Percolation theory

Nuno Araújo

Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Portugal
Centro de Física Teórica e Computacional, Universidade de Lisboa, Portugal

Percolation model
 $p^{O}(1-p)^{E}$

Bonds

$2^{N_{\text {Bonds }}}$

Sites

$2^{N_{\text {Sites }}}$

Percolation model

order parameter

$$
P_{\infty}=\frac{s_{\max }}{N}
$$

$$
P_{\infty} \sim\left(p-p_{c}\right)^{\beta}
$$

p

Percolation model

$$
\chi=\frac{1}{N} \sum_{i \neq \max } s_{i}^{2}
$$

fluctuations (mean cluster size)

Exact solution in one dimension

cluster number density

Probability that a site belongs to a cluster of size s :

$$
\begin{aligned}
& s=1:(1-p) p(1-p)=p(1-p)^{2} \\
& s=2: 2(1-p) p^{2}(1-p)=2 p^{2}(1-p)^{2} \\
& s=3: 3(1-p) p^{3}(1-p)=3 p^{3}(1-p)^{2} \\
& s(1-p) p^{s}(1-p)=s p^{s}(1-p)^{2} \\
& \text { Cluster number density: } \\
& n(s, p)=\frac{N(s, p ; L)}{L} \\
& n(s, p)=(1-p)^{2} p^{s}
\end{aligned}
$$

p occupied

1-p empty

Cluster number frequency:
$N(s, p ; L)=L(1-p)^{2} p^{s}$

Exact solution in one dimension

cluster number density

$$
n(s, p)=(1-p)^{2} p^{s}
$$

$$
\begin{aligned}
n(s, p) & =(1-p)^{2} p^{s} \\
& =(1-p)^{2} \exp \left(\ln p^{s}\right) \\
& =(1-p)^{2} \exp (s \ln p) \\
& =(1-p)^{2} \exp \left(-s / s_{\xi}\right) \\
& s_{\xi}=-\frac{1}{\ln p} \\
& s_{\xi} \sim(1-p)^{-1}
\end{aligned}
$$

K. Christensen and N. R. Moloney. Complexity and Criticality. Imperial College Press (2005)

Exact solution in one dimension

cluster number density and fluctuations

Probability that a site belongs to a cluster of size s :

$$
\operatorname{sn}(s, p)=s(1-p)^{2} p^{s}
$$

$$
\chi(p)=\frac{\sum_{s} s^{2} n(s, p)}{\sum_{s} \operatorname{sn}(s, p)}=\frac{1+p}{1-p}
$$

$$
\xlongequal{\chi(p) \sim(1-p)^{-1}} \mid
$$

Exact solution in one dimension

correlations

Probability that two sites at a distance r are connected:

Percolation threshold

$$
\xi \sim\left(p_{c}-p\right)^{-v}
$$

order parameter and fluctuations

$$
P_{\infty} \sim\left(p-p_{c}\right)^{\beta} \sim\left\{\begin{array} { l r }
{ \xi ^ { - \beta / v } , \quad L \gg \xi } \\
{ L ^ { - \beta / v } , } & { 1 < L \ll \xi }
\end{array} \quad \chi \sim (p - p _ { c }) ^ { - \gamma } \sim \left\{\begin{array}{ll}
\xi^{\gamma / v}, & L \gg \xi \\
L^{\gamma / v}, & 1 \ll L \ll \xi
\end{array}\right.\right.
$$

Percolation threshold

finite-size scalling $\mathcal{O}\left(\ell \varepsilon, \ell^{-\lambda} L, \ell^{\prime \prime s} h\right)=\ell^{a} \mathcal{O}(\varepsilon, L, h)$

$\ell=L^{1 / v}, a=\beta, h=0$

$$
\varepsilon=p-p_{c}
$$

$$
\begin{array}{lll}
P_{\infty}\left(\varepsilon L^{1 / v}, 1,0\right)=L^{\beta / v} P_{\infty}(\varepsilon, L, 0) & P_{\infty} L^{\beta / v} \\
P_{\infty}=L^{-\frac{\beta}{v}} \mathcal{F}\left[\left(p-p_{c}\right) L^{1 / v}\right]
\end{array}
$$

Percolation threshold

finite-size scaling $\mathcal{O}\left(\varepsilon \varepsilon, \ell^{-1} L, \ell^{1 / \delta} h\right)=\ell^{a} \mathcal{O}(\varepsilon, L, h)$

$\ell=L^{1 / v}, a=-\gamma, h=0$

$$
\varepsilon=p-p_{c}
$$

$\chi\left(\varepsilon L^{1 / v}, 1,0\right)=L^{-\gamma / v} \chi(\varepsilon, L, 0)$

$$
\chi=L^{\frac{\gamma}{\nu}} \mathcal{F}\left[\left(p-p_{c}\right) L^{1 / v}\right]
$$

$$
\mathcal{F}[x] \sim x^{-\gamma}, x \gg 1
$$

Algorithms

generate canonical configurations

For each site i :

1. random number ε;
2. if
$\boldsymbol{\varepsilon}<\mathbf{p}$: \boldsymbol{i} is occupied; else: \boldsymbol{i} is empty.

