
About Regression Models
Tiago A. Marques

oday

Introduction
This document is an attempt to provide a coherent framework for some of the examples about regression
models that were presented in the “Modelação Ecológica” course on the 1st, 8th and 9th of October 2019. It
was created for those students, but if you are reading it and your are not one of those students that’s fine too.

We started looking into the simplest of models, a standard linear regression with a Gaussian error structure

yi = a + bx + ei

where the assumption is that the ei are Gaussian independent random deviates with a constant variance
sigma2.

Simulating regression data
This was part of what we did in class 6, on the 01 10 2019.

Simulate model
It was suggested that you would simulate data that considered that the TRUE relation between the weight
and length of a lizard was given by

y = 12 + 1.2 ∗ length

You were also told that the usual length of a lizard was between 5 and 20 cm.

We will have 97 lizards

Then you were told to create the lengths:
set.seed(121)
n=97
#lengths
xs=runif(n,5,20)
hist(xs,main="Lengths (cm)")

1

Lengths (cm)

xs

F
re

qu
en

cy

5 10 15 20

0
5

10
15

and then to create weights of lizards
a=12
b=1.2
ys=a+b*xs

If we plot the data, all points are in a single line. Why, because there is no randomness.
plot(xs,ys)

2

6 8 10 12 14 16 18 20

20
25

30
35

xs

ys

This means that if you try to run a model, it gives you a warning that the model might be unreliable
summary(lm(ys~xs))

Warning in summary.lm(lm(ys ~ xs)): essentially perfect fit: summary may be
unreliable

##
Call:
lm(formula = ys ~ xs)
##
Residuals:
Min 1Q Median 3Q Max
-5.595e-15 -2.460e-15 -1.878e-15 -1.422e-15 1.873e-13
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.200e+01 6.050e-15 1.983e+15 <2e-16 ***
xs 1.200e+00 4.611e-16 2.603e+15 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.934e-14 on 95 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 6.773e+30 on 1 and 95 DF, p-value: < 2.2e-16

So. . . , we add some variance, and plot the data:

3

ys=a+b*xs+rnorm(n,0,4)
plot(xs,ys)

6 8 10 12 14 16 18 20

15
20

25
30

35
40

xs

ys

Now, let’s consider there’s more and less variance. We also add to each plot the real line (that with the true
parameter values) and the one with the estimated parameter values.
par(mfrow=c(2,3))
ys=a+b*xs+rnorm(n,0,1)
plot(xs,ys)
mod1=lm(ys~xs)
abline(mod1,col="red")
abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,2)
plot(xs,ys)
mod2=lm(ys~xs)
abline(mod2,col="red")
abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,4)
plot(xs,ys)
mod4=lm(ys~xs)
abline(mod4,col="red")
abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,10)
plot(xs,ys)
mod10=lm(ys~xs)
abline(mod10,col="red")

4

abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,20)
plot(xs,ys)
mod20=lm(ys~xs)
abline(mod20,col="red")
abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,100)
plot(xs,ys)
mod100=lm(ys~xs)
abline(mod100,col="red")
abline(a,b,col="green")

6 8 12 16 20

20
25

30
35

xs

ys

6 8 12 16 20

15
25

35

xs

ys

6 8 12 16 20

15
25

35
45

xs

ys

6 8 12 16 20

0
20

40
60

xs

ys

6 8 12 16 20

0
20

40
60

xs

ys

6 8 12 16 20

−
20

0
0

20
0

xs

ys

Not surprisingly, as the variance increases, we get data that more and more looks like it is not coming from a
real linear process.

You can also look at the model summaries, and there you can see that, in fact, the models become essentially
useless as the variance increases! You can see that both from the correlation, but also by the predictions
generated from the model (comparing to the truth), and also the significance of the coefficients associated
with the regression parameters.

Make no mistake, the reality is always the same, in terms of the fixed part of the model, it’s just the variance
that increases.

Also, don’t get confused, the different green lines might look different, but they are always exactly the same
line! You can check that by forcing the y axis to span the same limits.
par(mfrow=c(2,3))
ys=a+b*xs+rnorm(n,0,1)

5

plot(xs,ys,ylim=c(-400,400))
mod1=lm(ys~xs)
abline(mod1,col="red")
abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,2)
plot(xs,ys,ylim=c(-400,400))
mod2=lm(ys~xs)
abline(mod2,col="red")
abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,4)
plot(xs,ys,ylim=c(-400,400))
mod4=lm(ys~xs)
abline(mod4,col="red")
abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,10)
plot(xs,ys,ylim=c(-400,400))
mod10=lm(ys~xs)
abline(mod10,col="red")
abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,20)
plot(xs,ys,ylim=c(-400,400))
mod20=lm(ys~xs)
abline(mod20,col="red")
abline(a,b,col="green")
ys=a+b*xs+rnorm(n,0,100)
plot(xs,ys,ylim=c(-400,400))
mod100=lm(ys~xs)
abline(mod100,col="red")
abline(a,b,col="green")

6

6 8 12 16 20

−
40

0
0

20
0

xs

ys

6 8 12 16 20

−
40

0
0

20
0

xs

ys

6 8 12 16 20

−
40

0
0

20
0

xs

ys

6 8 12 16 20

−
40

0
0

20
0

xs

ys

6 8 12 16 20

−
40

0
0

20
0

xs

ys

6 8 12 16 20

−
40

0
0

20
0

xs
ys

but since then you loose all the ability to look at the actual data in some of the plots, that is not really that
useful!

