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28. [40] (A. G. Waterman.) Experiment with linear congruential sequences with m

the square or cube of the computer word size, while a and ¢ are single-precision numbers.
» 29. [40] Find a good way to compute the function f(zy,...,zx) defined by Martin's

sequence in exercise 17, given only the k-tuple (z1,. Sy Tk). , 3

30. [M37] (R.P. Brent.) Let f(z) = z* —a,z*"! —... —a, be a primitive polynomial

modulo 2, and suppose that Xo, .., Xk—y are integers not all even.

a) Prove that the period of the recurrence X, = (a1 Xn_1 4+ + ax Xn_x) mod 2¢
is 2°7'(2* — 1) for all e > 1 if and only if f(z)* + f(~2)* # 2/(z*) and f(z)? +
f(=2)* .2 2(~1)* f(~2?) (modulo 8). [Hint: We have z?" = —z (modulo 4 and
f(z)) if and only if f(z)? + f(~=2)* = 2f(z?) (modulo 8).] e

b) Prove that this condition always holds when the polynomial f(z) = = tz +lis
primitive modulo 2 and k > 2.

31. [M30] (G. Marsaglia.) What is the period length of the sequence (7') when m =

2° > 87 Assume that X, ..., Xpq are not all = +1 (modulo 8).

mu._am:i—_weamnzﬂa:nmqummw:mmmm.geroloﬁmiwo::m mcrmma:nsnmmg.u:v
and (X3n), when X, = (Xn-24 + Xn_s5) mod m? :

4

> 33. [M23] (a)Let go(2) = x._+g+kl:u+...+x._~g+x._+...._~u.+....+.x,..+s~.m y

where the X’s satisfy the lagged Fibonacci recurrence (7). Find a simple relation
between g,(z) and n+t(2). (b) Express Xso in terms of Xo, ..., X5a.

34. [M25] Prove that the inversive congruential sequence (12) has _...mnmoa.v + _+_;. and
only if the polynomial f(z) = 2 — ¢z —a has the following two properties: (i) z"*! mod
f(z) is a nonzero constant, when computed with polynomial arithmetic Bon_:_n.v P
(ii) zP+1M/9 ;moq f(z) has degree 1 for every prime q that divides p+1. [Hint: Consider
powers of the matrix (° 1) : : ,

a c
35. [HM35] How many pairs (a,c) satisfy the conditions of exercise 347 :
36. [M25] Prove that the inversive congruential sequence X, ,, = (aX,! +¢) mod 2°,
Xo =1, e > 3, has period length 2°~! whenever a mod 4 = 1 and cmod 4 = 2,
> 37. [HM32] Let p be prime and assume that Xnt+1 = (aX;' + ¢) mod p defines an
inversive congruential sequence of period p+1 Alsolet 0 < by < -+ < by < p, and
consider the set

V= :\M\=+E.x=+___u._.._\ﬁ=+w1v_DM._J < pand \N=+vu # 0o for 1 70 LS &w

This set contains p+ 1 — d' vectors, any d of which lie in some (d — 1)-dimensional -

hyperplane H = {(v1,...,va) | rivy 4+ 4 rqvg = ro (modulo p)}, where (ry,...,rq) #
(0,...,0). Prove that no d + 1 vectors of V lie in the same hyperplane.

i e e
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3.3. STATISTICAL TESTS

OUR MAIN PURPOSE is to obtain sequences that behave as if they are random. So
far we have seen how to make the period of a sequence so long that for practical
purposes it never will repeat; this is an important criterion, but it by no means
guarantecs that the sequence will be useful in applications. How then are we to
decide whether a sequence is sufficiently random?

If we were to give some randomly chosen man a pencil and paper and ask him
to write down 100 random decimal digits, chances are very slim that he would
produce a satisfactory result. People tend to avoid things that seem nonra ndom,
such as pairs of equal adjacent digits (although about one out of every 10 digits
should equal its predecessor). And if we would show that same man a table of

* truly random digits, he would quite probably tell us they are not random at all;

his eye would spot certain apparent regularities.

According to Dr. 1. J. Matrix (as quoted by Martin Gardner, in Scientific
American, January, 1965), “Mathematicians consider the decimal expansion
of m a random series, but to a modern numerologist it is rich with remarkable
patterns.” Dr. Matrix has pointed out, for example, that the first repeated two-
digit number in 7's expansion is 26, and its second appearance comes in the
middle of a curious repetition pattern:

A A .
w.E_Hmommmummwﬂcuuwmamwmawwmwwvwouo (1)

VY

After listing a dozen or so further properties of these digits, he observed that .
when correctly interpreted, conveys the entire history of the human race!

