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Two constraints is the study of the Universe: 
 
1. The information we have on the Universe comes mainly from electromagnetic 
radiation à we have only access to our lightcone.  
 
 
2. We only observe 1 Universe à the laws we find cannot be tested in other 
conditions. 
 
 
3. Gravity is the force that governs the cosmological evolution 
 
because among the 4 fundamental forces, strong and weak forces have short range 
and the Universe is neutral. 
  
	
  



4. Isotropic Universe 
 
“The Universe observed in any direction (from an observing point) looks 
the same” 
 
The observed properties are independent of direction (rotational invariance) 

isotropic (but not homogeneous) 



Except for the “nearby” structures, the observed spatial distribution of the 
Universe looks isotropic.  
 
CMB (Cosmic Microwave Background) is isotropic 
 

 ΔT/T ~ 0.00001   
  

The sky shown in Mollweide projection 
in galactic coordinates  
 
(preserves areas e distorts shapes)    

Isotropy observed  



Anisotropy is for example 
 
dipole in CMB  ΔT/T ~ 0.001   
 
à Δλ/λ ~ 0.001 ~ v/c 
 
à v ~ 300 Km/s 

This is the total velocity of the Earth with respect to the CMB frame: 
 
includes Earth’s orbital movement +  solar system movement in the galaxy + local 
galaxy movement à peculiar velocity of the galaxy 
(it is a perturbation to Hubble’s flow) 
 
 
So, there is a “local” anisotropy that can be measured. 
 
The movement is in the direction of the blue pole (ra, dec = 11h11min57s , -7.22º) 
(Leo constellation) towards the Great Attractor.  



Looking from Earth, the Great Attractor lies 
on the zodiacal plane and close to the 
galactic plane à difficult to observe the 
extra-galactic sky à results from radio-
astronomy (2016) 
 
It is at ~50 Mpc from us 
Parsec is a historical unit of distance. It is the  
distance to a star that changes its apparent 
position due to the Earth’s orbital movement 
(paralax) by 1 arcsec. It corresponds to 3.26 lyr. 



Diameter ~3 Mpc Gravitationally bound. Non-linear structure that 
contains many non-linear structures 



Laniakea: the local super-cluster. Its central gravitational point is the Great Attractor.  

Diameter ~170 Mpc Loosely gravitationally bound. Linear structure that contains 
many non-linear structures.   



Beyond Laniakea 
(shown in yellow), 
the movements with 
respect to us start to 
be dominated by the 
Hubble flow and no 
longer by peculiar 
velocities à isotropy 
 
 
This is roughly 
redshift  z ~ 0.1 
 
 
Cosmology starts 
beyond z ~0.1 



On the contrary, homogeneity does not imply isotropy 

isotropy around A and around B 
implies that the grey zone is homogeneous.  

Extrapolation of the Copernican principle à we should not be in a special 
position. All points should observe isotropy.  
 
Isotropy in all points implies homogeneity. 



5. Homogeneous Universe 
 
“The Universe is identical in all points, at each instant” 
 
 
The observed properties are independent of location (translational invariance) 
 

homogeneous (bot not isotropic) 



	
  Homogeneity observed   
 
-  Galaxy counts as function  of volume  
 
-   The absence of structures on “very large scales“ – the average matter 
density constrast on very large scales is very low. 

Homogeneity scale > 100 Mpc 

(dark matter N-body simulation) (observations of galaxies) 



Cosmological Principle 
 
 The Universe is homogeneous and isotropic  (on “large-enough scales”) 
 
 
This implies that there is a set of observers that have the same history of the 
Universe and to which all observables are independent of direction. This defines 
a fundamental reference frame where the physical properties are the same on all 
points. This is the comoving frame - that follows Hubble’s flow 

Physical fields (matter density  or CMB temperature) have the same values for 
all comoving observers. 
 
The time rate is also identical, which allows to define an universal time and 
separate space and time coordinates. 
 
