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1 Introduction

General relativity (GR) is the most beautiful physical theory ever invented. Nevertheless,

it has a reputation of being extremely difficult, primarily for two reasons: tensors are ev-

erywhere, and spacetime is curved. These two facts force GR people to use a different

language than everyone else, which makes the theory somewhat inaccessible. Nevertheless,

it is possible to grasp the basics of the theory, even if you’re not Einstein (and who is?).

GR can be summed up in two statements: 1) Spacetime is a curved pseudo-Riemannian

manifold with a metric of signature (−+++). 2) The relationship between matter and the

curvature of spacetime is contained in the equation

Rµν −
1

2
Rgµν = 8πGTµν . (1)

However, these statements are incomprehensible unless you sling the lingo. So that’s what we

shall start doing. Note, however, that this introduction is a very pragmatic affair, intended

to give you some immediate feel for the language of GR. It does not substitute for a deep

understanding – that takes more work!

Administrative notes: physicists love to set constants to unity, and it’s a difficult habit to

break once you start. I will not set Newton’s constant G = 1. However, it’s ridiculous not to

set the speed of light c = 1, so I’ll do that. For further reference, recommended texts include

A First Course in General Relativity by Bernard Schutz, at an undergrad level; and graduate

texts General Relativity by Wald, Gravitation and Cosmology by Weinberg, Gravitation by

Misner, Thorne, and Wheeler, and Introducing Einstein’s Relativity by D’Inverno. Of course

best of all would be to rush to <http://pancake.uchicago.edu/~carroll/notes/>, where

you will find about one semester’s worth of free GR notes, of which this introduction is

essentially an abridgment.

2 Special Relativity

Special relativity (SR) stems from considering the speed of light to be invariant in all reference

frames. This naturally leads to a view in which space and time are joined together to form

spacetime; the conversion factor from time units to space units is c (which equals 1, right?

couldn’t be simpler). The coordinates of spacetime may be chosen to be

x0 ≡ ct = t

x1 ≡ x

x2 ≡ y

x3 ≡ z. (2)
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These are Cartesian coordinates. Note a few things: these indices are superscripts, not

exponents. The indices go from zero to three; the collection of all four coordinates is denoted

xµ. Spacetime indices are always in Greek; occasionally we will use Latin indices if we mean

only the spatial components, e.g. i = 1, 2, 3.

The stage on which SR is played out is a specific four dimensional manifold, known as

Minkowski spacetime (or sometimes “Minkowski space”). The xµ are coordinates on this

manifold. The elements of spacetime are known as events; an event is specified by giving its

location in both space and time. Vectors in spacetime are always fixed at an event; there is

no such thing as a “free vector” that can move from place to place. Since Minkowski space

is four dimensional, these are generally known as four-vectors, and written in components

as V µ, or abstractly as just V .

We also have the metric on Minkowski space, ηµν . The metric gives us a way of taking

the norm of a vector, or the dot product of two vectors. Written as a matrix, the Minkowski

metric is

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3)

Then the dot product of two vectors is defined to be

A ·B ≡ ηµνA
µBν = −A0B0 + A1B1 + A2B2 + A3B3 . (4)

(We always use the summation convention, in which identical upper and lower indices

are implicitly summed over all their possible values.) This is especially useful for taking the

infinitesimal (distance)2 between two points, also known as the spacetime interval:

ds2 = ηµνdx
µdxν (5)

= −dt2 + dx2 + dy2 + dz2 . (6)

In fact, an equation of the form (6) is often called “the metric.” The metric contains all of the

information about the geometry of the manifold. The Minkowski metric is of course just the

spacetime generalization of the ordinary inner product on flat Euclidean space, which we can

think of in components as the Kronecker delta, δij. We say that the Minkowski metric has

signature (−+ ++), sometimes called “Lorentzian,” as opposed to the Euclidian signature

with all plus signs. (The overall sign of the metric is a matter of convention, and many texts

use (+−−−).)

Notice that for a particle with fixed spatial coordinates xi, the interval elapsed as it moves

forward in time is negative, ds2 = −dt2 < 0. This leads us to define the proper time τ via

dτ 2 ≡ −ds2 . (7)
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The proper time elapsed along a trajectory through spacetime will be the actual time mea-

sured by an observer on that trajectory. Some other observer, as we know, will measure a

different time.