We all notice patterns in our telephone numbers, license numbers, ete., as
aids to memory. The point of these remarks is that we cannot be trusted to judge
by ourselves whether a sequence of numbers is random or not. Some unbiased
mechanical tests must be applied.

The theory of statistics provides us with some quantitative measures for -
randomness. There is literally no end to the number of tests that can be
conceived; we will discuss the tests that have proved to he most useful, most
instructive, and most readily adapted to computer calculation.

If a sequence behaves randomly with respect to tests Bie T iyt Tosr W
cannot. be sure in general that it will not be a miserablo failire when it is
subjected to a further test Thut1. Yet each test gives us more and more confidence
in the randomness of the sequence. In practice, we apply about half a dozen
different kinds of statistical tests to a sequence, and if it passes them satisfactorily
we consider it to be random — it is then presumed innocent until proven guilty.

" Every sequence that is to be used extensively should be tested carefully, so
the following sections explain how to administer the tests in an appropriate way.
Two kinds of tests are distinguished: empirical tests, for which the computer
manipulates groups of numbers of the sequence and evaluates certain statistics:
and theoretical-tests, for which we establish characteristics of the, sequence by
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using number-theoretic methods based on the recurrence rule used to form the
sequence. : .

If the evidence doesn’t come out as desired, the reader may wish to try the
techniques in How to Lie With Statistics by Darrell Huff (Norton, 1954).

3.3.1. General Test Procedures far Studying Random Data

A. “Chi-square” tests. The chi-square test (x? test) is perhaps the best
known of all statistical tests, and it is a basic method that is used in connection
with many other tests. Before considering the idea in general, let us consider a
particular example of the chi-square test as it might be applied to dice throwing.
Using two “true” dice (each of which, independently, is assumed to yield the
values 1, 2, 3, 4, 5, or 6 wkh equal probability), the following table gives the
probability of obtaining a given total, s, on a single throw:

valieof s= 2 3..4 - 65 6 7 -8 9 10 11 12 )
e = i
probability, po= 3 %5 & b % b % § T W %

For example, a value of 4 can be thrown in three ways: 1+ 3, 2+ 2, 3+ 1; this
constitutes %m = mu. = p4 of the 36 possible outcomes. ;

If we throw the dice n times, we should obtain the value s approximately
np, times on the average. For example, in 144 throws we should get the value 4
about 12 times. The following table shows what results were actually obtained

in a particular sequence of 144 throws of the dice:
valieof4=2 3 4 5 6 7 8 910 11 12
observed number, ¥, = 2 4 10 1222 29 21 15 14 O 63 (2)
expected number, np, = 4' 8 12 16 20 24 20 16 12 8 4

Notice that the observed number was different from the expected number in all
cases; in fact, random throws of the dice will hardly ever come out with ezdctly
the right frequencies. There are 3611 possible sequences of 144 throws, all of
which are equally likely. One of these sequences consists of all 2s (“snake eyes"),
and anyone throwing 144 snake eyes in a row would be convinced that the dice
were loaded. Yet the sequence of all 2s is just as probable as any other particular
sequence if we specify the outcome of each throw of each die.

In view of this, how can we test whether or not a given pair of dice is loaded? -

The answer is that we can’t make a definite yes-no statement, but we can give
a probabilistic answer. We can say how probable or improbable certain types of
events are. L<e ‘

A fairly natural way to proceed in the example above is to consider the
squares of the differences between the observed numbers Y, and the expected
numbers np,. We can add these together, obtaining .

V= (Ya—npa)? + (Ya—nps)’ + -+ (Y12 = npiz)®. . .3
A bad set of dice should result in a relatively high <m_=...__\w$ and for any given
<m.=m.oa<im.nm=mmr.,.(<rmn._mn_~m probability that V 1§ this high, using true

T T
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dice?" hi R
ce? If this probability is very small, say .l._._m_ we would know that only about,

mzo time in 100 would true dice give results so far away from the expected num-
Smﬁm. and we Eo:._.n_ have definite grounds for suspicion. (Remember, however
r:maam,ms good dice would give such a high value of V about one time in J
ndred, so a cautious person would repeat the experim i izl
e sty P ent to see il the high
r The statistic a\u:_ (3) gives equal weight to (Y7 — np7)? and (Vy — npy)?
although (Y7 — np;7)? is likely to be a good deal higher than (¥, — npy)? since ,

