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The wave functions that result from solving the
Schrödinger equation for micro systems must be made
subject to four restrictions, namely:

1. They must be normalized.
2. They must be finite.
3. They must be single-valued.
4. They must be continuous.

Application of the third of these conditions usually
results in the emergence of quantum numbers that are a
crucial feature of wave mechanics. The fourth condition,
however, is seldom applied specifically. This paper illus-
trates how this fourth condition can be used to derive the
wave functions and energies of a ring system from those
of a simpler linear system.

Elementary courses in wave mechanics commonly
include the simple derivation of the energy levels of a par-
ticle in a one-dimensional box. The Schrödinger equation
for this system includes only one variable, the distance
along the box, and it is readily solved to give values of the
energy of the particle equal to n2h2/8ml2, where n is a quan-
tum number taking integer values from one upwards (1, 2).
The system can be used as a simple model of an electron
in a long-chain molecule such as a conjugated hydrocar-
bon and can be used to show, for instance, that the UV
absorption wavelength becomes longer as the chain length
increases.

If the particle is constrained, not to a straight chain
but to a ring (for example as a model of an electron in a
benzene ring), the algebra becomes more complex. The
Schrödinger equation now has two variables, since the
flat ring is two-dimensional, and it is best solved by con-
verting it to polar coordinates—which is not a trivial ex-
ercise. The problem, however, can readily be solved by anal-
ogy with the particle in a one-dimensional box, since a
ring is simply a straight chain bent round into a circle.
Provided the wave function remains continuous at the
“join”, the resulting functions and energies are allowed
solutions of the Schrödinger equation for this system.

Energy Levels

Table 1 shows the first four energy levels and the
associated wave functions for the particle in a one-dimen-
sional box. Consider the first (n = 1) function. If the chain
is bent round into a ring the first function is no longer an
acceptable wave function, since the slope is positive im-
mediately before the “join” and negative immediately af-
ter. Conversion from chain to ring therefore causes the
function to become discontinuous and therefore forbid-
den for the ring system. Now consider the second (n = 2)
function. This has a positive slope at each end of the chain.
When converted to a ring, therefore, the function remains
continuous and is “allowed” by this criterion of wave me-
chanics. It is obvious by inspection that the wave func-
tions of the particle in a box model become alternately
forbidden and allowed when converted to the particle on

a ring model, only those functions corresponding to an
even quantum number being allowed. Thus we can readily
formulate the allowed energy levels for the particle on a
ring as:

(2n)2h2
      E =  _______

  8ml2

 (2n)2h2
          = _________  for a ring of radius r

8m(2πr)2

                 n2h2
          =  _______

 8π2mr2

in agreement with the result obtained conventionally.

Wave Functions

 So far we have used sine functions as the wave func-
tions of the particle in a box model. Cosine functions are
equally acceptable as solutions to the Schrödinger equa-
tion but, as shown in Table 2, are all nonzero and hence
discontinuous at the end of the linear box. They are there-
fore forbidden as wave mechanical functions for the
straight-chain system. On forming the ring, however, al-
ternate functions, namely those of even n (including n = 0)
become continuous and hence are allowed. The resulting
energy levels are the same as those for the sine functions
with the addition of a value of zero:

    n2h2

         E = _______       [n = 0, 1, 2, ...]
                8π2mr2

The effect of including the cosine functions is thus to add
an energy of zero to the allowed values and to make all
other energy levels doubly degenerate. Again this result
agrees with that obtained conventionally.

anielcitraPehtrofsnoitcnuFevaWdnaseigrenE.1elbaT
gniRagnimroFfotceffEehtdnaxoBlanoisnemiD-enO

n E )niahc(
evawniahC

noitcnuf
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1 h2 8/ lm 2 suounitnocsid —

2 4h2 8/ lm 2 suounitnoc 4h2 8/ 2(m π )r 2

3 9h2 8/ lm 2 suounitnocsid —

4 61 h2 8/ lm 2 suounitnoc 61 h2 8/ 2(m π )r 2

   Ψ = 2
l

sin nπx
l
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The wave functions for the particle on a ring are best
expressed in terms of the polar coordinate, φ, an angle
around the ring from 0 to 2π. We can then make the sub-
stitution:

      2πx
φ = ____

         l

in the functions for the linear box and obtain:

     nφ           nφ
       ψ = N sin __  [n = 2, 4, 6, ...] and ψ = N cos __  [n = 0, 2, 4, 6, ...]

      2           2

or:
       ψ = N sin nφ [n = 1, 2, 3, ...] and ψ = N cos nφ   [n = 0, 1, 2, 3, ...]

as the acceptable wave functions for the ring system where
N is a normalization constant to be determined.