Some verbiage: a vector V µ with negative norm, V · V < 0, is known as timelike. If the

norm is zero, the vector is null, and if it’s positive, the vector is spacelike. Likewise, tra-

jectories with negative ds2 (note – not proper time!) are called timelike, etc. These concepts

lead naturally to the concept of a spacetime diagram, with which you are presumably

familiar. The set of null trajectories leading into and out of an event constitute a light

cone, terminology which becomes transparent in the context of a spacetime diagram such

as Figure 1.

A path through spacetime is specified by giving the four spacetime coordinates as a

function of some parameter, xµ(λ). A path is characterized as timelike/null/spacelike when

its tangent vector dxµ/dλ is timelike/null/spacelike. For timelike paths the most convenient

parameter to use is the proper time τ , which we can compute along an arbitrary timelike

path via

τ =
∫ √

−ds2 =
∫ √

−ηµν
dxµ

dλ

dxν

dλ
dλ . (8)

The corresponding tangent vector Uµ = dxµ/dτ is called the four-velocity, and is auto-

matically normalized:

ηµνU
µU ν = −1 , (9)

as you can check.

A related vector is the momentum four-vector, defined by

pµ = mUµ , (10)

where m is the mass of the particle. The mass is a fixed quantity independent of inertial

frame, what you may be used to thinking of as the “rest mass.” The energy of a particle

is simply p0, the timelike component of its momentum vector. In the particle’s rest frame

we have p0 = m; recalling that we have set c = 1, we find that we have found the famous

equation E = mc2. In a moving frame we can find the components of pµ by performing a

Lorentz transformation; for a particle moving with three-velocity v = dx/dt along the x axis

we have

pµ = (γm, vγm, 0, 0) , (11)

where γ = 1/
√

1− v2. For small v, this gives p0 = m + 1
2
mv2 (what we usually think of

as rest energy plus kinetic energy) and p1 = mv (what we usually think of as Newtonian

momentum).
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Figure 1: A lightcone, portrayed on a spacetime diagram. Points which are spacelike-, null-,
and timelike-separated from the origin are indicated.
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3 Tensors

The transition from flat to curved spacetime means that we will eventually be unable to

use Cartesian coordinates; in fact, some rather complicated coordinate systems become nec-

essary. Therefore, for our own good, we want to make all of our equations coordinate

invariant – i.e., if the equation holds in one coordinate system, it will hold in any. It also

turns out that many of the quantities that we use in GR will be tensors. Tensors may be

thought of as objects like vectors, except with possibly more indices, which transform under a

change of coordinates xµ → xµ′
according to the following rule, the tensor transformation

law:

Sµ′
ν′ρ′ =

∂xµ′

∂xµ

∂xν

∂xν′

∂xρ

∂xρ′ S
µ

νρ . (12)

Note that the unprimed indices on the right are dummy indices, which are summed over.

The pattern in (12) is pretty easy to remember, if you think of “conservation of indices”: the

upper and lower free indices (not summed over) on each side of an equation must be the same.

This holds true for any equation, not just the tensor transformation law. Remember also that

upper indices can only be summed with lower indices; if you have two upper or lower indices

that are the same, you goofed. Since there are in general no preferred coordinate systems in

GR, it behooves us to cast all of our equations in tensor form, because if an equation between

two tensors holds in one coordinate system, it holds in all coordinate systems.

Tensors are not very complicated; they’re just generalizations of vectors. (Note that

scalars qualify as tensors with no indices, and vectors are tensors with one upper index; a

tensor with two indices can be though of as a matrix.) However, there is an entire language

associated with them which you must learn. If a tensor has n upper and m lower indices, it

is called a (n, m) tensor. The upper indices are called contravariant indices, and the lower

ones are covariant; but everyone just says “upper” and “lower,” and so should you. Tensors

of type (n, m) can be contracted to form a tensor of type (n− 1, m− 1) by summing over

one upper and one lower index:

Sµ = T µλ
λ . (13)

The contraction of a two-index tensor is often called the trace. (Which makes sense if you

think about it.)