Below I look at the summary of each model. Look at correlations, at the estimated values for the parameters,
their corresponding variances and the R2.
summary(mod1)

##
Call:
lm(formula = ys ~ xs)
##
Residuals:
Min 1Q Median 3Q Max
-3.2297 -0.5755 -0.0093 0.5758 3.1122
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.13296 0.31728 38.24 <2e-16 ***
xs 1.18951 0.02418 49.19 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.014 on 95 degrees of freedom
Multiple R-squared: 0.9622, Adjusted R-squared: 0.9618
F-statistic: 2420 on 1 and 95 DF, p-value: < 2.2e-16

7

summary(mod2)

##
Call:
lm(formula = ys ~ xs)
##
Residuals:
Min 1Q Median 3Q Max
-4.0496 -1.0818 0.0395 1.3671 4.7968
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.78179 0.57907 22.07 <2e-16 ***
xs 1.14051 0.04413 25.84 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.851 on 95 degrees of freedom
Multiple R-squared: 0.8755, Adjusted R-squared: 0.8742
F-statistic: 667.9 on 1 and 95 DF, p-value: < 2.2e-16
summary(mod4)

##
Call:
lm(formula = ys ~ xs)
##
Residuals:
Min 1Q Median 3Q Max
-8.3229 -2.7291 -0.4323 2.3578 12.5807
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.47511 1.14862 10.86 <2e-16 ***
xs 1.12565 0.08754 12.86 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.671 on 95 degrees of freedom
Multiple R-squared: 0.6351, Adjusted R-squared: 0.6313
F-statistic: 165.4 on 1 and 95 DF, p-value: < 2.2e-16
summary(mod10)

##
Call:
lm(formula = ys ~ xs)
##
Residuals:
Min 1Q Median 3Q Max
-22.332 -7.700 1.157 6.395 25.753
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.4371 3.1514 2.360 0.0203 *

8

xs 1.4793 0.2402 6.159 1.75e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 10.07 on 95 degrees of freedom
Multiple R-squared: 0.2854, Adjusted R-squared: 0.2779
F-statistic: 37.94 on 1 and 95 DF, p-value: 1.746e-08
summary(mod20)

##
Call:
lm(formula = ys ~ xs)
##
Residuals:
Min 1Q Median 3Q Max
-59.36 -14.88 0.09 12.18 56.18
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.6794 6.6835 1.747 0.0838 .
xs 1.2592 0.5094 2.472 0.0152 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 21.36 on 95 degrees of freedom
Multiple R-squared: 0.06044, Adjusted R-squared: 0.05055
F-statistic: 6.111 on 1 and 95 DF, p-value: 0.01521
summary(mod100)

##
Call:
lm(formula = ys ~ xs)
##
Residuals:
Min 1Q Median 3Q Max
-212.693 -56.234 2.761 69.244 184.494
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.037 29.856 -0.135 0.893
xs 1.545 2.275 0.679 0.499
##
Residual standard error: 95.42 on 95 degrees of freedom
Multiple R-squared: 0.004829, Adjusted R-squared: -0.005646
F-statistic: 0.461 on 1 and 95 DF, p-value: 0.4988

As an example, we can plot the R2 as a function of the variance
plot(c(1,2,4,10,20,100),c(summary(mod1)$r.squared,summary(mod2)$r.squared,summary(mod4)$r.squared,summary(mod10)$r.squared,summary(mod20)$r.squared,summary(mod100)$r.squared))

9

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c(1, 2, 4, 10, 20, 100)

c(
su

m
m

ar
y(

m
od

1)
$r

.s
qu

ar
ed

, s
um

m
ar

y(
m

od
2)

$r
.s

qu
ar

ed
, s

um
m

ar
y(

m
od

4)
$r

.s
qu

ar
ed

,

 s
um

m
ar

y(
m

od
10

)$
r.s

qu
ar

ed
, s

um
m

ar
y(

m
od

20
)$

r.s
qu

ar
ed

, s
um

m
ar

y(
m

od
10

0)
$r

.s
qu

ar
ed

)

That is quite interesting actually. . . There seems to be a nonlinear relationship, but we only have a sample
size of six (different standard deviations, i.e., variances, as variance is standard deviation squared), so hard to
tell. . .

Let’s show off in R. . .
sds=seq(0.5,100,by=0.5)
nsds=length(sds)
#an object to hold the correlations
Rsqs=numeric(nsds)
for (i in 1:nsds){

#create data
ys=a+b*xs+rnorm(n,0,sds[i])
#estimate model
modi=lm(ys~xs)
#get R-squared
Rsqs[i]=summary(modi)$r.squared

}
#and at the end... plot results
plot(sds,Rsqs)

10

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sds

R
sq

s

How cool is that!! Actually, this means we can model the R2 as a function of the original variance! But we
would not be able to model it using a linear model. . .

You are not supposed to know about this yet, but I’ll continue to show off. Let’s use a GAM
library(mgcv)

Loading required package: nlme

This is mgcv 1.8-28. For overview type 'help("mgcv-package")'.
gam1=gam(Rsqs~s(sds),link=log)
#make predictions to plot the estimated GAM model
predRsqs=predict.gam(gam1,newdata = list(sds=sds),type="response")
plot(sds,Rsqs)
lines(sds,predRsqs,col="red")

11

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sds

R
sq

s

Aha. . . remember what we talked in class today? It seems like we have over-fitted. Then, I constrain the
GAM.
library(mgcv)
gam1=gam(Rsqs~s(sds,k=3),link=log)
#make predictions to plot the estimated GAM model
predRsqs=predict.gam(gam1,newdata = list(sds=sds),type="response")
plot(sds,Rsqs)
lines(sds,predRsqs,col="red")

12

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sds

R
sq

s

That was too much. . .
library(mgcv)
gam1=gam(Rsqs~s(sds,k=6),link=log)
#make predictions to plot the estimated GAM model
predRsqs=predict.gam(gam1,newdata = list(sds=sds),type="response")
plot(sds,Rsqs)
lines(sds,predRsqs,col="red")

13

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sds

R
sq

s

That is already over-fitting. . . conclusion, the GAM is not the right tool here :)

What is. . . ? Well, stay tuned and one day you’ll learn!