 

In practice: ρ(t,x) à ρ(t)     where t is universal 



Extending the Cosmological Principle 
 
 We can also consider that the Universe could be homogeneous in time (static), 
infinite in time (eternal) and infinite in space (borderless). 
 
 
6. Eternal (not observed) 
 
Bouncing models of the Universe are eternal 
 
 
7. Borderless (probably yes) 
 
Spatial curvature: closed models of the Universe have no borders 
 
 
8. Static (not observed, there is expansion) 
 
The Einstein cosmological model is static. Einstein introduced the cosmological 
constant (repulsive effect) to counter gravitational attraction. 



8. Static vs Evolving Universe 

Staticity not observed  

Hypothesis: the fact that the night sky is dark may indicate that the 
Universe is not static. 
 
Let us see why this is so. 

Some definitions:  Luminosity, Flux (L that reaches the observer),  
   Surface Brightness (Flux concentration) 



Surface brightness is the ratio between 2 “apparent” quantities (flux - the apparent 
magnitude - and  angular size - apparent size -) à the brightness of an object is 
independent of its distance. 
 
Two objects of the same intrinsic size and with the same luminosity have the 
same surface brightness, regardless of its distance from the observer. 
 

This fact has a very important consequence: 



Let us consider two regions of the sky with a given angular size Ω  that are completely 
filled with stars of equal luminosity and intrinsic sizes. 
 
The fluxes of the regions are: 
 

 - region A with 1 large object that fills all the region (e.g. the Sun) 
 

 FA = S x Ω  
 
 

 - region B filled with n stars identical to the Sun 
 

 FB = S x Ω1 + S x Ω2 + … +  S x Ωn = S x Ω    
 
 
 à the fluxes from the two regions are equal. 
 
 
Naturally, in region B, distant objects have a small angular size, but  looking up to a 
faint magnitude limit (large distances) we can get an angular density of sources large 
enough to cover the full aperture.   
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Conclusion (for stars): If a sky aperture of the same size of the solar disk is filled 
with stars of luminosities similar to that of the Sun, the flux from that aperture is 
identical to the one coming from the Sun à  the sky should be always bright 
(day and night). 
 
The fact that this does not happen is known as the Olbers’ paradox (1823) 
 
 
Note that in fact this indeed happens for the observed Milky Way stars. In dense 
regions, where stars “fill the regions” the “stellar sky” is bright.  
There is no paradox here.  
 
The eyes do not integrate for enough time and cannot detect the flux from faint 
stars, so most regions are not completely filled and the detected flux from them is 
lower to the naked eye. 
 But telescopes can saturate à the sky is really bright! 
 
 
It turned out that there is still a Olbers’ paradox, but it applies only to 
cosmologically distant objects (like distant galaxies), so it applies to the 
“cosmological sky”.   
In that case, it is observed that even with an “infinite” integration time, the 
cosmological sky does not saturate, and this has implications for our modeling of 
the Universe.	
  



The brightness of the sky can be computed in a more rigorous way: 
  
Considerer the flux function: dN/dF, the number of objects per flux interval. 
(Note that this type of functions - number counts per interval of a certain astronomical quantity - 
are very used in astrophysics: mass function, luminosity function, etc.) 
 
 
 
 
 

(assume Luminosity is constant, i.e., 
equal in all objects of the sample, 
and non-evolving, no r dependence) 

- 

n	
  galaxies	
  

galaxies	
  

=	
  n	
  

1	
  gal	
  



There are more objects with small flux - the distant 
ones - than with large flux - the closer ones - (at 
equal luminosity)  

(this is the standard way to compute a total or a weighted mean - the flux 
function is a weight function) 

(there is a one-to-one relation between flux and distance) 

Integrate up to the detection flux-limit (magnitude limit): 

(when F_min à 0) 

N	
  

galaxies	
  

n	
  



If we get the flux of objects up to F ~ 0 (i.e., including objects up to r à ∞ ), then 
the total flux would be infinite à the bright night sky 
 

  
 Why is the (cosmological) night sky not bright ? 

