
Ecologia Numérica - Componente Teórico-Prática
Resolução do exame de 22-01-2018
Tiago A. Marques e Hugo Anjos

January 21, 2019

This resolution is in English. Note that since this is a dynamic exam, where the data changes for each student,
this is just a possible resolution, using my own set.seed commands

In some exercises we show two different corrections, both being correct. Often one is the one that the professor
had, the other, a version that Hugo thought would be easier to understand for the students.

Exercise 1

One should begin by creating the required .Rmd. Since you are reading this as the output of a dynamic
report, you know we did that!

Exercise 2

Here we run the code with Tiago’s day of the month, the 22nd, as an argument to set.seed. Note this is not
because we think that Tiago’s birthday is in any way more important than Hugo’s, but because Hugo only
joined this resolution later in the game and this was already done!
set.seed(22)
**** dias do mês em que o aluno faz anos,
#e.g. Carlos e Maria com anos a 1 e 13 de Maio, 0113
b0=rnorm(1,0,0.5)
b1=rnorm(1,0,1)
b2=rnorm(1,0,0.5)
b3=rnorm(1,0,1)
b4=rnorm(1,0,0.5)
b5=rnorm(1,0,1)
b6=rnorm(1,0,2)
n1=rpois(1,30)
n2=2*n1
n=4*n1
hab= sample(x=c("H1", "H2"),size=n,prob=c(0.5,0.5),replace=T)
est= sample(x=c("P", "V", "O", "I"),size=n,prob=rep(0.25,4),replace=T)
x1=c(runif(n2,0,10), runif(n2,10,20))
x2=c(runif(n2,0,10), runif(n2,5,15))
x3= c(rnorm(n1,0,1), rnorm(n1,1,1),rnorm(n1,2,1),rnorm(n1,3,1))
x4= c(rnorm(n1,0,1), rnorm(n1,0,1),rnorm(n1,0,1),rnorm(n1,1,1))
x5=rnorm(n,15,2)
x6=rnorm(n,0,5)
torf=sample(x=0:1,size=6,prob=c(0.2,0.8),replace=T)
ys=b0+b1*x1*torf[1]+b2*x2*torf[2]+b3*x3*torf[3]+
b4*x4*torf[4]+b5*x5*torf[5]+b6*x6*torf[6]+rnorm(n,0,5)

We now have the data required for the following exercises.

1

Exercise 2.1

length(ys)

[1] 116

I generated 116 observations of ys.

Exercise 2.2

It will not be the same, most likely it will not be the same, but, by coincidence, it could be the same. It
depends of the argument used inside the function set.seed. We can only be sure that all people which have
birthday’s on a 22 will get the same number (and we note that, just by coincidence, even a person that does
not have their birthday on a 22nd might have the same sample size).

Exercise 3

Exercise 3.1

The number of observations per habitat is shown below
table(hab)

hab
H1 H2
48 68

so 48 observations in habitat 1 (H1) and 68 observations in habitat 1 (H2).

Exercise 3.2

The best plot to compare the values of two samples as a function of the level of a factor is a boxplot
boxplot(ys~hab)

2

H1 H2

20
30

40
50

There does not seem to be any large difference between the value of the index in the two habitats. The
median and variance in H2 are both larger. One of the values in habitat 1 is a potential outlier.

Exercise 3.3

A formal test will be either a t-test (if parametric assumptions hold) or a Wilcoxon test (if they do not):
Here the assumptions are that the values follow a Gaussian distribution, with equal variances (and naturally,
that the observations are independent!).