Drawing data
This was part of what we did in class 7, on the 08 October 2019. Here the idea was to explore different
regression models.

To illustrate the models the students were invited to go to drawdata.xyz and to create a dataset with
regression data such that there was an increasing trend, a decreasing trend, no trend, and data that was not
really a line. Then the data set should be downloaded, imported into R and regression models fit to it.

Here we have such a dataset, named “data.csv”, and we read it in a and look at it
#TAM's path
#C:/Users/tam2/Dropbox/Trabalho/DBA/20192020/ME2019/aulas/OnRegressionModels/
#To work on any machine provided the file data.csv exists in said folder
data <- read.csv("data.csv")
summary(data)

x y z
Min. :116.4 Min. : 60.0 a: 61
1st Qu.:263.1 1st Qu.:211.5 b: 53
Median :367.5 Median :269.3 c: 41
Mean :377.3 Mean :264.1 d:111
3rd Qu.:482.6 3rd Qu.:325.3
Max. :606.8 Max. :411.0

14

We can see we have a dataset with 3 variables, an x, the independent variable, and y, the response, and the z,
which represents the specific data. In my case, a was the increasing slope, b the decreasing slope, c a slope of
approximately 0 and d was not a line.

The data looks like this
with(data,plot(y~x,col=as.numeric(z)))

100 200 300 400 500 600

50
15

0
25

0
35

0

x

y

Not surprisingly, it looks quite messy, but if we separate the data by the 4 different subsets things become
clearer.
par(mfrow=c(2,2),mar=c(4,4,0.5,0.5))
dataA=data[data$z=="a",]
with(dataA,plot(y~x))
dataB=data[data$z=="b",]
with(dataB,plot(y~x,col=2))
dataC=data[data$z=="c",]
with(dataC,plot(y~x,col=3))
dataD=data[data$z=="d",]
with(dataD,plot(y~x,col=4))

15

200 250 300 350 400 450 500

15
0

25
0

35
0

x

y

200 300 400 500 600

50
15

0
25

0
35

0

x

y

100 200 300 400 500 600

22
0

26
0

30
0

34
0

x

y

200 300 400 500 600

10
0

20
0

30
0

x

y

and of course now we can fit a line to each dataset
par(mfrow=c(2,2),mar=c(4,4,0.5,0.5))
with(dataA,plot(y~x))
lm1=with(dataA,lm(y~x))
abline(lm1,col=1,lty=2)
with(dataB,plot(y~x,col=2))
lm2=with(dataB,lm(y~x))
abline(lm2,col=2,lty=2)
with(dataC,plot(y~x,col=3))
lm3=with(dataC,lm(y~x))
abline(lm3,col=3,lty=2)
with(dataD,plot(y~x,col=4))
lm4=with(dataD,lm(y~x))
abline(lm4,col=4,lty=2)

16

200 250 300 350 400 450 500

15
0

25
0

35
0

x

y

200 300 400 500 600

50
15

0
25

0
35

0

x

y

100 200 300 400 500 600

22
0

26
0

30
0

34
0

x

y

200 300 400 500 600

10
0

20
0

30
0

x

y

and we can look at the output of the models. For the increasing slope
summary(lm1)

##
Call:
lm(formula = y ~ x)
##
Residuals:
Min 1Q Median 3Q Max
-58.216 -23.135 3.871 16.324 50.378
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 55.59455 13.20552 4.21 8.84e-05 ***
x 0.66969 0.03676 18.21 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 27.36 on 59 degrees of freedom
Multiple R-squared: 0.849, Adjusted R-squared: 0.8465
F-statistic: 331.8 on 1 and 59 DF, p-value: < 2.2e-16

we have an intercept estimate of 55.59 (with corresponding standard error of 13.21 and a slope of 0.67 (with
corresponding standard error of 0.04. The regression R2 is 0.849.

Note these objects can be easily manipulated to obtain parameters and statistics of interest. That was how I
wrote them dynamically in the text above

17

#intercept
round(summary(lm1)$coefficients[1,1],2)

[1] 55.59
#intercept se
round(summary(lm1)$coefficients[1,2],2)

[1] 13.21
#slope
round(summary(lm1)$coefficients[2,1],2)

[1] 0.67
#slope se
round(summary(lm1)$coefficients[2,2],2)

[1] 0.04
#R-squared
round(summary(lm1)$r.squared,3)

[1] 0.849

but there’s much more info in a regression object. Fee free to explore it
names(summary(lm1))

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

For the decreasing slope we got
summary(lm2)

##
Call:
lm(formula = y ~ x)
##
Residuals:
Min 1Q Median 3Q Max
-86.518 -20.501 0.309 25.235 88.670
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 479.69909 15.72385 30.51 <2e-16 ***
x -0.64470 0.03878 -16.62 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 38.24 on 51 degrees of freedom
Multiple R-squared: 0.8442, Adjusted R-squared: 0.8411
F-statistic: 276.3 on 1 and 51 DF, p-value: < 2.2e-16

for what was supposed to be a 0 slope (proving I am terrible at drawing!)
summary(lm3)

##

18

Call:
lm(formula = y ~ x)
##
Residuals:
Min 1Q Median 3Q Max
-46.326 -15.776 1.289 12.427 48.951
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 320.7516 9.9933 32.097 < 2e-16 ***
x -0.1013 0.0229 -4.422 7.61e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 22.2 on 39 degrees of freedom
Multiple R-squared: 0.3339, Adjusted R-squared: 0.3168
F-statistic: 19.55 on 1 and 39 DF, p-value: 7.614e-05

and what was not a line at all
summary(lm4)

##
Call:
lm(formula = y ~ x)
##
Residuals:
Min 1Q Median 3Q Max
-146.846 -51.075 -6.494 57.647 143.011
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 358.9257 21.7565 16.497 < 2e-16 ***
x -0.2595 0.0544 -4.771 5.73e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 71.24 on 109 degrees of freedom
Multiple R-squared: 0.1727, Adjusted R-squared: 0.1651
F-statistic: 22.76 on 1 and 109 DF, p-value: 5.733e-06

notice in particular that while this was not a line, the computer is agnostic to it. You are telling it to fit a
line to the data, it, will. And interestingly, the regression is highly significant. This should warn you about
the dangers of fitting wrong models to data, you can end up with the wrong conclusions.