 
 
In reality we cannot  integrate up to infinite distance (flux zero) if the object is not 
eternal (has an initial time). There is a cut-off F_min > 0 and the integral is finite. 
However it could still be very large à Assuming an initial time does not solve 
the paradox. 
 
 
Perhaps there is absorption and part of the flux is lost?  
True, but there would be re-emission of the absorbed flux that would still contribute 
to the total flux, even if in another form (such as with a different wavelength) à 
Absorption is also not the solution.   
 
 
 



Possible solution of the paradox: 
 
To solve the problem in an absolute way, the best would be to obtain a total flux that 
would not go to infinity even in an infinite universe (i.e., even in the case F_min à 
0). In that case it would be understandable that the night sky is not bright. 
 
This can be achieved if the function dN/dF would be different, in particular if it 
would have a shallower slope à if the number of objects with small flux was 
smaller than predicted. 
 
 
 
But their number on each spherical shell must increase with r2  in a scenario of 
uniform distribution (homogeneity).  
 
Moreover, even if some objects would disappear (end of life), others would appear 
to replace them (and why would this affect more the distant than the closer 
objects?) à Finite life-time is also not a solution.  
 
However, what if the distant galaxies would contribute less to the flux? à  
meaning, they would have a smaller brightness à i.e., it would be like a 
smaller effective number of galaxies (even though the number would not 
change). But we saw that brightness does not depend on distance … or does it? 
  

N	
  

F	
  



Could S become distance-dependent?  
 
i) A possibility would be if Luminosity L or size D were distance-dependent à 
all objects would evolve in time (since the more distant ones are in the past) 
in a universal way, such that luminosity would always increase (smaller in the 
past) -  or the intrinsic size would decrease (larger in the past) à  universal 
intrinsic evolution of luminosities or sizes. 
 
 It seems unlikely to happen! and in fact this is not observed 

ii) Another possibility would be that the flux (the numerator in the expression for S) 
does not change with r2, but with a different f(r). This could happen if there exists a 
mechanism that would make the luminosity emitted by the distant objects to be 
somehow diluted during propagation à universal loss of luminosity. 
 
Note that this is different than the first possibility, where the intrinsic luminosities of all 
objects would decrease (an astrophysical evolution).  
 
This loss of luminosity during propagation would need to increase with distance, for 
the effect to go in the right direction.  
 
    This also seems unlikely to happen! Needs to be tested with observations! 



The angular size / intrinsic size relation would be the true geometrical distance ‘r’ 
à the ”angular diameter distance” dA 
 
The flux / luminosity relation would depend not only on the geometrical distance 
but also on an extra factor of “luminosity loss” à by convention, this factor is 
absorbed in an effective ‘r’ in the numerator, defining an effective distance different 
from ‘r’ à the “luminosity distance” dL 

dL	
  

dA	
  

In other words, the hypothesis is that 
 
flux(r) at a distance r from the source is less than L/r2 
 

while the angular size of a source of intrinsic area D2 is 
the usual D2/r2 



For this mechanism to solve the paradox the two distances must be related as 
 

   dL = f(r) dA     (i.e., the extra factor must be function of ‘r’). 
 
 
What mechanism could produce this effect? 
 
Hypothesis: a universal change in all photons wavelength as they propagate 
from source (e) to observer (o)  can produce this effect. 
 
In particular, we need a redshift (not a blueshift), because the goal is to decrease 
the contribution of distant sources (not nearby ones). 
 