Therefore, first we test if the data might reject these assumptions. First, the Gaussian assumption
shapiro.test(ys[hab=="H1"])

##
Shapiro-Wilk normality test
##
data: ys[hab == "H1"]
W = 0.97196, p-value = 0.3015

and
shapiro.test(ys[hab=="H2"])

##
Shapiro-Wilk normality test
##
data: ys[hab == "H2"]
W = 0.98411, p-value = 0.5398

3

and then the variance equality
bartlett.test(x=ys,g=hab)

##
Bartlett test of homogeneity of variances
##
data: ys and hab
Bartlett's K-squared = 1.2053, df = 1, p-value = 0.2723

Clearly, none of the tests is significant using any of the usual significance levels, hence we use the t-test
t.test(ys~hab)

##
Welch Two Sample t-test
##
data: ys by hab
t = -0.75763, df = 109.5, p-value = 0.4503
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.614108 1.615080
sample estimates:
mean in group H1 mean in group H2
30.52970 31.52921

as anticipated from the plots above, there are no evidences that the indexes are different for each habitat, for
any significance level considered.

Exercise 4

Exercise 4.1

The best plot to compare the values of several samples as a function of the level of a factor is, as for two
samples, a boxplot
boxplot(ys~est)

4

I O P V

20
30

40
50

The medians in Verão and Inverno seem smaller than in Outono and Primavera. There are no outliers. In
general, no clear differences are present.

Exercise 4.2

As before, we test for Normality and variance equality (but note this was strictly not required, as we were
told to use a parametric approach, hence an ANOVA). First, the Gaussian assumption
shapiro.test(ys[est=="V"])

##
Shapiro-Wilk normality test
##
data: ys[est == "V"]
W = 0.97297, p-value = 0.6427
shapiro.test(ys[est=="I"])

##
Shapiro-Wilk normality test
##
data: ys[est == "I"]
W = 0.97733, p-value = 0.7509
shapiro.test(ys[est=="P"])

##

5

Shapiro-Wilk normality test
##
data: ys[est == "P"]
W = 0.96034, p-value = 0.4453
shapiro.test(ys[est=="O"])

##
Shapiro-Wilk normality test
##
data: ys[est == "O"]
W = 0.95441, p-value = 0.1787

and then the variance equality
bartlett.test(x=ys,g=est)

##
Bartlett test of homogeneity of variances
##
data: ys and est
Bartlett's K-squared = 1.8199, df = 3, p-value = 0.6106

No evidence for assumption failure, and hence, we can test the equality of the means with an ANOVA. The
H0 is that µV = µP = µO = µI , and H1 that at least one mean is different from the others
aov1=aov(ys~est)
summary(aov1)

Df Sum Sq Mean Sq F value Pr(>F)
est 3 111 36.87 0.712 0.547
Residuals 112 5797 51.76

We cannot reject the H0, hence there is no evidence that the different seasons present different values for the
index.

Exercise 4.3

In a non parametric context, after comparing several means (using a Kruskal-Wallis test), if there is evidence
that at least one mean is different, one can conduct the Dunn test. The result will allow us to evaluate which
of the groups are different.

Exercise 5

We begin by creating the required data.frame
datays=data.frame(ys,x1,x2,x3,x4,x5,x6)

Exercise 5.1

Before looking at the model results, we decide on a significance level of 1%.

Then, I fit the relevant linear model

6

lm1=lm(ys~.,data=datays)

Exercise 5.2

Now we can look at the corresponding summary:
summary(lm1)

##
Call:
lm(formula = ys ~ ., data = datays)
##
Residuals:
Min 1Q Median 3Q Max
-13.8598 -3.2878 -0.1353 3.1723 14.1256
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.81371 3.71861 -1.294 0.1982
x1 0.09972 0.11503 0.867 0.3879
x2 0.39830 0.15962 2.495 0.0141 *
x3 -0.20220 0.44245 -0.457 0.6486
x4 -0.09054 0.48942 -0.185 0.8536
x5 2.17705 0.22854 9.526 5.17e-16 ***
x6 -0.20314 0.10053 -2.021 0.0458 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 5.247 on 109 degrees of freedom
Multiple R-squared: 0.492, Adjusted R-squared: 0.4641
F-statistic: 17.6 on 6 and 109 DF, p-value: 3.658e-14

At the 1% significance level, only x5 seems to be relevant to explain the ys. This would have been different
if I had chosen the 5% significance level, since then x2 and x6 would then also be considered significant.
Remember, to some extent the significance value one chooses is an arbitrary choice that can be changed
depending on the objective of the test.