The students should by now understand every aspect of the outputs above. If you do not, come and talk to
me.

ANOVA, ANCOVA and the likes
This was part of what we did in class 8, on the 9th October 2019. Here the idea was to explore different
regression models and to see how they relate to statistical procedures one might not associate with a regression,
when in fact, they are special cases of a regression.

19

The t-test
While we did not do the t-test in class, but this is useful because it allows you to see how a simple t-test is
just a linear model too, and acts as a building block for the next examples. The t-test allows us to test the
null hypothesis that two samples have the same mean.

Create some data
#Making up a t-test
#making sure everyone gets the same results
set.seed(980)

Then we define the sample size and the number of treatments
#define sample size
n=100
#define treatments
tr=c("a","b")
#how many treatments - 2 for a t test
ntr=length(tr)
#balanced design
n.by.tr=n/ntr

Now, we can simulate some data. First, the treatments
type=as.factor(rep(tr,each=n.by.tr))
cores=rep(1:ntr,each=n.by.tr)

Then we define the means by treatment - note that they are different, so the null hypothesis in the t-test,
that the mean of a is equal to the mean of b, is known to be false in this case.
#define 4 means
ms=c(3,4)

Then, the key part, the response variable, with a different mean by treatment. Note the use of the ifelse
function, which evaluates its first argument and then assigns the value of its second argument if the first is
true or the value of the second if its first argument is false. An example
ifelse(3>4,55,77)

[1] 77
ifelse(3<4,55,77)

[1] 55

So now, generate the response data
ys=ifelse(type=="a",ms[1],ms[2])+rnorm(n,0,1.5)

Look at the data
plot(ys~type)

20

a b

0
2

4
6

type

ys

Now, we can run the usual t-test
t.test(ys~type)

##
Welch Two Sample t-test
##
data: ys by type
t = -2.8043, df = 97.475, p-value = 0.006087
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.4263293 -0.2441277
sample estimates:
mean in group a mean in group b
3.106656 3.941884

and now we can do it the linear regression way
lm0=lm(ys~type)
summary(lm0)

##
Call:
lm(formula = ys ~ type)
##
Residuals:
Min 1Q Median 3Q Max
-3.1489 -0.9131 -0.1315 1.0295 3.2450

21

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1067 0.2106 14.751 < 2e-16 ***
typeb 0.8352 0.2978 2.804 0.00608 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.489 on 98 degrees of freedom
Multiple R-squared: 0.07428, Adjusted R-squared: 0.06484
F-statistic: 7.864 on 1 and 98 DF, p-value: 0.006081

and as you can see, we get the same result for the test statistic. It is the same thing! And we can naturally
get the estimated means per group. The mean for a is just the intercept of the model. To get the mean of
the group b we add the mean of group b to the intercept, as
#mean of ys under treatment a
summary(lm0)$coefficients[1]

[1] 3.106656
#mean of ys under treatment b
summary(lm0)$coefficients[1]+lm0$coefficients[2]

typeb
3.941884

This is required because in a linear model, all the other parameters associated with levels of a factor will
be compared to a reference value, that of the intercept, which happens to be the mean under treatment a.
Below you will see more examples of this.

Note we were able to detect the null was false, but this was because we had a decent sample size compared to
the variance of the measurements and the magnitude of the true effect (the difference of the means). If we
keep the sample size constant but we increase the noise or decrease the magnitude of the difference, we might
not get the same result, and make a type II error!
#define 2 means
ms=c(3,4)
#increase the variance of the process
ys=ifelse(type=="a",ms[1],ms[2])+rnorm(n,0,5)

Look at the data, we can see much more variation
plot(ys~type)

22

a b

−
10

−
5

0
5

10

type

ys

Now, we can run the usual t-test
t.test(ys~type)

##
Welch Two Sample t-test
##
data: ys by type
t = -1.3609, df = 97.949, p-value = 0.1767
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.2822693 0.6118174
sample estimates:
mean in group a mean in group b
2.024963 3.360189

and now we can do it the linear regression way
lm0=lm(ys~type)
summary(lm0)

##
Call:
lm(formula = ys ~ type)
##
Residuals:
Min 1Q Median 3Q Max
-12.1746 -3.2719 0.2527 3.0578 12.0085

23

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0250 0.6938 2.919 0.00436 **
typeb 1.3352 0.9811 1.361 0.17667

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 4.906 on 98 degrees of freedom
Multiple R-squared: 0.01855, Adjusted R-squared: 0.008533
F-statistic: 1.852 on 1 and 98 DF, p-value: 0.1767

and as you can see, we get the same result for the test statistic, but now with a non significant test.

The same would have happened if we decreased the true difference, while keeping the original magnitude of
the error
#define 2 means
ms=c(3,3.1)
#increase the variance of the process
ys=ifelse(type=="a",ms[1],ms[2])+rnorm(n,0,1.5)

Look at the data, we can see again lower variation, but the difference across treatments is very small (so,
hard to detect!)
plot(ys~type)

a b

0
2

4
6

type

ys

Now, we can run the usual t-test

24

t.test(ys~type)

##
Welch Two Sample t-test
##
data: ys by type
t = -0.7994, df = 97.455, p-value = 0.426
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.8149517 0.3469402
sample estimates:
mean in group a mean in group b
3.158868 3.392874

and now we can do it the linear regression way
lm0=lm(ys~type)
summary(lm0)

##
Call:
lm(formula = ys ~ type)
##
Residuals:
Min 1Q Median 3Q Max
-4.7661 -0.9318 0.0812 0.9087 3.5981
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1589 0.2070 15.261 <2e-16 ***
typeb 0.2340 0.2927 0.799 0.426

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.464 on 98 degrees of freedom
Multiple R-squared: 0.006479, Adjusted R-squared: -0.003659
F-statistic: 0.639 on 1 and 98 DF, p-value: 0.426

ANOVA
We move on with perhaps the most famous example of a statistical test/procedure, the ANOVA. An ANOVA
is nothing but a linear model, where we have a continuous response variable, which we want to explain as a
function of a factor (with several levels, or treatments).