The existence of a redshift alters the luminosity propagation in two ways:	
  

•  modification of the photons wavelength à universal loss of energy  E0 = Ee /(1+z) 

•  increase of the time interval between two pulses à  Δt0 = Δte (1+z) 



Remember that  
 
 
 
and so the combination of the two effects creates a luminosity loss of (1+z)2 
 
If we absorb it in the definition of the new distance (the luminosity distance), we see 
that 
 

  dL = ( 1+z(r) )2 dA      
 
 
This relation is known as Etherington’s distance-duality relation 
 
Measurements of dA and dL are used to test this relation at various redshifts.  
If a deviation from (1+z)2   is found, it means that the luminosity loss is not caused by 
redshift (or only by redshift), but there are other effect contributing to it: 
 
non-conservation of photon number? à it would be a hint for new physics. 
 
(e.g., Martinelli et al 2020,  https://arxiv.org/pdf/2007.16153.pdf) 



We confirm that the brightness is no longer distance-independent, but becomes 
redshift-dependent: 
 
 
 
 
This extra factor of (1+z)4 solves Olbers’ paradox, since the flux no longer 
diverges in the small flux limit: 
(see homework) 

Let us now insert the result in the expression for the surface brightness:   

(remember that before it was F-1/2) 



Let us then consider an expanding Universe, 
  
and at the same time let us try to find an expression for z(r)  

We saw that the universal redshift is capable of explaining why the 
cosmological sky is not bright. 
 
Now, is there a plausible mechanism that can  produce this type of universal 
redshift? 
 
 Hypothesis: one possible mechanism is to consider that the universe evolves 
(expands) as opposed to being static.	
   	
  	
  



To be in agreement with the cosmological principle, let us consider the Universe 
as a homogeneous sphere that expands isotropically. 
 
Radial expansion is the only expansion model that keeps the homogeneity (note 
however that it is not the only possibility to ensure isotropy - see homework).  
 
Consider the following: 
 

Some quantities appear naturally with the expansion 
 
x  -  comoving coordinate - the absolute reference frame à a particle that is 
comoving with the expansion keeps a constant value of its comoving coordinate.  
a(t) - scale factor  
r(t)  - proper coordinate 

  
convention:  0<a<1 à r < x  



Let us consider the emission of a lightwave (2 pulses) in the expanding Universe 

(due to the expansion) 



We want to derive an expression for the universal redshift z(r) created by the 
expansion (see homework) 
 
Since we are dealing with non-instantaneous light propagation, we will need to use 
(special) relativity (no need for GR, no dynamics involved) (so flatness is assumed). 
 

Note that this relation is 
space-time trigonometry! 
 
Knowing the 
“hypotenuse”(ds^2=0) 
and one side of the 
triangle (dx^2), we get 
the other side (dt^2). 

(Note that Δx is the comoving distance, dC).  
 
(the angular diameter distance we encountered before is not a comoving distance but 
a proper distance. They are related by dA = a(t) dC)  (for the flat Universe) 



The “space-time triangle” allows us to find a relation between the time ratios and 
the scale factor: 



This is the result: 1 + z (r) = 1 / a (r) 
 
In fact, we did not find an explicit solution for z(r) but only a relation z(a) 
(which is the result of a derivation, not the definition of redshift). 
 
The model for the expansion is characterized by a(r), where a varies from  
a (r=∞) = 0  to a (r=0) = 1,  
and thus the expansion indeed creates a universal redshift with the 
required properties à z increases with r, and z(r=0)=0 
 
(Note: the monotonic behavior z(a) is the reason why the redshift can be 
used as a time variable in the evolution of the Universe) 
 
 
 a(r) is a central quantity that characterizes the cosmological model at the 
homogeneous level. It is determined from the equations of the theory of which 
the expansion model is a solution (a theory of gravity). Similarly, the behaviours 
of a(t), z(r), or inversely r(z), should all be predictions of the theory. 
 
Measurements of these functions, especially r(z), i.e. dL(z) and dA(z), are 
widely used to test the cosmological model. 