. . I—.Au.ﬂ
occur about six times as often as 2s. It turns out that the “right” statistic, at
least one that has proved to be most important, will give (Y7 — np7)? onl , as
much weight as (Y — np;)?, and we should change (3) to the following 3?:.“_::

V= (Y2 — npy)? + (Y3 — np3)? (Y12 = np1a)*
= oo R (a)
P2 np; np12
This mm called ﬁ.:m “chi-square” statistic of the observed quantities ¥3,..., Y}, in
the dice-throwing experiment. For the data in (2), we find that PRk
<nS.L:u+?|$u+:.+a|$u (6 —4)? 7
S 8 3 TRl A kR

H.rm _Evo:m:e question now is, of course, “Does .__.% constitute an improbably
high value for V' to assume?” Before answering this question, let us consider the
general application of the chi-square method. i |

In mmum.;_. suppose that every observation can fall into ore of k categories
<<m. take n independent observations; this means that the outcome of o:m_ o:no,.
vation _,,mm absolutely no effect on the outcome of any of the others. Let g.ﬂ _?
probability that each observation falls into category s, and let Y .Um n:%“:::_.u:M
of observations that actually do fall into category s. We form 2..5 statistic "

—— ,nw\n b Zﬁnuu
e MU NP, - , (6)

In i i
our example above, there are eleven possible outcomes of each throw of Lhe

“dice, so k = 11. (Eq. (6) is a slight change of notation from Eq. (4), since we

are numbering the possibilities from 1 to k instead of from 2 to 12.)
By expanding (Y, = np,)? = ¥;? — 2np,Y, + n?p? in (6), and using the facts

that

Hh4+¥a+-+Y=n,

nrrt+pet--+pe=1, @
we arrive at the formula L= ;

. :
1 ¥
Va3 pent (8)
- a=1 g

: 3 .
Qr_wr often makes M computation of V' somewhat easier.
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Table 1
SELECTED PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTION

p=1% | p=5% | p=25% | p=50% | p=75% | p= 95% | p — 90%
v=1 | 0.00016| 000393 | 0.1015 | 0.4549 | 1.323 | 3.841 | 6.635
v=2 | 002010] 01026 0.5754 | 1.386 2.773 5.991 9.210
v=3 | 01148 | 03518 | 1.213 | 2366 | 4.108 | 7.815 | 11.34
v=4 | 02071 | 07107 | 1923 | 3357 | 5385 | 9488 | 13.8
v=>5 | 05543 | 1.1455 | 2.675 | 4.351 6.626 | 11.07 | 15.09
v=6 | oa721 | 1638 | 3ams. | oais 7841 | 1259 | 16.81
v i 1239 | 2167 | 4255 | 6346 | 9.037 | 1407 | 18.48
y = _w_,.@a S ey 7344 -| 1022 | 1551 | 20.09
b= 2088 | 3325 | 5899 | 8343 | 1139 | 16.92 | 21.67
v=10 | 2558 | 3940 | 6737 | 9342 | 1255 | 1831 | 23.21
v=11| 3053 | 4575 | 7584 | 10.34 13.70 | 19.68 | 24.72
= 3571 | 5226 | 8.438 | 11.34 14.85 | 2103 | 26.22
v=15 | 5229 | 7261 | 1104 |[1434 | 1825 | 2500 | 30.58
v=20 | 8260 |10.85 | 1545 | 19.34 | 23.83 . | 31.41 | 37.57
v=30 [14.95 |1849 | 2448 | 2034 | 3480 | 43.77 | 50.80
v=50 [20.71 |3476 | 4294 [ 4933 | 56.33 | 6750 | 76.15
v'>30 v+ Vvz, + i, - 1+ 0(1/ W)
.ﬁ. = | —238 | -164 [ —om4 | 000 | oera | 164 | 2m

(For further values, see Handbook of Mathematical Functions, edited by M. >v3_.:oi=.n.w_=a
I. A. Stegun (Washington, D.C.: U.5. Government Printing Office, 1964), Table 26.8, me also
Eq. (22) and exercise 16.) - ;