We simulate a data set, beginning by making sure everyone gets the same results by using set.seed
#Making up an ANOVA
#An ANOVA
#making sure everyone gets the same results
set.seed(12345)

Then we define the sample size and the number of treatments
#define sample size
n=2000
#define treatments
tr=c("a","b","c","d")

25

#how many treatments
ntr=length(tr)
#balanced design
n.by.tr=n/ntr

now, we can simulate some data. First, the treatments, but we also generate a independent variable that is
not really used for now (xs).
#generate data
xs=runif(n,10,20)
type=as.factor(rep(tr,each=n.by.tr))
#if I wanted to recode the levels such that c was the baseline
#type=factor(type,levels = c("c","a","b","d"))
#get colors for plotting
cores=rep(1:ntr,each=n.by.tr)

Then we define the means by treatment - note that they are different, so the null hypothesis in an ANOVA,
that all the means are the same, is false.
#define 4 means
ms=c(3,5,6,2)

Then, the key part, the response variable, with a different mean by treatment. Note the use of the ifelse
function, which evaluates its first argument and then assigns the value of its second argument if the first is
true or the value of the second if its first argument is false. An example
ifelse(3>4,55,77)

[1] 77
ifelse(3<4,55,77)

[1] 55

Note these can be used nested, leading to possible multiple outcomes, and I use that below to define 4 different
means depending on the treatment of the observation
ifelse(3<4,55,ifelse(3>2,55,68))

[1] 55
ifelse(3>4,55,ifelse(3>2,666,68))

[1] 666
ifelse(3>4,55,ifelse(3<2,666,68))

[1] 68

So now, generate the data
#ys, not a function of the xs!!!
ys=ifelse(type=="a",ms[1],ifelse(type=="b",ms[2],ifelse(type=="c",ms[3],ms[4])))+rnorm(n,0,3)

We can actually look at the simulated data
par(mfrow=c(1,1),mar=c(4,4,0.5,0.5))
plot(ys~type,col=1:4)

26

a b c d

−
5

0
5

10

type

ys

#abline(h=ms,col=1:4)

finally, we can implement the linear model and look at its summary
lm.anova=lm(ys~type)
summary(lm.anova)

##
Call:
lm(formula = ys ~ type)
##
Residuals:
Min 1Q Median 3Q Max
-9.8735 -2.0115 0.0301 2.0208 9.9976
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.8694 0.1319 21.753 < 2e-16 ***
typeb 2.0788 0.1865 11.143 < 2e-16 ***
typec 2.9806 0.1865 15.978 < 2e-16 ***
typed -0.8726 0.1865 -4.678 3.09e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 2.95 on 1996 degrees of freedom
Multiple R-squared: 0.2163, Adjusted R-squared: 0.2151
F-statistic: 183.6 on 3 and 1996 DF, p-value: < 2.2e-16

27

note that, again, we can manipulate any sub-components of the created objects
#see the parameters
lm.anova$coefficients

(Intercept) typeb typec typed
2.8694412 2.0787628 2.9806367 -0.8726428
#see the third parameter
lm.anova$coefficients[3]

typec
2.980637

Not surprisingly, because the means were different and we had a large sample size, everything is highly
significant. Note that the ANOVA test is actually presented in the regression output, and that is the
corresponding F-test
summary(lm.anova)$fstatistic

value numdf dendf
183.6156 3.0000 1996.0000

and we can use the F distribution to calculate the corresponding P-value (note that is already in the output
above)
ftest=summary(lm.anova)$fstatistic[1]
df1=summary(lm.anova)$fstatistic[2]
df2=summary(lm.anova)$fstatistic[3]
pt(ftest,df1,df2)

value
1.402786e-131

OK, this is actually the exact value, while above the value was reported as just a small value (< 2.2 × 10−16),
but it is the same value, believe me!

Finally, to show (by example) this is just what the ANOVA does, we have the NAOVA itself
summary(aov(lm.anova))

Df Sum Sq Mean Sq F value Pr(>F)
type 3 4792 1597.5 183.6 <2e-16 ***
Residuals 1996 17365 8.7

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

where everything is the same (test statistic, degrees of freedom and p-values).

Conclusion: an ANOVA is just a special case of a linear model, one where we have a continuous response
variable and a factor explanatory covariate. In fact, a two way ANOVA is just the extension where we have a
continuous response variable and 2 factor explanatory covariates, and, you guessed it, a three way ANOVA
means we have a continuous response variable and a 3 factor explanatory covariates.