We saw several steps of the scientific method  

Data	
  (generic)	
   The	
  night	
  sky	
  is	
  dark	
  

Mechanism	
   Universal	
  redshiA	
  

Model	
  (phenomenological)	
  	
   Expansion	
  	
  à	
  	
  	
  1+z	
  =	
  1/a	
  

Theory	
   Theory	
  of	
  GravitaJon	
  à	
  	
  a(r;	
  par)	
  

	
  Data	
  (specific)	
   DL	
  (z)	
  	
  à	
  close	
  the	
  theory	
  (constrain	
  the	
  free	
  parameters)	
  



Universal redshift observed: it was observed that the redshift of all 
observed galaxies increased with their distance (linearly) 

Hubble law (local) 

The observations support the expanding model that had already been proposed as  
possible solutions of Einstein equations: prediction of a universal redshift, expansion 
dynamics (Friedmann 1922), derivation of z(r)  (Lemaitre 1927). 

This correlation was 
interpreted as a 
universal recession of 
the galaxies 
 
because the redshift 
was interpreted as a 
velocity through  
Doppler’s effect:    
v/c = z 

The observation of the dark night sky is a quite indirect hint of the expansion of the 
Universe!  Eventually a more direct observation was made: 



Vesto Slipher (Obs. Lowell)   
   measured redshifts in galaxy spectra (1912-1922)  
   41 galaxies, most with z > 0  
 
Milton Humason (Mt. Wilson) 
   measured redshifts in galaxy spectra (1920) 
 
Edwin Hubble (Mt Wilson) 
   measured galaxy distances (1923-1926) 
    
Georges Lemaître combined the 2 types of measurements and found a linear relation 
v = constant . d (1927) with a slope H_0 = 625 Km/s/Mpc  [Ann. Soc. Sci. Brux.] 
 
Hubble e Humason  
   new distance measurements using Cepheids (1927-1929)  
 
Hubble combined the 2 types of measurements and found a linear relation v(d) (1929) 
with a slope H_0 = 530 Km/s/Mpc 
 
Lemaître published the english translation of his paper in  MNRAS (1931), but his 
results about the linear correlation and the H_0 value were not included. 



Until recently the reason for the non-inclusion of the main results of Lemaitre in the 
MNRAS paper was a mystery. Was it a conspiracy made by Hubble? 
 
In 2011, Mario Lívio  researching the letters between Lemaitre, the translator and 
the editor, found out that Lemaitre himself has asked to not include the results that 
he considered were already “old news”.  
 
More recently, this issue was debated in the annual meeting of the IAU (2018) and 
there was a voting open to the worldwide research community, to propose the 
change of the naming of Hubble’s law. 
 
 78% of the votes approved the change: since November 2018, Hubble’s law is 
now named Hubble-Lemaitre’s law. 
 
 
 



This defines the Hubble constant  H_0 = å /a 
   

 H_0 = 100 h Km/s/Mpc 
 

 h ~ 0.7 à H_0 ~70 Km/s/Mpc à a galaxy that is 1 Mpc more distant than one 
closer to the observer, recedes with a velocity 70 Km/s faster than the one that is 
closer. 

These results introduced the idea of a recession velocity v(t) 
  
The linear relation is consistent with an expansion r = ax. Indeed, 
 

 r = ax à v = å x =  å /a ax = H_0 r 
 
(the linear relation tells us that the meaning of the constant slope is  å /a) 
 
(note: å = da/dt ) 



The distance measurements were made by identifying Cepheid stars on the 
observed galaxies.  

These are variable stars (pulsating radially)  

P à L 
L + F  à D 



The	
  period	
  increses	
  
with	
  the	
  luminosity	
  
peak.	
  	
