Stokes flow around a sphere

(Acheson, page 223)

Axisymmetric flow ~
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By using the Stokes stream function, we automatically satisfy the
continuity equation (div V =0)
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NS in the Stokes regime
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Eliminating the pressure cross derivatives we find
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Boundary condition at r=a: no slip
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At infinity:
u,~Ucos® and ug~-Usinf@ asr—

m) ¥~3Ur’sin’6
Which suggests a solution of the form

¥ = f(r)sin’6

then
EX(E*®)=0 m)
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The solution is a polynomial in r, with the condition (use f=r%in the
previous equation):

[(e = 2)(er = 3) = 2] (e — 1) = 2] = 0
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Uniform flow at infinity: ¢=1v and D=0
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At r=3, f(a)=fqa)=0
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We find Y= %U(Zr2 + a7 - 3ar)sin29

A
v

Fig. 7.2. Low Reynolds number flow past a sphere.

87



Drag force

op u 0
= E2‘P,
To calculate the pressure, we use or rsin 696
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For the previous streamfunction:

E*W = 3Uar ™" sin’6

Integrating




Stress components in cylindrical coordinates | |- -7 %,\‘) —%l/w 55}“
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Using the streamfunction, we can calculate the velocity field and the
stress components
t,=—pm+%ﬂcos 6, to =—%ﬂsin9.
a a
By symmetry, we expect the net force on the sphere to be on the

direction of the uniform stream, and the appropriate component of
the stress is

o , U
2 = cos O — sin 60 t=1,cos 0 —tosin 6= —p..cos 6+ 3=
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The drag on the sphere is therefore

2 pw
0 0

A o

This is the Stokes law. This is valid for low Re (measurements start to
deviate from Stokes law for Re = 0.5).

For a ball falling through a viscous liquid, we also have the buoyancy
force

6.7'!.'[JUTa = %303(psphcre - pﬂuid)g‘
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Stokes flow around a sphere (alternative

derivation)
Faber

When its inertial term is neglected, the Navier-Stokes equation becomes
—Vp* = pVA(V A u) =0, (6.63)
which, since
VA(VAu)=V(V-u) — Vu,

1s equivalent for an effectively incompressible fluid such that V- u is zero to
Vu = - Vp*. (6.64)

This is the basic equation of motion for creeping flow. Its solutions for u consist in
general of a particular integral, upy, and a complementary function, u¢g. The latter
is a solution of V2x = 0, which means that it is normally a solution of V./\ # = 0 and
can therefore be described by a potential ¢cp. In the present problem the
complementary function has to be chosen in such a way that it corresponds to
uniform flow in the x; direction at large distances from the sphere, so in the
spherical polar coordinates defined in fig. 4.6 we may expect [§4.7]

(}‘5(‘[: = UR cos 6 + AR_Z COS G,



or
ug.cp = (U — 2AR %) cos 0,
ugcr = (—U — AR %) sin 6,
where the coefficient A remains to be determined.
We cannot hope to match the boundary condition that u = 0 at R = ¢ for all
values of 8 unless up p; and u,, py are likewise proportional to cos € and siné

respectively. But application of the divergence operator (V-) to (6.63) shows at
once that p* obeys Laplace’s equation,

VipE = 0. (6.65)

Where the flow is axially symmetric, as itis here, p* must therefore be expressible,
like ¢y, 1n solid harmonic functions. If it is defined to be zero at large values of R
where u = U, then the only credible possibility is that

p* = BR™? cos 6, (6.66)

where the coefficient B is independent of € and R. In that case Vp* is proportional
to R 7, and up; must therefore be proportional to R™'. Let us try

ugpp = CR" cos 6.
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Then in order to satisfy the condition

Voup = 1 a(R%uppr) L L osinBuyp)

2 ; - =0
R IR R sin 0 060

we must set

1 :
Hgpr = — ; CR_] sin 6.

Thesc guesses have now to be checked by substitution into (6.64). Both sides of
that equation are, of course, vectors, but to simplify the analysis we shall consider
only their components in the longitudinal x, direction; it can easily be verified that
when these are equal to one another the transverse components are equal to one
another also. On the left-hand side we have

) 1 M 1 ] ( .
Vou = R — —_ sin O ) Up COS O — Uy, sin 6),
L [R2 aR( aR) R sin 6 90 9} (it v )

which simplifies to

L1 9 ]
Vi pp == C—o—— smﬁ‘—-—2 0s> 0 + sin® 0
P T R? smﬁat‘?[ (2e )J

= — % (2 cos® 0 — sin® 6),
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On the right-hand side we have

*

l # ) £ #
—-ai—lcoseap—]sinﬂap)
nox, n daR R a0

B 2
=~ s (2 cos” 6 — sin” 0).
IR

Figure 6.12 Lines of flow past a sphere according to Stokes’s solution.