Exercise 5.3

Option 1

First, we need to find the required means for each independent variable
colMeans(datays)

ys x1 x2 x3 x4 x5
31.1156215 9.6489823 7.0210410 1.4811780 0.3381589 14.9389998
x6
0.1091822
vp=as.numeric(colMeans(datays)[-1])
vp

[1] 9.6489823 7.0210410 1.4811780 0.3381589 14.9389998 0.1091822

7

and then we can make the prediction (This is the formal way of doing it and it would work, not only for a lm,
but for every other type of glm)
lmi1pMean=predict(lm1,newdata=data.frame(x1=vp[1],x2=vp[2],x3=vp[3],x4=vp[4],x5=vp[5],x6=vp[6]))

which is 31.12.

Option 2

We could also calculate, by hand, using the linear regression equation (Similar to one of the exercises in the
theoretical exam). First we need the estimates of each coefficient
coef<-as.numeric(summary(lm1)$coefficients[,1])
coef

[1] -4.81370799 0.09972422 0.39830312 -0.20220104 -0.09053624 2.17704537
[7] -0.20313990

and then we simply calculate the index for the means of each variable
coef[1]+coef[2]*mean(x1)+coef[3]*mean(x2)+coef[4]*mean(x3)+coef[5]*mean(x4)+coef[6]*mean(x5)+coef[7]*mean(x6)

[1] 31.11562

leading to the exact same result, naturally.

Reminder

This was this simple because we were considering a lm. In a glm or a gam one would have to be careful when
predicting. This because if one is using any link function that is NOT the identity link, standard prediction
will be obtained on the link scale (which we humans can’t really understand) and we need to make predictions
on the response scale. If using predict, we need to define the argument type to be type="response" so
that the results come in the response scale. If doing it manually, we need to apply the inverse link function
to get the result in the response scale. As an example, the inverse of the log link is the exponential function.
This was in fact a trick required in one of the questions of the theoretical exam.

Exercise 5.4

names(summary(lm1))

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

The R2 value, as shown in the summary above, is 0.492. This means that while the variables can be used to
some extent to predict the value of the index, there might be a significant amount of unexplained variability.
Naturally, the adjusted R-squared is even lower (0.464).

Exercise 5.5

The variable torf was a vector of length 6, the number of variables available, and each element was an
indicator variable, taking a value 0 or 1. Because each torf was multiplying by the corresponding parameter
associated with each variable, e.g. torf[3]*b3, a 0 would mean that the parameter was 0, irrespective of the
true value of the parameter. In our sample
torf

8

[1] 0 1 0 1 1 1

which means that all of x2, x4,x5 and x6 actually had coefficients different from 0
torf*c(b1,b2,b3,b4,b5,b6)

[1] 0.0000000 0.5039131 0.0000000 -0.1044797 1.8580924 -0.1320528

Assuming a significance level of 5% we would make 3 right calls (significant x2, x5 and x6) and 2 right calls
(non significant x1 and x3), but considering x4 as non-significant was a type II error: we did not reject the
null when we should have. (we note however that given the true value of the coefficient, -0.1, the power to
detect so was very small with this sample size, so the result was not surprising).

This was a question that would tell me if you can think - it was not a direct answer. Questions like these are
required in an exam where students can consult their material and the internet. It tells me who can actually
“join the dots”.

Exercise 6

We run the requested code
set.seed(22)
**** dias do mês em que o aluno faz anos,
#e.g. Carlos e Maria com anos a 1 e 13 de Maio, 0113
file=ceiling(runif(1,0,100))

Exercise 6.1

The value in file can be any integer between 1 and 100, and not 0 and 100 as most students said. Because the
function ceiling rounds up !(so, read questions carefully and think about your answer!)

Exercise 6.2

It is a discrete uniform distribution, each number has a 1/100 probability of being sampled.