  	
  

So, the period is the proxy for the distance (subject to calibration) 
 
The absolute values of the period-luminosity relation are calibrated with 
observations (more reliable than to calibrate from a theoretical model for the 
astrophysics of these stars) à need to observe other Cepheids with known 
distances (D + F à L). Those are Cepheids in our galaxy (eg: polaris or δ Ceph) 
 
The distances to these nearby Cepheids are obtained by parallax. 
(Earth-Moon eclipse, Earth-Sun baseline, 1pc = 1arcsec) 
 
These are the first steps of the so-called distance ladder.  
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Methods	
  and	
  distance	
  ladder	
  



Cumulative errors in the intermediate steps of the ladder introduce large 
uncertainties in the final result.  
 
The result from Hubble is H_0 = 530 Km/s/Mpc 

The determination of the Hubble constant has dominated observational  
cosmology throughout all the XXth century!  
 
Only in the XXIth century did other cosmological parameters start to be measured  
with higher precision and using a great variety of methods à CMB, galaxy clustering,  
BAO, weak lensing, etc. à precision cosmology 



Long discrepancy between 2 groups:  h ~1 e h ~0.5 due to issues with evolution 
and calibration on sources with peculiar velocities.  
 
The polemic only ended in 2001 with the HST Key Project: 

 by observing Cepheids and supernovae in the same galaxy à h = 0.72 ± 5% 
 



However the debate re-opened in the last decade with the H0 measurements 
made by the CMB Planck mission (and other surveys of the early Universe) 
finding lower values à 0.67 ± 1%  
	
  

The	
  Hubble	
  tension	
  

Further reading:  
Riess et al 2020,  https://arxiv.org/pdf 2001.03624.pdf 
Knox & Millea 2020, https://arxiv.org/pdf/1908.03663.pdf  

There is a systematic separation between 
the higher (lower) values found with late 
(early) universe data. 



Note that the Hubble law is also a relation between the scale factor and  
redshift (and so it is a direct solution of Olbers’ paradox): 
 
   Hubble law: 

                                               (assuming Doppler effect z = v/c)   

Now, the observations were made at a = 1 and are valid for the local Universe. 
 
In the local Universe (a ~1) we have 1-a = Δa = Δt (da/dt)_t0  (Taylor expansion) 
 

 à 

à so Hubble law tells us that z = 1 - a 

Considering   Δt = r/c, we get :  z = 1- a  
 

	
  	
  (using	
  a(t0)	
  =	
  1)	
  



This means that the assumption of the Doppler effect, plus that the linear 
relation  z vs r translates into a linear relation v vs r à implies a linear 
relation z vs a. 
 
 
This is not the expression we found before.  
But note it is a linear approximation to our expression (Taylor expansion) : 
 
 
 
 
 
This mean that only in the local Universe  (‘a’ close to 1, z close to 0) can the 
redshift be interpreted as a Doppler effect 
 
and the relation redshift vs scale factor (or redshift vs distance) is linear. 
 
This relation - (local) Hubble law -  was the one observed by Hubble. 
 
 



We see that in general, the relation between redshift and scale factor is not linear 
and the interpretation of the redshift as a Doppler effect leads to an 
inconsistency.   
 
However the relation v vs r can be written in a (apparently) linear form 
defining the 
 
Hubble function H(t)  
 
instead of the Hubble constant H0 à a generalized Hubble law. 
 



We can also define a Hubble length, since the inverse of the Hubble function has 
dimensions of time (or length considering c = 1 dimensionless): 
 

 rH (t) - Hubble radius = c/H 
 
Hubble radius today is  = 3000 Mpc/h 
 
 
At r = rH à v = c à Beyond the Hubble radius, recession velocities are larger than 
the speed of light. (This is not a problem since the interpretation of the recession 
as a Doppler efffect is only valid in the local Universe).  
 
