Dispositivos Fotovoltaicos: Materiais e Tecnologia

Série 2

2018/2019

1. A silicon wafer is doped with 10¹⁶ arsenic atoms/cm³. Find the carrier concentrations and the Fermi level at room temperature (300K).

2. The intrinsic temperature of a semiconductor is the temperature at which the intrinsic carrier concentration equals the impurity concentration. Find the intrinsic temperature for a silicon sample doped with 10¹⁵ phosphorus atoms/cm³. Use Fig 1

3. A silicon sample at 300 K contains an acceptor impurity concentration of 10¹⁶ cm⁻³. Determine the concentration of donor impurity atoms that must be added so that the silicon is n-type and the Fermi energy is 0.20 eV below the conduction band edge.

4. Find the electron and hole concentrations and Fermi level in silicon at 300 K

a) for 10¹⁵ boron atoms/cm³

b) for 3 \times 10¹⁶ boron atoms/cm3 and 2.9 \times 10¹⁶ arsenic atoms/cm³.

5. A Si sample is doped with 10^{17} Arsenic atoms/cm³. What is the equilibrium hole concentration p_0 at 300 K? Where is E_F relative to E_i ?

6. Silicon at T=300K is uniformly doped with arsenic atoms at a concentration of $2x10^{16}$ cm⁻³ and boron atoms at a concentration of $1x10^{16}$ cm⁻³.

a) Determine the thermal equilibrium concentrations of majority and minority carriers.

b) Repeat a) if impurity concentrations are $2x10^{15}$ cm⁻³ phosphorous atoms and $3x10^{16}$ cm⁻³ boron atoms

