions € < 1and [n| < 1 are a guaranty that inflation happens and persists.
Since this implies that the kinetic energy
of the field is small one can assume the
slow roll inflation conditions:

V(o)
A

fe.nl} « 1 . -

and approximate the Friedmann and
Klien Gordon equations as:

v %
3M}
« Klein Gordan ( ¢~0): 3Hp ~ —V'

*  Friedmann ($2~0): H? =~

\j

Combining these equations (plus taking the time derivative of the Klein Gordon
equation) allows one to write the {¢, ||} parameters as function of the potential and

its derivatives:
2 2
— My v’ = M2 IV’
v = ;I =MAS .




Inflation

Slow roll inflation

The total amount of e-folds (which gives by how much the universe expands during the
inflationary period) can also be derived from our knowledge of the inflationary
potential.

aR teg
Niot E/ dlna = H(t)dt

ay tr

where t;, tg are defined as the times when inflation begins and ends

e(ty) =e(tg) =1

The integrand function above, can be approximated by:

H 1 |dg[ 1 |dg|
o $= \/— Mpl V2ey Mpl

Which leads to:

e 1 |d
Niot = / M
¢

. V2, My
To solve the horizon problem (CMB) is possible to show that one requires at least 60 e-
folds of inflationary period. =

Inflation
Example: V(¢) = m?¢? /2

The slow roll conditions give:

PN _8 (’ 811G
= SWC/ — do T od(,‘) = 71 (0% — 82)
De

So the value of the field after N e-foldings should be:

2

ONn = IN.
When inflation ends, € = 1, so using the definition of € one has:
1 v\ 2 m2¢e \2
— =1 = = = 167G
167rG(V>e (%mQOz>

So one has:

¢ = ~ 0.08m3,

Tl

9 1 mf,l 1 ’”%1 .

O = /] = N + — ~ —/—N

N mG ' om 2 o

For N = 70 this gives:

ON = 3.3mp) >



Inflation
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Inflation

Re-heating

During the inflationary period most of
the energy density of the Universe is
given by the inflationary potential.

As inflation ends, the kinetic energy
associated with the inflaton field is no
longer negligible and the energy in the
field is transferred to the matter/energy
species of the fluid.

pr+3Hpr —T'py = 0.
Where I' is the so called energy width
of the inflaton decay.

This process is know as reheating and
It is followed by the hot big bang
evolutionary phase of the universe.
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Inflation

Re-heating r INFLATIONARY COSMOLOGY
The basic idea behind reheating is that ___,/—"]/
this period starts when ¢ begins to < ) -
oscillate with a friction term about the OF 3x10
minimum of the inflationary potential. ‘
For example, taking a quadratic potential N B el o
V = m?¢?/2, the Klein-Gordon -
and the continuity equations give: ) — 1

: e |
Q.S + 3H¢ = —77L2¢ _I':"_ ¥ TODAY

T TD COSMOLOGY ———e

pp+3Hpy = —3HPy = —gH(7712q6“Z — ¢?)

Oscillations decrease in

amplitude due to the friction term.
By the end of the process all energy
of the field is transferred, leading to
the beginning of the hot Big-Bang
evolution.

Standard Model of Cosmology (SMC)

Big Bang

Zud i liilaisiyy

SMC = Hot Big Bang + Inflation

After the end of inflation
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* Background evolution is
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eRadiation
*Matter
*Dark Energy
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