Note however that 
 
since a(t) grows à H(t) decreases in time  à rH(t) grows  
 
if a(t) grows with negative derivative à rH(t) grows faster than a(t) 
 
This explains (an apparent paradox) why in a decelerating Universe, we can 
observe objects beyond the Hubble radius, i.e., we detect light coming from 
points with “recession velocity” larger than c: 



Those photons start by being dragged away by the expansion and their proper 
distance to the observer initially increases. But to the increase of rH, those 
points even though farther away have a decreasing recession velocity and they 
end up being caught by the growing Hubble radius reaching regions where v<c. 
From that point on, their proper distance starts to decrease, until reaching the 
observer.   

r_H 

r_H 



The Hubble radius marks the “curvature limit” of the Universe  (or the limit of 
general relativity) - it is the “space-time curvature radius of the Universe” à for 
 r < rH we can use Newtonian mechanics (plus special relativity) and consider a flat 
space-time.  
 
And indeed, we saw that fundamental concepts such as the cosmological 
principle, the expanding Universe and the redshift do not come from general 
relativity. 
	
  
	
  

The fact that the Hubble radius is not comoving with the expansion provides a 
natural way of introducing a feature (a scale) in the homogeneous Universe à rH is 
a purely kinematical characteristic scale.  
 
This means that the purely homogeneous Universe at different times is more 
than just an expanded version of itself. 
 
(by purely homogeneous, I mean a completely empty homogeneous Universe, with 
no structure evolution, or thermal evolution, or radiation emission and peculiar 
movements, which of course are physical characteristics that allow us to infer there 
is an evolution).  



Expansion Dynamics 

We saw that it was possible to introduce the concepts of expansion and redshift in a 
general way, without specifying the theory of gravitation (that drives the expansion) 
à they are not necessarily a consequence of general relativity. 
 
Let us now try to derive the equations of movement of the gravitational expansion, 
i.e., the equations for the evolution of the scale factor a(t), or the Hubble function 
H(t), using Newtonian mechanics.  
 
Is this possible?  

Let us consider the homogeneous and isotropic Universe as a sphere of radius r 
that expands radially and is filled by a homogeneous cosmological fluid with 
density ρ.   
 
i) Energy conservation (kinetic + potential)  

Ek = v2 / 2 EV = - G M / r 



The mass relates to the cosmological fluid density: 

We can introduce the scale factor by considering this equation in comoving 
coordinates: 



Friedmann’s equation 

The constant is K = 2E / (x^2) 
 
where E is the total energy of the Universe and x is the comoving coordinate of 
the surface of the “Newtonian Universe” - the Hubble radius.  

So we get Friedmann’s equation, identical to the one derived in General Relativity 
(although in GR  the constant K has a different and well-defined meaning: it is the 
curvature of space. 



ii) To solve Friedmann’s equation for a(t) we need to know the source of gravity, i.e., 
the mass of the Universe, i.e., we need to know ρ(t).  
 
 
The evolution of ρ(t) is constrained by the conservation of mass (the continuity 
equation  in the Newtonian approach). 
 
For this, let us consider the 1st law of thermodynamics for the expanding 
cosmologcial fluid: 
 

 dU = -p dV 
 
(there is no heat dissipation to the exterior of the expanding sphere that constitutes 
the whole Universe) 
 
The energy of the Universe is  



This is identical to the conservation equation 
derived in GR. 



iii) Finally, to find the equation of movement of the expanding Universe, we 
consider the 2nd law of Newton:  

This equation is different from its GR 
counterpart, which also involves pressure (in 
GR pressure is source of gravity, while in 
Newtonian gravity it is not).  



However, if we combine the 1st Friedmann equation with the conservation 
equation that we found, we obtain the following: 
 
(differentiate Friedmann’s equation +  use conservation equation à eliminate  
dρ/dt  and get an equation for ä : 

This is the 2nd Friedmann equation, also 
called Raychadhuri equation and now it is 
identical to the one derived in GR.  



How was this possible? From where did the we get pressure in our 
Newtonian description?  



It came from using the first law of thermodynamics to get the continuity 
equation, i.e., we used a conservation of energy instead of conservation of 
mass. In other words, we wrote U from ρ, implicitly assuming mass-energy 
equivalence. 
 