Exercise 6.3

It’s 50/100=0.5
50/100

[1] 0.5

Exercise 6.4

In my case inside file was the number 31.
file

[1] 31

9

Exercise 7

We read in the correct file
dt1=read.table(file="data4EPENg31.txt",sep="\t")

and check it read OK
str(dt1)

'data.frame': 27 obs. of 10 variables:
$ hab : Factor w/ 27 levels "eucaliptal1",..: 18 20 21 22 23 24 25 26 27 19 ...
$ Ctat: int 5 9 4 4 9 5 7 3 9 3 ...
$ Cpat: int 4 1 1 1 4 3 4 4 4 3 ...
$ Came: int 3 4 3 4 3 2 1 7 4 3 ...
$ Pcac: int 2 3 2 0 4 4 2 2 2 3 ...
$ Pbev: int 6 8 4 6 6 9 8 6 3 1 ...
$ Pset: int 9 12 22 18 13 17 13 19 15 13 ...
$ Bcla: int 4 7 2 3 4 7 5 2 6 4 ...
$ Bste: int 10 7 4 1 5 1 8 5 4 4 ...
$ Blec: int 13 5 13 12 10 13 9 17 13 7 ...

Exercise 7.1 !!!!!!!!!!!!!!

The number of sites per habitat would be easier to count from the list below
dt1$hab

[1] pinhal1 pinhal2 pinhal3 pinhal4 pinhal5
[6] pinhal6 pinhal7 pinhal8 pinhal9 pinhal10
[11] eucaliptal1 eucaliptal2 eucaliptal3 eucaliptal4 eucaliptal5
[16] eucaliptal6 eucaliptal7 eucaliptal8 mato1 mato2
[21] mato3 mato4 mato5 mato6 mato7
[26] mato8 mato9
27 Levels: eucaliptal1 eucaliptal2 eucaliptal3 eucaliptal4 ... pinhal9

of course, R allows you to do almost everything, and the code below, despite you not being necessarily
supposed to know about it (but this was used in one of the TP’s to put suitable legends in a cluster analysis),
would help and then you would not even have to count as it’s done automatically
table(substr(dt1$hab,1,4))

##
euca mato pinh
8 9 10

Exercise 7.2

We calculate the distance requested (note you need to remove the labels in the first column, most of you did
not!)
dists=dist(dt1[-1],method="euclidean")

we can round the distances for easier printing
round(dists,1)