Algorithms

 Burning method

 Burning method}

1. set first row burning;

Algorithms Burning method

burning

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;

Algorithms Burning method

empty
occupied

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.
H. J. Herrmann, D. C. Hong, and H. E. Stanley. J. Phys. A 17, L261 (1984)

Algorithms Burning method

empty
occupied

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.
H. J. Herrmann, D. C. Hong, and H. E. Stanley. J. Phys. A 17, L261 (1984)

Algorithms Burning method

empty
occupied

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.
H. J. Herrmann, D. C. Hong, and H. E. Stanley. J. Phys. A 17, L261 (1984)

Algorithms Burning method

empty
occupied

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.
H. J. Herrmann, D. C. Hong, and H. E. Stanley. J. Phys. A 17, L261 (1984)

Algorithms Burning method

empty
occupied

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.
H. J. Herrmann, D. C. Hong, and H. E. Stanley. J. Phys. A 17, L261 (1984)

Algorithms Burning method

empty
occupied

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.
H. J. Herrmann, D. C. Hong, and H. E. Stanley. J. Phys. A 17, L261 (1984)

Algorithms Burning method

empty
occupied

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.
H. J. Herrmann, D. C. Hong, and H. E. Stanley. J. Phys. A 17, L261 (1984)

Algorithms Burning method

empty
occupied

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.
H. J. Herrmann, D. C. Hong, and H. E. Stanley. J. Phys. A 17, L261 (1984)

Algorithms
 Burning method

empty
occupied

One can determine if the set of occupied sites percolates or not.

Number of clusters and cluster-size distribution?

Algorithms Hoshen and Kopelman $k=2$
 $M(k)=0$

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	0

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	2

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	2
3	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	1
4	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	3
4	-3

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	3
4	-3
5	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	4
4	-3
5	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	7
4	-3
5	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	2

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	2
7	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	2
7	2

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	2
7	2
8	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	10
4	-3
5	1
6	2
7	2
8	-3

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	11
4	-3
5	1
6	2
7	2
8	-3

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	11
4	-3
5	1
6	2
7	2
8	-3
9	1

Algorithms

Hoshen and Kopelman

k	$M(k)$
2	3
3	11
4	-3
5	1
6	2
7	2
8	-3
9	1

J. Hoshen and R. Kopelman. Phys. Rev. B 14, 3438 (1976)

Algorithms

Hoshen and Kopelman

Isolated
$\mathrm{k}=\mathrm{k}+1$
$M(k)=1$

Two neighbor ko:
$M\left(\underline{k_{0}}\right)=M\left(\underline{k_{0}}\right)+1$

One neighbor k_{0} :
$M\left(\underline{k_{0}}\right)=M\left(\underline{k_{0}}\right)+1$

One neighbor k_{0} and one neighbor k_{1} :
$M\left(\underline{k_{0}}\right)=M\left(\underline{k_{0}}\right)+M\left(\underline{k_{1}}\right)+1$

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	0

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000)
M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	1

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000)
M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	1
3	1

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000)
M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	1
3	2

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000)
M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	1
3	2
4	1

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000)
M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	3
3	2
4	-2

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000)
M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Microcanonical vs canonical

Fixed number of occupied sites (n)

Fixed probability that a site is occupied (p)

$$
\boldsymbol{B}(\boldsymbol{N}, \boldsymbol{n}, \boldsymbol{p})=\binom{N}{n} p^{n}(1-p)^{N-n} \quad \begin{aligned}
& \boldsymbol{B}(\boldsymbol{N}, \boldsymbol{n}, \boldsymbol{p}) \text { : probability that } \\
& \text { exactly } n \text { sites are occupied in a } \\
& \text { canonical configuration }
\end{aligned}
$$

$$
Q(p)=\sum_{n=0}^{N} \boldsymbol{B}(\boldsymbol{N}, \boldsymbol{n}, \boldsymbol{p}) Q_{n}=\sum_{n=0}^{N}\binom{N}{n} p^{n}(1-p)^{N-n} Q_{n}
$$

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000)
M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