Just to finish up this example, we could now plot the true means per treatment, the estimated means per
treatment
par(mfrow=c(1,1),mar=c(4,4,0.5,0.5))
plot(as.numeric(type),ys,col=as.numeric(type),xlab="Treatment",xaxt="n")
axis(1,at=1:4,letters[1:4])
#plot the estimated line for type a
abline(h=lm.anova$coefficients[1],lwd=3,col=1)

28

#plot the mean line for type a
abline(h=mean(ys[type=="a"]),lwd=1,col=1,lty=2)
#plot the real mean for type a
abline(h=ms[1],lwd=2,col=1,lty=3)
#and now for the other types
abline(h=lm.anova$coefficients[1]+lm.anova$coefficients[2],lwd=3,col=2)
abline(h=mean(ys[type=="b"]),lwd=1,col=2,lty=2)
#plot the real mean for type b
abline(h=ms[2],lwd=2,col=2,lty=3)
abline(h=lm.anova$coefficients[1]+lm.anova$coefficients[3],lwd=3,col=3)
abline(h=mean(ys[type=="c"]),lwd=1,col=3,lty=2)
#plot the real mean for type c
abline(h=ms[3],lwd=2,col=3,lty=3)
abline(h=lm.anova$coefficients[1]+lm.anova$coefficients[4],lwd=3,col=4)
abline(h=mean(ys[type=="d"]),lwd=1,col=4,lty=2)
#plot the real mean for type a
abline(h=ms[4],lwd=2,col=4,lty=3)
legend("topright",c("Estimated","Mean of data","True"),lwd=c(4,1,2),lty=c(1,3,2),inset=0.03)

−
5

0
5

10

Treatment

ys

a b c d

Estimated
Mean of data
True

It’s not easy to see because these overlap (large sample size, high precision) but the estimated means are
really close to the real means. It’s a bit easier to see if we separate in 4 plots and zoom in on the mean of
each treatment, but still the blue lines are all on top of each other, since the mean value was estimated real
close to truth (truth=2, estimated = 1.9967984).
#see this in 4 plots, less blur
par(mfrow=c(2,2),mar=c(4,4,0.5,0.5))
plot(as.numeric(type),ys,col=as.numeric(type),xlab="Treatment",xaxt="n",ylim=mean(ys[type=="a"])+c(-0.5,0.5))

29

axis(1,at=1:4,letters[1:4])
#plot the estimated line for type a
abline(h=lm.anova$coefficients[1],lwd=3,col=1)
#plot the mean line for type a
abline(h=mean(ys[type=="a"]),lwd=1,col=1,lty=2)
#plot the real mean for type a
abline(h=ms[1],lwd=2,col=1,lty=3)
#and now for the other types
plot(as.numeric(type),ys,col=as.numeric(type),xlab="Treatment",xaxt="n",ylim=mean(ys[type=="b"])+c(-0.5,0.5))
axis(1,at=1:4,letters[1:4])
abline(h=lm.anova$coefficients[1]+lm.anova$coefficients[2],lwd=3,col=2)
abline(h=mean(ys[type=="b"]),lwd=1,col=2,lty=2)
#plot the real mean for type b
abline(h=ms[2],lwd=2,col=2,lty=3)
plot(as.numeric(type),ys,col=as.numeric(type),xlab="Treatment",xaxt="n",ylim=mean(ys[type=="c"])+c(-0.5,0.5))
axis(1,at=1:4,letters[1:4])
abline(h=lm.anova$coefficients[1]+lm.anova$coefficients[3],lwd=3,col=3)
abline(h=mean(ys[type=="c"]),lwd=1,col=3,lty=2)
#plot the real mean for type c
abline(h=ms[3],lwd=2,col=3,lty=3)
plot(as.numeric(type),ys,col=as.numeric(type),xlab="Treatment",xaxt="n",ylim=mean(ys[type=="d"])+c(-0.5,0.5))
axis(1,at=1:4,letters[1:4])
abline(h=lm.anova$coefficients[1]+lm.anova$coefficients[4],lwd=3,col=4)
abline(h=mean(ys[type=="d"]),lwd=1,col=4,lty=2)
#plot the real mean for type a
abline(h=ms[4],lwd=2,col=4,lty=3)

30

2.
4

2.
8

3.
2

Treatment

ys

a b c d

4.
6

5.
0

5.
4

Treatment

ys

a b c d

5.
4

5.
8

6.
2

Treatment

ys

a b c d

1.
6

2.
0

2.
4

Treatment

ys

a b c d

#legend("bottomright",c("Estimated","Mean of data","True"),lwd=c(4,1,2),lty=c(1,3,2),inset=0.05)

Now we can check how we can obtain the estimated means from the actual parameters of the regression
model (yes, that is what the regression does, it calculates the expected mean of the response, conditional on
the treatment).

This is the estimated mean per treatment, using function tapply (very useful function to get any statistics
over a variable, inside groups defined by a second variable, here the treatment)
tapply(X=ys,INDEX=type,FUN=mean)

a b c d
2.869441 4.948204 5.850078 1.996798

and checking these are obtained from the regression coefficients. An important note. When you fit models
with factors (like here), the intercept term will correspond to the mean of the reference level of the factor(s).
Hence, to get the other means, you always have to sum the parameter of the corresponding level to the
intercept. So we do it below
#check ANOVA is just computing the mean in each group
lm.anova$coefficients[1]

(Intercept)
2.869441
lm.anova$coefficients[1]+lm.anova$coefficients[2]

(Intercept)
4.948204

31

lm.anova$coefficients[1]+lm.anova$coefficients[3]

(Intercept)
5.850078
lm.anova$coefficients[1]+lm.anova$coefficients[4]

(Intercept)
1.996798

and we can see these are exactly the same values.

ANCOVA
We move on to the ANCOVA, which is like an ANOVA to which we add a continuous explanatory covariate.
This is an extremely common situation in biology/ecology data. Consider, as an example, you are trying to
explain how the weight of a fish depends on its length, but you want to see if that relationship changes per
year or site.