Now we turn to the important question, “What constitutes m Sm.mo:mc_m
value of V7" This is found by referring to a table such as Table 1, ﬂ.w:& gives val-
ues of “the chi-square distribution with v degrees of freedom” for S:‘,%zm values
of v. The line of the table with v = k—1 is to be used; the qEHc.mﬁ of n.wmnmmm of
freedom” is k—1, one less than the number of categories. (Intuitively, this means
that Y3,Y3,..., Y, are not completely independent, since Eq. (7) shows S.m.n ) %
can be computed if Y;, ..., Yi_, are known; hence, k — 1 gmmz.wmm ﬁ.:. ?m.mn_oﬁ are
present. This argument is not rigorous, but the theory below justifies it.) s

If the table entry in row v under column pis z, it means, “The .n_..._m:sﬂ.ﬁ
in Eq. (8) will be less than or equal-to z with approximate Ewcxc.:@ p i m
is large enough.” For example, the 95 percent entry in row 10 is 18.31; we wi
have V' > 18.31 only about 5 percent of the time.
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- Let us assume that our &nm.ﬁ:_,osmnm experiment has been simulated on a

nogv:nm_.:&:mmo.ﬁmmma:mnnm o;cﬁvoga_wam:mcaﬂ numbers, with the following
“results; : -

23 48 86 7T 8 oo
4 .10 10 13 20 18 18 11 13 14 13 (9)
Experiment 2, ¥,=3 7 11 15 19 24 9 17 13 9

We can compute the chi-square statistic in the first case, getting the value V, =
mw._..%o. and in the second case we get 1, = y_l_p.hc. Referring to the table entries for
10 degrees of freedom, we see that Vi is much too high; V will be greater than
23.21 only about one percent of the time!

(By using more extensive tables, we
find in fact that V will be as high as V; only 0.1 percent of the time.) Therefore

Experiment 1 represents a significant departure from random behavior.

On the other hand, 1} is quite low, since the observed valye
iment 2 are quite close to the expected values np, in (2). The chi-square table
tells us,in fact, that Va is much too low: The observed values are so close to the
expected values, we cannot consider the result to be random! (Indeed, reference
to other tables shows that such a low value of V occurs only 0.03 percent of
the time when there are 10 degrees of freedom.) Finally, the value Vv — .;w
computed in (5) can also be checked with Table 1. It falls between the entries
for 25 percent and 50 percent, so we cannot consider it to be s

gnificantly high
or significantly low; thus the observations in (2) are satisfactorily random with
respect to this test,

~ It is somewhat remarkable that the same table entries are used no matter
what the value of n is, and no matter what the probabilities Ps are. Only the
number v = k — 1 affects the results. In actual fact, however, the table entries
are not exactly correct: The chi-square distribution is an approximation that is
valid only for large enough values of n. How large should n be? A common rule
of thumb is to take n large enough so that each of the expected values np, is
five or more; preferably, however, take n much larger than this, to get a more
powerful test. In our examples above we took n = 144, so np, was only 4,
violating the stated rule of thumb. This was done only because the author
tired of throwing the dice; it makes the entries in Table 1 less accurate for our
application. Experiments run on & computer, with n = 1000, or 10000, or even
100000, would be much better than this, We could also combine the data for
$ =2 and s = 12; then the test would have only nine degrees of freedom but the
chi-square approximation would be more accurate,

We can get an idea of how crude an app

roximation is involved by considering
the case when there are only two categories, having probabilities p1 and po.

Suppose p, = m and py = 3, According to the stated rule of thumb, we should
have n > 20 to have a satisfactory approximation, so let’s check that out. When
n = 20, the possible values of V are ("1 = 5)%/5 + (5 - Y1)%/15 = &2 for
=5 £.r < 15; we wish to know how well the row 1 — 1 of Table 1 describes
the distribution of V. The chi-square distri

bution varies continuously, while the
actual distribution of V has rather big jumps, so we need some convention for

i value of s
Experiment 1, Y,

I

]

s Y. in Exper-
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representing the exact distribution. If the distinct possible outcomes of the
experiment lead to the values Vo < V; < -+ < Vp with respective proba-
bilities 7y, w1y +++, Tn, SUPPOSE that a given percentage p falls in the range
Mo+ M <p<mot + Tj-1 + Tj. We would like to represent p by a
“percentage point” = such that V is less than = with probability < p and V is
greater than x with probability < 1—p. It is not difficult to see that the only such
number is ¢ = V;. In our example for n = 20 and v = 1, it turns out that the
percentage points of the exact distribution, corresponding to the approximations

in Table 1 for p = 1%, 5%, 25%, 50%, 75%, wmﬂ: and 99%, respectively, are
0, o, .27, .21, 107, 427, 6.67