 
In conclusion: Newtonian gravity does not find the correct evolution equations. 
We could however find them using relativistic Newtonian gravity, i.e., 
Newtonian gravity + special relativity.  
 
 
Note that relativistic Newtonian gravity is different from General Relativity.  It is 
just Newtonian physics + the assumption that the energy is source of gravity. It 
does not include the concept of curvature, which also contributes to gravity. 



9. Inhomogeneities 
 
The cosmological principle is a first approximation to study the Universe.  
 
However, it is not verified on smaller scales where “local” structures differ from point to 
point, defining local gravitational potentials.   
 
Is it a good approximation? In other words, what is the amplitude of the 
gravitational potentials associated to the astrophysical structures?   
 
To address this question let us consider the Theorem of the Virial (for the dynamics of 
the gravitational collapse of a local system of N particles of masses m at positions x)  

3D 
j,k=1,2,3 

Tensor of Inertia  
is the matrix of the 
second-order 
moments of the 
mass distribution in 
the system 

second-order derivative 
of the inertia tensor 



This means that the evolution of the tensor 
of inertia of the set of gravitationally 
interacting particles is subject to this 
constraint  (by definition). 

acceleration 
of each particle: 

Kinetic energy tensor 

Potential energy tensor 



Theorem of the Virial 

Introduce the trace, just to work with scalar quantities 

When the system is virialized - the collapse has ended, 
the inertial tensor does not change anymore and the    

system remains with this energy  
condition E=V/2  



Potential of an astrophysical structure            
 
 
 has dimensions of velocity square: [G M / r] = v^2 
 
 
Theorem of the virial à 
 
tell us that the amplitude of the gravitational potential of a virialized structure is 
given by the velocity dispersion  
 
Exemple of structures in the Universe :  Clusters :  v = 1000 km/s 
 

                     Galaxies : v = 200 km/s   
 
 
We need to compare these values with the amplitude of the 
“gravitational potential” of the homogeneous Universe. 
 
But what is the potential of the Universe? 
	
  
	
  



	
  ds^2 = -c^2 dt^2 + spatial part  
           (potential + spatial curvature) 
 
 
The existence of a local potential changes the term g_00 to: 
 

Let us consider 
 

 special relativity: accelerated frame à change of the time rate  
(the g_00 term of the metric)  For example in Minkowski the accelerated frame has  
g_00 =  1-v2/c2 
 
From the Equivalence principle à the gravitational potential also changes the time 
rate 
 
à a potential (just like a velocity) affects the g_00 term of the metric à gravitational 

redshift  
    	
   	
   	
   	
  	
  	
  	
  

So the potential of the homogeneous Universe is just g_00,   
which is g_00 = c2 à the kinetic velocity of the Universe (which is equivalent to a 
potential) is v2 = c2 



We saw that galaxies and clusters have “small” dispersion velocities v << c à their 
gravitational potential is much smaller than the global potential of the homogeneous 
Universe  Φ << c2  à The astrophysical structures in the Universe only cause a 
perturbation in the  homogeneous (Robertson-Walker) metric.  
 
 
Note: in the metric it is usual to write 
 
Note: the astrophysical structures are a scalar perturbation to the homogeneous metric, 
but there may be other types of perturbations to the metric. For example, gravitational 
waves are tensor perturbations to the spatial part of the homogeneous metric.   
	
  

We conclude that the structures in the Universe can be considered  
perturbations to the cosmological principle. 

 
Homogeneous Universe - in expansion - gravitational dynamics described by 
homogeneous metric (Robertson-Walker in GR) 
 
Inhomogeneous Universe - global expansion + local (linear) clustering - gravitational 
dynamics described by homogeneous metric with perturbation terms 
 
Structures - locally not expanding, (non-linear) collapsing or already collapsed - 
gravitational dynamics not described by homogeneous metric with perturbation terms 
 