Let’s simulate some relevant data and fit the models

Common slope, different intercepts per treatment
We begin with a situation where there are different intercepts per group, but a common slope across all
groups
#all slopes the same, diferent intercepts - no interactions
set.seed(1234)
xs=runif(20000,10,20)
type=rep(c("a","b","c","d"),each=5000)
cores=rep(1:4,each=5000)
ys=3+4*xs+
ifelse(type=="a",5,ifelse(type=="b",8,ifelse(type=="c",10,12)))+rnorm(200,0,4)

We plot the data, all together, per group, and at the end adding the generating line to the plot. It’s not easy
to make sense of it!
par(mfrow=c(2,3),mar=c(4,4,0.5,0.5))
#all the data - uma salganhada!
plot(xs,ys,col=cores,cex=0.2)
#plot the data
#par(mfrow=c(2,2),mar=c(4,4,0.5,0.5))
plot(xs[type=="a"],ys[type=="a"],col=cores[type=="a"])
abline(3+5,4,lwd=3,col=1)
plot(xs[type=="b"],ys[type=="b"],col=cores[type=="b"])
abline(3+8,4,lwd=3,col=2)
plot(xs[type=="c"],ys[type=="c"],col=cores[type=="c"])
abline(3+10,4,lwd=3,col=3)
plot(xs[type=="d"],ys[type=="d"],col=cores[type=="d"])
abline(3+12,4,lwd=3,col=4)
#the data with each line added to it
#par(mfrow=c(1,1),mar=c(4,4,0.5,0.5))
plot(xs,ys,col=cores,cex=0.2)
abline(3+5,4,lwd=3,col=1)
abline(3+8,4,lwd=3,col=2)
abline(3+10,4,lwd=3,col=3)
abline(3+12,4,lwd=3,col=4)

32

10 12 14 16 18 20

40
50

60
70

80
90

xs

ys

10 12 14 16 18 20

40
50

60
70

80
90

xs[type == "a"]
ys

[ty
pe

 =
=

 "
a"

]

10 12 14 16 18 20

40
50

60
70

80
90

10
0

xs[type == "b"]

ys
[ty

pe
 =

=
 "

b"
]

10 12 14 16 18 20

50
60

70
80

90
10

0

xs[type == "c"]

ys
[ty

pe
 =

=
 "

c"
]

10 12 14 16 18 20

50
60

70
80

90
10

0

xs[type == "d"]

ys
[ty

pe
 =

=
 "

d"
]

10 12 14 16 18 20

40
50

60
70

80
90

xs
ys

Now we run the linear model
#fit the model
lm.ancova1=summary(lm(ys~xs+type))
lm.ancova1

##
Call:
lm(formula = ys ~ xs + type)
##
Residuals:
Min 1Q Median 3Q Max
-9.1325 -2.8197 0.0461 2.7266 10.6565
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.78940 0.16219 48.03 <2e-16 ***
xs 4.00996 0.01009 397.38 <2e-16 ***
typeb 3.00022 0.08186 36.65 <2e-16 ***
typec 4.99925 0.08187 61.07 <2e-16 ***
typed 7.00013 0.08186 85.51 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 4.093 on 19995 degrees of freedom
Multiple R-squared: 0.8925, Adjusted R-squared: 0.8925
F-statistic: 4.152e+04 on 4 and 19995 DF, p-value: < 2.2e-16

33

We can check the model intercept coefficients
#estimated values of each intercept
lm.ancova1$coefficients[1]

[1] 7.789395
lm.ancova1$coefficients[1]+lm.ancova1$coefficients[3]

[1] 10.78962
lm.ancova1$coefficients[1]+lm.ancova1$coefficients[4]

[1] 12.78864
lm.ancova1$coefficients[1]+lm.ancova1$coefficients[5]

[1] 14.78952

and the common slope
lm.ancova1$coefficients[2]

[1] 4.009957

Check how these values are similar (they are estimates) to those we simulated above, slope was 4, and the
intercepts were respectively 3+5,3+8,3+10 and 3+12.

We can plot the estimated regression lines
par(mfrow=c(1,1),mar=c(4,4,2.5,0.5))
plot(xs,ys,col=cores,pch=".",main="Estimated regression lines")
abline(lm.ancova1$coefficients[1],lm.ancova1$coefficients[2],col=1,lwd=2)
abline(lm.ancova1$coefficients[1]+lm.ancova1$coefficients[3],lm.ancova1$coefficients[2],col=2,lwd=2)
abline(lm.ancova1$coefficients[1]+lm.ancova1$coefficients[4],lm.ancova1$coefficients[2],col=3,lwd=2)

abline(lm.ancova1$coefficients[1]+lm.ancova1$coefficients[5],lm.ancova1$coefficients[2],col=4,lwd=2)
legend("topleft",legend = tr,lwd=2,col=1:4,inset=0.05)

34

10 12 14 16 18 20

40
50

60
70

80
90

10
0

Estimated regression lines

xs

ys

a
b
c
d

Different intercepts and slopes per treatment
Now we extend the previous case to where the slope of the relationship is also different per treatment.

Simulate treatments, same as before, but at least gives us the option to change later separately if we want.
#--
#all slopes different
set.seed(1234)
xs=runif(200,10,20)
type=rep(c("a","b","c","d"),each=50)
cores=rep(1:4,each=50)

Now we simulate the response
ys=3+
ifelse(type=="a",5,ifelse(type=="b",8,ifelse(type=="c",10,12)))+
4*xs+ifelse(type=="a",0.2,ifelse(type=="b",0.5,ifelse(type=="c",1,2)))*xs+
rnorm(200,0,4)

note this is the same as what we have below, but below it might be simpler to understand that these do
correspond to different intercepts and slopes per treatment
#same as
intercept=3+ifelse(type=="a",5,ifelse(type=="b",8,ifelse(type=="c",10,12)))
slope=xs*(4+ifelse(type=="a",0.2,ifelse(type=="b",0.5,ifelse(type=="c",1,2))))
ys=slope+intercept+rnorm(200,0,4)

We can look at the data

35

par(mfrow=c(1,2),mar=c(4,4,0.5,0.5))
plot(xs,ys,col=cores)
abline(3+5,4+0.2,lwd=3,col=1)
abline(3+8,4+0.5,lwd=3,col=2)
abline(3+10,4+1,lwd=3,col=3)
abline(3+12,4+2,lwd=3,col=4)