These expressions can indeed be made equal to one another, by choosing C = B/y.
Finally, to ensure that both ug and u, vanish at R = a we need to let A = — 1a’U,
C=—3al.

The full solution, which is the only solution which satisfies the given boundary
conditions, is therefore

3
MR:”RC‘F‘F”RP[:UCOSB1—3—a+a—~,,),
' ) 2R 2R
(6.67)
3a a’
p = Upcr Uy pi sl ( iR 4R3)
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The principal respects in which in which it differs from the solution of Euler’s
equation worked out in §4.7, on the basis of potential theory alone, are:

(i) it satisfies the no-slip boundary condition at the sphere’s surface;
(i1) it describes a velocity u in the equatorial (@ = 71/2) plane which increases
monotonically towards U with increasing R instead of decreasing;
(iit) the termsin a/R which it contains represent a perturbation of the flow field
which is of a long-range nature.
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Pressure

According to this solution, the excess stress which acts upon the surface of the
sphere has a normal component given by

k]

. g 3nU cos 0
)1: — s 2 (_) —
Pr =P 1 0R |, 2

[(6.11)] and a shear component acting in the direction of increasing ) given by
d (u 1 du 3nU sin 0
Sor = na[_.(-—a)—F_Z_R} :_.._2?__,..._
dR\R a 40 |, ., 2a

[(6.3) and (6.53)]. Taken together, these components are equivalent to a uniform
force per unit area in the direction of U of magnitude 3» U/2a. The total drag force
in the direction of U is therefore

Fp, = 4ma’ % = 6anal. (6.68)

This expression constitutes Stokes's law.
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Discussion

It is only in the limit when velocity U and Reynolds Number Re (= 2palU/y)
tend to zero that the assumption on which Stokes’s law is based 1s fully consistent
with the details of his solution. Since the leading term in # is U, while the next
terms in (6.67) are proportional to aU/R, the inertial term in the Navier-Stokes
equation, p(u-V)u, is of order pU”a/R” at large values of R according to Stokes,
while the viscous term 3V /A (V /A ) is of order yaU/R*. Far from being negligible,
the inertial term is clearly liable to exceed the viscous term at distances such that

R>i=2_a

pU Re

The inconsistency may suggest to the reader that we cannot trust equations (6.67)
to describe the velocity distribution in the immediate vicinity of the sphere, and
that we therefore cannot trust Stokes’s law, unless Re is really quite small
compared with unity. It is only when Re reaches about 0-5, however, that
deviations from the law become detectable experimentally.

Needless to say, it Stokes’s law applies in a frame of reference such that the
sphere is stationary then it applies also in the frame in which the distant fluid is
stationary and the sphere is moving instead. Thus a solid sphere of radius a and
density p, falling down the axis of a vertical cylinder of sufficiently large radius
which is filled with liquid of density p;;,. may be expected to reach a terminal
velocity U such that

4 .
6"71?“{} = Eﬁag(psol - pliq)gﬂ (669)
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provided that

Re = 4agpliq(phnl B pliq)g
9

<05, (6.70)

If the falling sphere is itself liquid, with viscosity #’, circulating currents arise
within it as it falls which modify the flow pattern outside the sphere. The modified
form of Stokes’s law which applies in these circumstances is

_ Amnpal(y + 3"y
n+

E Challenge: exercise 18 of list 4
D

(6.71)

This cvidently reduces to (6.68) when ' > 5, e.g. under the conditions of
Millikan’s celebrated experiment, where the spheres were oil drops moving V,=Vy and 1, ,=174
through air. At the opposite extreme where ' <« 5, however, e.g. where the

spheres are very small bubbles of gas rising (rather than falling) through soda
water or champagne, it reduces to F, = 4nal/, so the terminal velocity of such
bubbles should be

2 .
U = LLi8 (6.72)
31

[(6.69), but with 6 replaced by 9 and with p, replaced by pu,: p,.. 15 negligible
compared with py;|. In fact, (6.72) does not describe the terminal velocity of rising
soda water bubbles at all accurately. That is partly because the Reynolds Number
normally exceeds -5 but also, it seems, because impurities adsorbed on the gas—
liquid interface endow this interface with some measure of rigidity. It can be
shown, incidentally, that the stresses which act on a gas bubble which is rising
steadily with Re << 1 do not tend to distort it; it should — and does — remain
spherical.
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