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 11.0
3 14.9 15.5
4 13.4 13.2 6.0
5 8.4 7.3 11.7 9.8
6 13.0 12.3 9.7 7.2 8.8
7 7.0 6.7 12.6 11.0 5.2 9.8
8 12.8 16.8 7.5 8.1 12.0 10.2 13.2
9 10.1 10.9 10.0 8.7 5.7 8.7 8.7 10.1
10 10.9 10.6 11.7 10.0 8.5 11.8 9.6 13.6 9.3
11 19.0 15.4 11.4 12.6 13.5 12.5 15.1 14.8 15.4 13.5
12 16.4 12.3 10.2 9.2 10.7 9.6 12.0 12.4 12.9 13.8 7.7
13 19.0 13.9 12.5 12.4 13.3 11.4 13.4 16.2 15.9 15.4 7.5 5.8
14 18.5 17.4 6.6 8.3 15.0 11.9 14.9 12.2 14.8 13.4 10.7 10.5 10.4
15 12.0 10.9 6.9 7.1 6.8 8.1 7.8 9.1 8.0 10.1 9.9 6.9 9.3 9.5
16 15.7 13.1 10.4 10.5 11.2 10.8 12.2 14.5 12.4 7.5 7.9 11.3 10.9 10.0
17 24.2 21.7 13.2 16.1 19.5 15.2 20.1 16.5 19.6 20.0 9.8 13.0 11.2 11.5
18 14.4 9.9 13.5 12.3 9.9 10.5 9.1 15.2 14.0 12.6 9.4 7.4 6.4 12.8
19 27.8 22.8 18.7 21.1 22.7 21.0 22.6 23.3 24.2 22.2 11.7 16.0 12.0 15.3
20 27.5 23.7 18.3 21.1 22.5 20.9 23.2 22.4 23.9 21.7 10.1 16.2 13.2 15.6
21 25.9 20.2 19.3 20.3 20.7 18.7 21.0 23.1 23.3 21.0 9.6 13.9 10.1 16.7
22 22.3 17.3 17.3 18.5 17.2 17.3 17.8 20.0 20.3 18.4 7.3 11.3 9.0 16.0
23 25.3 19.6 18.8 19.3 20.0 18.6 20.0 22.3 23.0 20.8 9.9 12.0 7.9 15.5
24 24.6 19.3 16.2 17.3 19.3 17.4 19.1 19.9 21.2 20.4 10.4 10.9 7.3 12.8
25 28.9 23.2 20.6 22.1 23.3 21.2 23.4 24.7 25.6 24.4 12.6 15.2 11.0 17.3
26 35.5 31.5 25.4 28.2 30.2 27.5 30.7 28.9 31.1 30.1 18.7 23.2 19.9 22.3
27 23.2 18.4 16.7 16.8 17.7 16.1 18.4 19.6 20.5 18.1 7.3 10.2 7.1 13.7
15 16 17 18 19 20 21 22 23 24 25 26
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 9.7
17 14.1 14.2
18 8.3 10.4 14.9
19 17.9 16.1 9.8 15.9
20 17.9 15.3 9.3 16.6 5.1
21 17.6 14.5 12.0 13.2 8.7 8.9
22 14.2 13.3 12.1 10.2 9.8 9.2 6.5
23 16.2 15.4 12.5 11.5 8.5 9.8 6.0 6.5
24 14.1 15.5 9.9 11.9 7.4 10.0 9.8 9.1 5.9
25 18.9 18.3 11.7 15.5 6.1 8.5 7.1 9.2 5.4 6.3
26 25.1 23.9 13.5 23.9 10.2 9.8 15.6 16.8 15.6 14.6 11.7
27 14.1 12.6 11.4 10.0 10.1 9.7 7.3 6.5 4.7 7.5 8.7 16.3

11

and check what is the minimum value (minimum value, minimum distance, most similar locations)
min(dists)

[1] 4.690416

you could now simply look on the above table for the value (And this would be correct. The exercise would
be considered correct if you would tell me that you look the minimum number on the matrix and the two
correspondent habitats), but an even more elegant way would be to use the function which to check which
element in the matrix is equal to the minimum value on the matrix
which(as.matrix(dists)==min(dists),arr.ind = TRUE)

row col
27 27 23
23 23 27

and we see the maximum occurs between sites 27 and 23 (As this matrix is symmetrical, those two results
indicate the same two habitats). That is actually
as.character(dt1[23,1])

[1] "mato5"
as.character(dt1[27,1])

[1] "mato9"

it makes sense that the closest locations belong to the same type of habitat!

Exercise 7.3

We do the two analysis as requested
cl.s=hclust(dists,method="single")
cl.c=hclust(dists,method="complete")

We can look at the outputs
plot(cl.s,labels=dt1[,1])

12

m
at

o8
eu

ca
lip

ta
l7

pi
nh

al
8

eu
ca

lip
ta

l1
pi

nh
al

6
m

at
o4

m
at

o1
m

at
o2 m

at
o3

m
at

o6
m

at
o7

m
at

o5
m

at
o9

pi
nh

al
1

eu
ca

lip
ta

l8
eu

ca
lip

ta
l2

eu
ca

lip
ta

l3
eu

ca
lip

ta
l4

pi
nh

al
3

pi
nh

al
4

eu
ca

lip
ta

l5
pi

nh
al

2
pi

nh
al

9
pi

nh
al

5
pi

nh
al

7
pi

nh
al

10
eu

ca
lip

ta
l6

4
5

6
7

8
9

10
Cluster Dendrogram

hclust (*, "single")
dists

H
ei

gh
t

plot(cl.c,labels=dt1[,1])