(to two decimal places). For example, the percentage point for p = 95% is 4.27,
while Table 1 gives the estimate 3.841. The latter value is too low; it tells us
(incorrectly) to reject the value V = 4.27 at the 95% level, while in fact the
probability that V' > 4.27 is more than 6.5%. When n = 21, the .,.w.:.cmzo:
changes slightly because the expected values npy = 5.25 and np; = 15.75 can
never be obtained exactly; the percentage points for n = 21 are

02, .02, .14, .40, 129, 357, 573

We would expect Table 1 to be a better approximation when n = 50, but
the corresponding tableau actually turns out to be further from Table 1 in some
respects than it was for n = AT ;

109, "40s, 103, 167 1531, w.wm_‘ 6.
Here are the values when n = 300:
D0 T, i 1.44, 4, 6.42.

Even in this case, when np, is > 75 in each npnm\moﬁw_ the entries in Table 1 are
good to only about one gignificant digit. ) . .

The proper choice of n is somewhat obscure. If the dice are actually biased,
the fact will be detected as n gets larger and larger. (See exercise 12.) But large
values of n will tend to smooth out locally nonrandom behavior, when blocks of
numbers with a strong bias are followed by blocks of numbers with the opposite
bias. Locally nonrandom behavior is not an issue when actual dice are rolled,
since the same dice are used throughout the test, but a sequence of numbers
generated by computer might very well display such anomalies. Perhaps a chi-
square test should be made for several different values of n. At any rate, n should
always be rather large. i

We can summarize the chi-square test as follows. A fairly large number, n, of
independent observations is made. (It is important to avoid using the chi-square
method unless the observations are independent. See, for example, exercise 10,

" which considers the case when half of the observations depend on the other
half.) We count the number of observations falling into each of k categories and
compute the quantity V' given in Egs. (6) and (8). Then V' is compared with the
numbers in Table 1, with v = k — 1. If V is less than f71% entry or greater
than the 99% entry, we reject the numbers as not sufficiéncly random. If V' lies

TR
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QGenerator F: Xy = 314159265, a=2"%41, c=1,
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Range of V Indication Code
‘c:w percent, 99-100 percent Reject -
1-5 percent, 95-99 percent Suspect . . ®
5-10 percent, o‘clcm percent " Almost suspect (&)

Fig. 2. Indications of “significant” deviations in 90 chi-square tests (see also Fig. b).

between the 1% and 5% entries or between the 95% and 99% entries, the numbers
are ”_mzmﬁmna:w if (by interpolation in the table) V lies between ﬁ_.o. 5% and E.Y“,
mE.:.mm_. or the 90% and 95% entries, the numbers might be “almost suspect.”
The chi-square test is often done at least three times on different sets of data,

and if at least two of the three results are suspect the numbers are regarded as
not sufficiently random. - = :

: For example, see Fig. 2, which shows schematically the results of apply-
ing five different types of chi-square tests on each of six sequences of random
numbers. Each test in this illustration was applied to three different blocks
of numbers of the sequence. Generator A is the MacLaren-Marsaglia method
(Algorithm 3.2.2M applied to the sequences in 3.2.2-(13)); Generator I is the

Fibonacci E.m..:om. 3.2.2-(5); and the other generators are linear congruential
sequences with the following parameters:

Generator B: X, =0, a=3141592653, c= 2718281829, m = 2%,
Generator C: Xo=0, a=2"+1, c=1,- m=2%,
Generator D:  Xo = 47504118, a=23, c¢=0, m=10°+1.

m = 235,

From Fig. 2 we concliide that (so far as these tests are concerned) Generators A
B, B are satisfactory, Generator C is on the borderline and should Eogrrn
be rejected, Generators E and F are definitely unsatisfactory. Generator F
r.wm. of course, low potency; Generators C and D have been discussed in the
literature, but their multipliers are too small. (Generator D is the original

_multiplicative generator proposed by Lehmer in 1948; Generator C is the original

linear congruential generator with ¢ # 0 proposed by Rotenberg in 1960.)
Instead of using the “suspect,” “almost suspect,” etc., criteria for judging

the results of chi-sanare tests, one can e 3
. 0 B mploy a less ad hoc procedure dis
o greg mmnsﬁr%w p dure discussed