10 12 14 16 18 20

60
80

10
0

12
0

14
0

xs

ys

it’s actually not that easy to confirm the slopes and intercepts are different, as the intercept is not shown in
the above plot. We can zoom out the plot and force that
plot(xs,ys,col=cores,xlim=c(0,20),ylim=c(0,150))
abline(3+5,4+0.2,lwd=3,col=1)
abline(3+8,4+0.5,lwd=3,col=2)
abline(3+10,4+1,lwd=3,col=3)
abline(3+12,4+2,lwd=3,col=4)
abline(h=c(3+5,3+8,3+10,3+12),v=0,col=c(1,2,3,4,1),lty=2)

36

0 5 10 15 20

0
50

10
0

15
0

xs

ys

Now, we implement the AANCOVA linear model
lm.ancova2=lm(ys~xs+type+xs*type)
sum.lm.ancova2=summary(lm.ancova2)

and we look at the output of the model
sum.lm.ancova2

##
Call:
lm(formula = ys ~ xs + type + xs * type)
##
Residuals:
Min 1Q Median 3Q Max
-13.2514 -2.7831 -0.2006 3.0000 10.1051
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.0480 3.4994 2.014 0.045397 *
xs 4.2667 0.2345 18.198 < 2e-16 ***
typeb 4.5418 4.6361 0.980 0.328489
typec 3.7997 4.7096 0.807 0.420787
typed 15.9380 4.8844 3.263 0.001305 **
xs:typeb 0.1848 0.3160 0.585 0.559468
xs:typec 0.8442 0.3103 2.721 0.007106 **
xs:typed 1.2325 0.3203 3.848 0.000162 ***

37

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 4.331 on 192 degrees of freedom
Multiple R-squared: 0.9578, Adjusted R-squared: 0.9562
F-statistic: 622.3 on 7 and 192 DF, p-value: < 2.2e-16

check how this is an output similar to the ANOVA (implemented via aov, the R function that produces
ANOVA tables from expressions akin to linear models)
summary(aov(ys~xs+type+xs*type))

Df Sum Sq Mean Sq F value Pr(>F)
xs 1 48776 48776 2600.680 < 2e-16 ***
type 3 32550 10850 578.501 < 2e-16 ***
xs:type 3 379 126 6.742 0.000239 ***
Residuals 192 3601 19

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the overall F statistic from the regression model has an F-statistic of 622.3, with 7 and 192 degrees
of freedom. That corresponds to the composite test with the null hypothesis “are all parameters equal to
0”, which in the ANOVA table, is separated in 3 testes, one for each parameter, with 1, 3 and 3 degrees of
freedom each. The residual degrees of freedom are naturally the same in all these tests.

The most interesting aspect it that, naturally, we can check the values of the estimated coefficients, and in
particular how to estimate the corresponding regression lines per group
#type a
lm.ancova2$coefficients[1]

(Intercept)
7.048022
lm.ancova2$coefficients[2]

xs
4.266671
#type b
lm.ancova2$coefficients[1]+lm.ancova2$coefficients[3]

(Intercept)
11.5898
lm.ancova2$coefficients[2]+lm.ancova2$coefficients[6]

xs
4.451449
#type c
lm.ancova2$coefficients[1]+lm.ancova2$coefficients[4]

(Intercept)
10.84769
lm.ancova2$coefficients[2]+lm.ancova2$coefficients[7]

xs
5.110884
#type b
lm.ancova2$coefficients[1]+lm.ancova2$coefficients[5]

38

(Intercept)
22.98597
lm.ancova2$coefficients[2]+lm.ancova2$coefficients[8]

xs
5.499171

we can now add these to the earlier plots, to see how well we have estimated the different lines per treatment
#real lines
par(mfrow=c(1,1),mar=c(4,4,0.5,0.5))
plot(xs,ys,col=cores)
abline(3+5,4+0.2,lwd=3,col=1)
abline(3+8,4+0.5,lwd=3,col=2)
abline(3+10,4+1,lwd=3,col=3)
abline(3+12,4+2,lwd=3,col=4)
#estimated lines
#type a
abline(lm.ancova2$coefficients[1],lm.ancova2$coefficients[2],lty=2,col=1)
#type b
abline(lm.ancova2$coefficients[1]+lm.ancova2$coefficients[3],
lm.ancova2$coefficients[2]+lm.ancova2$coefficients[6],lty=2,col=1)
#type c
abline(lm.ancova2$coefficients[1]+lm.ancova2$coefficients[4],
lm.ancova2$coefficients[2]+lm.ancova2$coefficients[7],lty=2,col=1)
#type b
abline(lm.ancova2$coefficients[1]+lm.ancova2$coefficients[5],
lm.ancova2$coefficients[2]+lm.ancova2$coefficients[8],lty=2,col=1)
legend("topleft",legend = tr,lwd=2,col=1:4,inset=0.05)
legend("bottomright",legend =paste("Estimated",tr),lwd=1,lty=2,col=1:4,inset=0.05)

39

10 12 14 16 18 20

60
80

10
0

12
0

14
0

xs

ys

a
b
c
d

Estimated a
Estimated b
Estimated c
Estimated d

Conclusion
The material above allows you to fully understand the outputs of simple regression models, to see how some
statistical models that you know from other names are just a linear model.

It also helps you understand how the parameter values represent just features of the data and its generating
process, and how we can recover estimates of the original relationships between the variables from said set of
parameters.

I recommend you explore the code and output above, and that in particular you experiment with changing
means (parameter values for the real models), variances (the precision of how you would measure variables)
and sample sizes (which gives you an indication of how much information you have to estimate the underlying
reality). Understanding the outputs under these new scenarios is fundamental for progressing towards more
complex regression models, like GLMs or GAMs, of which the above cases are just particular cases.

40

	Introduction
	Simulating regression data
	Simulate model
	Drawing data

	ANOVA, ANCOVA and the likes
	The t-test
	ANOVA
	ANCOVA
	Common slope, different intercepts per treatment
	Different intercepts and slopes per treatment

	Conclusion