13

m
at

o8
eu

ca
lip

ta
l7

m
at

o1
m

at
o2

m
at

o6
m

at
o7

m
at

o5
m

at
o9

m
at

o3
m

at
o4

pi
nh

al
1

pi
nh

al
2

pi
nh

al
5

pi
nh

al
7

eu
ca

lip
ta

l4
eu

ca
lip

ta
l1

eu
ca

lip
ta

l8
eu

ca
lip

ta
l2

eu
ca

lip
ta

l3
pi

nh
al

10
eu

ca
lip

ta
l6

pi
nh

al
6

pi
nh

al
9

pi
nh

al
8

eu
ca

lip
ta

l5
pi

nh
al

3
pi

nh
al

40
5

15
25

35
Cluster Dendrogram

hclust (*, "complete")
dists

H
ei

gh
t

Exercise 7.4

The complete method provides a much cleaner habitat separation. All the matos are in a single clear group,
where a single eucaliptal was present. The eucaliptal 1 to 4 and 8 where in a cluster. The pinhal sites
where in a cluster, where nonetheless 2 eucaliptal were present. No such clear structure is present in the
single method. This is a consequence of on single one joining groups by the smallest difference between
any two elements, while on complete we join the groups by the smallest of the largest distance between all
the elements in existing groups.

Exercise 8

Read the data in
dt2=read.table(file="data4EPENdt31.txt",sep="\t")

and check it read OK
str(dt2)

'data.frame': 40 obs. of 9 variables:
$ loc : int 1 2 3 4 5 6 7 8 9 10 ...
$ prof: num 1.222 0.263 8.383 5.859 9.025 ...
$ alt : num 0.875 2.613 -0.582 4.892 3.494 ...
$ O2 : num 179 271 201 178 237 ...
$ pH : num 6.17 6.68 8.02 6.72 8.22 ...

14

$ sal : num 34.9 34.8 35.6 34.3 35 ...
$ sus : num 9.69 8.94 9.7 8.33 8.28 ...
$ Mg : num 0.0873 0.0745 0.0191 0.0103 0.0077 ...
$ Pb : num 8.78 9.96 9.43 11.4 11.24 ...

Exercise 8.1

Here is the PCA, making sure we use the correlation matrix since the different covariates are measured in
different units
pca1=prcomp(dt2[,-1],scale.=TRUE)

Exercise 8.2

Option 1

We can see how much variance was explained by the analysis
names(pca1)

[1] "sdev" "rotation" "center" "scale" "x"

inside pca1$sdev.
pca1$sdev

[1] 1.9621713 1.1357532 1.0288127 0.8531864 0.6620405 0.6016324 0.4388088
[8] 0.2841719

Strictly, these are standard deviations, so we square them for getting variances
pca1$sdev^2

[1] 3.85011614 1.28993536 1.05845550 0.72792702 0.43829758 0.36196157
[7] 0.19255317 0.08075366

For percentages, we need to divide by the sum and multiply by 100
100*pca1$sdev^2/sum(pca1$sdev^2)

[1] 48.126452 16.124192 13.230694 9.099088 5.478720 4.524520 2.406915
[8] 1.009421

and the 2 first axis explained respectively
(100*(pca1$sdev^2)/sum(pca1$sdev^2))[1:2]

[1] 48.12645 16.12419

in a total of
(100*sum(pca1$sdev[1:2]^2)/sum(pca1$sdev^2))

[1] 64.25064

percent.

For completeness, we can see all axis variances in a scree plot
plot(pca1)

15

pca1

V
ar

ia
nc

es

0.
0

1.
0

2.
0

3.
0

Option 2

Other ways to implement the PCA would have been say using vegan’s rda.
library(vegan)

Loading required package: permute

Loading required package: lattice

This is vegan 2.5-3
pca2<-rda(dt2[,-1],scale=TRUE)
summary(pca2)

##
Call:
rda(X = dt2[, -1], scale = TRUE)
##
Partitioning of correlations:
Inertia Proportion
Total 8 1
Unconstrained 8 1
##
Eigenvalues, and their contribution to the correlations
##
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7
Eigenvalue 3.8501 1.2899 1.0585 0.72793 0.43830 0.36196 0.19255