Normalization

Acceptable wave functions must be normalized to
make the probability of finding the particle somewhere
in space equal to unity. This is achieved by finding a value
for the normalization constant, N, such that:

   N 2ψ 2dτ = 1

where the integration is over all space.
Thus for the linear sine function we can write:

   
N 2 sin 2 nπx

l
dx = 1

0

l

Recalling the trigonometrical relationships:

cos2θ + sin2θ = 1
and

cos2θ – sin2θ = cos2θ
it follows that:

2sin2θ = 1 – cos2θ
or

sin2θ = 1⁄2 – 1⁄2 cos2θ

The normalization equation therefore becomes:

   
N 2 1

2 – 1
2cos 2nπx

l
dx = 1

0

l

hence
   

N 2 x
2 0

l
– l

4nπsin 2nπx
l

0

l

 N2l
and ____ – 0 = 1

   2

and   N = 2
l

For the ring system, the corresponding equation is:

     N 2 sin 2nφdφ = 1
0

2π

giving:

   
N 2 1

2 – 1
2cos 2nφ dφ = 1

0

2π

   
N 2 φ

2 0

2π

– 1
4nsin2nφ

0

2π
= 1

N2 (π – 0) = 1

and

   N = 1
π

The cosine function for the ring system also has a nor-
malization constant of the same value.

Again we can notice a similarity between the two
models. In both cases the normalization constant equals
(2/total length)1y2. For the linear system this gives (2/l)1y2;
for the ring, it gives (in polar coordinates) (2/2π)1y2.

Some Chemical Applications

The particle-in-a-box model can be used to calculate
the allowed energy levels of the π-electrons in conjugated
hydrocarbons such as ethene, butadiene, hexatriene, etc.
In this approach the hydrocarbon is treated as a one-di-
mensional box and its length is regarded as extending
half a bond length beyond the last carbon atom at each
end of the molecule. Thus for butadiene:

the length of the molecule is 135×2 + 146 = 416 pm, to
which can be added another 140 pm giving a total of 556
pm. The four π-electrons then fill the two lowest-lying or-
bitals as follows:

ehtrofsnoitcnuFevaWenisoCdnaseigrenE.2elbaT
ehtdnaxoBlanoisnemiD-enOanielcitraP
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n E )niahc(
evawniahC

noitcnuf
evawgniR

noitcnuf
E )gnir(

0 — suounitnoc 0
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n E = n2h2/8ml2 Electrons
in the level

4 3.12 × 10–18      0
3 1.75 × 10–18      0
2 7.80 × 10–19      2
1 1.95 × 10–19      2

The energy required to promote an electron from the n = 2
to the n = 3 level is 9.74 × 10–19 J, which corresponds to a
quantum of radiation of wavelength 203 nm.

A similar calculation for a molecule of hexatriene
(l = 837 pm) gives the result:

n E = n2h2/8ml2 Electrons
in the level

5 2.15 × 10–18      0
4 1.38 × 10–18      0
3 7.74 × 10–19      2
2 3.44 × 10–19      2
1 8.60 x 10–20      2

The promotion energy is now reduced to 6.02 × 10–19 J,
which corresponds to a wavelength of 330 nm (a value
closer to the visible region of the spectrum).

Calculations of this sort show in a simple way how
the ultraviolet absorption spectra of conjugated hydrocar-
bons move steadily towards the visible region as the chain
length increases.  The model is a very simple one and the
results cannot be relied upon to predict accurate UV ab-
sorption maxima. They do, however, correctly demonstrate

the trend as the chain length of the molecule increases.
The best-known ultimate example of the trend is, of course,
the molecule β-carotene, one of the compounds respon-
sible for the color of carrots, which has a conjugated chain
containing 22 carbon atoms.

Two-dimensional compounds can be approximated by
the particle on a ring model. Benzene is the simplest ex-
ample, and since the C–C bond length in benzene is 138 pm
we can use a model in which the radius of the ring is also
138 pm. The six π-electrons of benzene will then occupy
the two lowest energy levels as follows:

n n2h2/8π2mr2 Degeneracy Electrons
in the level

2 1.28 × 10–18 2 0
1 3.21 × 10–19 2 4
0         0 1 2

The promotion energy is now 9.59 × 10–19 J, correspond-
ing to a wavelength of 207 nm, compared to an actual UV
absorption maximum for benzene of 204 nm.

Extension of this model to polycyclic aromatics is not
easy because few compounds even approximate circles.
The remarkably close agreement between the calculated
and observed UV absorption wavelength, however, is en-
couraging for such a simple model.
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