16

Proportion Explained 0.4813 0.1612 0.1323 0.09099 0.05479 0.04525 0.02407
Cumulative Proportion 0.4813 0.6425 0.7748 0.86580 0.92059 0.96584 0.98991
PC8
Eigenvalue 0.08075
Proportion Explained 0.01009
Cumulative Proportion 1.00000
##
Scaling 2 for species and site scores
* Species are scaled proportional to eigenvalues
* Sites are unscaled: weighted dispersion equal on all dimensions
* General scaling constant of scores: 4.202799
##
##
Species scores
##
PC1 PC2 PC3 PC4 PC5 PC6
prof 1.17246 -0.42795 0.02016 -0.604784 0.01523 0.33620
alt 1.40357 -0.16819 -0.13825 -0.144068 -0.08869 -0.15446
O2 -0.03345 -1.21942 -0.09064 0.821559 -0.01947 0.17671
pH -0.55618 -0.65571 -1.05298 -0.523163 0.18751 -0.04307
sal -1.29895 0.08704 -0.05113 0.005259 0.60488 -0.16021
sus 0.36593 0.78833 -1.08148 0.436708 -0.16726 0.17813
Mg 1.19423 0.27081 0.08136 0.208866 0.70885 0.32854
Pb -1.26426 0.13169 0.14720 -0.194102 -0.16662 0.68109
##
##
Site scores (weighted sums of species scores)
##
PC1 PC2 PC3 PC4 PC5 PC6
1 -0.59799 0.97143 0.463813 0.675127 0.53912 0.34248
2 -0.81563 -0.09731 0.503144 1.047480 0.39539 0.87458
3 -0.96907 -0.01145 -0.601229 -0.524769 0.14396 0.38355
4 -0.94436 0.18409 0.851752 -0.668642 -0.95693 0.88520
5 -1.10848 -0.78929 -0.005278 -0.902334 -0.23280 1.02885
6 -0.61065 0.62545 -0.273631 0.637701 -0.03697 -0.02740
7 -0.79254 -0.04342 -0.126672 0.184660 0.05352 0.13953
8 -0.95297 -0.42906 -0.062496 -0.002322 -0.60267 0.94333
9 -0.31405 1.20849 0.175723 1.199257 0.01982 0.33079
10 -0.82179 0.61150 -0.392998 0.049680 0.07640 0.01359
11 -0.63630 -1.22779 -1.051897 1.069725 0.07348 -1.23207
12 -0.50967 0.69757 -0.622219 -0.093237 0.83963 0.07338
13 -0.56113 0.01408 -0.178785 -0.302394 -1.35449 0.15565
14 -0.50957 0.35736 0.450303 -0.263376 -1.27000 -0.54884
15 -0.38608 0.23412 -0.368532 -0.181947 -0.02685 -1.82605
16 -0.30484 0.76877 0.360358 -0.191612 -1.08179 -1.38959
17 -0.39886 -0.45335 0.921359 -0.826440 0.54188 -1.04698
18 0.08965 -1.12106 0.905333 0.373345 0.96039 -0.10760
19 -0.47072 -0.89865 -0.403891 -0.033890 -0.04206 -0.64966
20 -0.18721 0.08971 1.220595 0.209705 0.55479 -0.32704
21 0.03042 0.46601 -0.578021 0.604274 0.51303 -0.67266
22 0.28073 0.01681 -0.145522 0.440353 -0.77016 -0.01359
23 0.31747 -0.67168 -1.700389 0.237178 0.55922 0.59963
24 0.09955 -0.57295 0.352367 -1.568738 1.57631 0.17911
25 0.25788 -0.25295 0.386103 1.031153 0.93328 0.71451

17

26 0.47422 1.02144 -0.533749 -0.368200 0.93312 0.04985
27 0.52975 -0.32395 0.701967 -0.875016 -0.35532 0.89561
28 0.46724 0.67253 0.761462 -0.128950 0.92848 -0.66409
29 0.17289 -0.24252 -0.558644 -1.218596 0.20980 0.33470
30 0.41409 -0.99772 -0.357533 0.024166 0.54241 0.04639
31 0.80292 -0.01767 0.692805 0.869447 -0.10109 0.04055
32 0.98155 1.40422 0.090621 -1.178915 0.18681 0.13634
33 0.99425 0.36625 -0.402858 0.023212 -0.37665 0.70196
34 0.85880 -0.06927 1.145230 0.416142 -0.07218 -0.29945
35 0.72977 -0.64813 0.761893 -0.291228 -0.60159 -0.37566
36 1.12223 -0.88231 0.551255 0.991272 -0.94622 0.66902
37 0.85537 0.53246 -1.111013 -0.010712 -0.34315 0.60648
38 0.89033 0.33472 -0.686459 0.334475 -0.31060 0.17335
39 0.74017 -1.05889 -0.561763 -0.181765 -0.48748 -0.75636
40 0.78263 0.23241 -0.572506 -0.605269 -0.61186 -0.38140

It gives slightly different results because its a different function
summary(pca2)$cont$importance

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7
Eigenvalue 3.8501 1.2899 1.0585 0.72793 0.43830 0.36196 0.19255
Proportion Explained 0.4813 0.1612 0.1323 0.09099 0.05479 0.04525 0.02407
Cumulative Proportion 0.4813 0.6425 0.7748 0.86580 0.92059 0.96584 0.98991
PC8
Eigenvalue 0.08075
Proportion Explained 0.01009
Cumulative Proportion 1.00000

And from here we take that, the first axis explained 0.4812645 and the second 0.1612419. The total variance
explained being 64.2506437

Exercise 8.3

We can use function evplot which provides two criteria
library(vegan)
source("brocardfunctions.R")
evplot(pca1$sdev^2)

18

Eigenvalues

0.00.51.01.52.02.53.03.5
Average eigenvalue

% variation

010203040
% eigenvalue
Broken stick model

in this case,the first criteria suggests 3 axis, while the second suggests 1 axis.

Exercise 8.4

We can look at the biplot
biplot(pca1)

19

−0.3 −0.1 0.1 0.2 0.3

−
0.

3
−

0.
1

0.
1

0.
2

0.
3

PC1

P
C

2
1

23
4

5

6

7

8

9

10

11

12

13

14
15

16

17

18
19

20

21

22

2324

25

26

27

28

29

30

31

32

33

34

35
36

37
38

39

40

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

prof
alt

O2

pH

sal

sus

Mg
Pb

There seems to be an increase in the number of the site along the first axis, which implies that there is estuary
to the source gradient. Given that the altitude is higher on the right side of the plot and salinity is high
on the left side, we can infer that the sites with lower numbers were the ones near the estuary. Conversely,
larger number should correspond to sites higher up in the mountain, near the river spring.

Exercise 8.5

Given the arrow corresponding to MG, and since the interpretation is done by projecting the site onto the
variable arrow, sites 32, 37,33,and 40 are the ones with the highest values of Mg. Therefore, I would ask that
the first places to be surveyed would be those near those sites, i.e., most upstream.

20

	Exercise 1
	Exercise 2
	Exercise 2.1
	Exercise 2.2

	Exercise 3
	Exercise 3.1
	Exercise 3.2
	Exercise 3.3

	Exercise 4
	Exercise 4.1
	Exercise 4.2
	Exercise 4.3

	Exercise 5
	Exercise 5.1
	Exercise 5.2
	Exercise 5.3
	Reminder

	Exercise 5.4
	Exercise 5.5
	Exercise 6
	Exercise 6.1
	Exercise 6.2
	Exercise 6.3
	Exercise 6.4
	Exercise 7
	Exercise 7.1 !!!!!!!!!!!!!!
	Exercise 7.2
	Exercise 7.3
	Exercise 7.4

	Exercise 8
	Exercise 8.1
	Exercise 8.2
	Exercise 8.3
	Exercise 8.4
	Exercise 8.5