If a tensor is the same when we interchange two indices,

S···αβ··· = S···βα··· , (14)

it is said to be symmetric in those two indices; if it changes sign,

S···αβ··· = −S···βα··· , (15)

we call it antisymmetric. A tensor can be symmetric or antisymmetric in many indices at

once. We can also take a tensor with no particular symmetry properties in some set of indices
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and pick out the symmetric/antisymmetric piece by taking appropriate linear combinations;

this procedure of symmetrization or antisymmetrization is denoted by putting parentheses

or square brackets around the relevant indices:

T(µ1µ2···µn) =
1

n!
(Tµ1µ2···µn + sum over permutations of µ1 · · ·µn)

T[µ1µ2···µn] =
1

n!
(Tµ1µ2···µn + alternating sum over permutations of µ1 · · ·µn) . (16)

By “alternating sum” we mean that permutations which are the result of an odd number of

exchanges are given a minus sign, thus:

T[µνρ]σ =
1

6
(Tµνρσ − Tµρνσ + Tρµνσ − Tνµρσ + Tνρµσ − Tρνµσ) . (17)

The most important tensor in GR is the metric gµν , a generalization (to arbitrary coor-

dinates and geometries) of the Minkowski metric ηµν . Although ηµν is just a special case of

gµν , we denote it by a different symbol to emphasize the importance of moving from flat to

curved space. The metric is a symmetric two-index tensor. An important fact is that it is

always possible to find coordinates such that, at one specified point p, the components of the

metric are precisely those of the Minkowski metric (3) and the first derivatives of the metric

vanish. In other words, the metric will look flat at precisely that point; however, in general

the second derivatives of gµν cannot be made to vanish, a manifestation of curvature.

Even if spacetime is flat, the metric can still have nonvanishing derivatives if the coordi-

nate system is non-Cartesian. For example, in spherical coordinates (on space) we have

t = t

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ , (18)

which leads directly to

ds2 = −dt2 + dr2 + r2 dθ2 + r2 sin2 θ dφ2 , (19)

or

gµν =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (20)

Notice that, while we could use the tensor transformation law (12), it is often more straight-

forward to find new tensor components by simply plugging in our coordinate transformations

to the differential expression (e.g. dz = cos θ dr − r sin θ dθ).
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Just as in Minkowski space, we use the metric to take dot products:

A ·B ≡ gµνA
µBν . (21)

This suggests, as a shortcut notation, the concept of lowering indices; from any vector we

can construct a (0, 1) tensor defined by contraction with the metric:

Aν ≡ gµνA
µ , (22)

so that the dot product becomes gµνA
µBν = AνB

ν . We also define the inverse metric gµν

as the matrix inverse of the metric tensor:

gµνgνρ = δµ
ρ , (23)

where δµ
ρ is the (spacetime) Kronecker delta. (Convince yourself that this expression really

does correspond to matrix multiplication.) Then we have the ability to raise indices:

Aµ = gµνAν . (24)

Note that raising an index on the metric yields the Kronecker delta, so we have

gµνgµν = δµ
µ = 4 . (25)

Despite the ubiquity of tensors, it is sometimes useful to consider non-tensorial objects.

An important example is the determinant of the metric tensor,

g ≡ det (gµν) . (26)

A straightforward calculation shows that under a coordinate transformation xµ → xµ′
, this

doesn’t transform by the tensor transformation law (under which it would have to be invari-

ant, since it has no indices), but instead as

g →
[
det

(
∂xµ′

∂xµ

)]−2

g . (27)

The factor det(∂xµ′
/∂xµ) is the Jacobian of the transformation. Objects with this kind of

transformation law (involving powers of the Jacobian) are known as tensor densities; the

determinant g is sometimes called a “scalar density.” Another example of a density is the

volume element d4x = dx0dx1dx2dx3:

d4x→ det

(
∂xµ′

∂xµ

)
d4x . (28)
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To define an invariant volume element, we can therefore multiply d4x by the square root of

minus g, so that the Jacobian factors cancel out:
√
−g d4x→

√
−g d4x . (29)

In Cartesian coordinates, for example, we have
√
−g d4x = dt dx dy dz, while in polar coor-

dinates this becomes r2 sin θ dt dr dθ dφ. Thus, integrals of functions over spacetime are of

the form
∫
f(xµ)

√
−g d4x. (“Function,” of course, is the same thing as “scalar.”)

Another object which is unfortunately not a tensor is the partial derivative ∂/∂xµ, often

abbreviated to ∂µ. Acting on a scalar, the partial derivative returns a perfectly respectable

(0, 1) tensor; using the conventional chain rule we have

∂µφ→ ∂µ′φ =
∂xµ

∂xµ′ ∂µφ , (30)

in agreement with the tensor transformation law. But on a vector V µ, given that V µ →
∂xµ′

∂xµ V
µ, we get

∂µV
ν → ∂µ′V ν′

=

(
∂xµ

∂xµ′ ∂µ

)(
∂xν′

∂xν
V ν

)

=
∂xµ

∂xµ′

∂xν′

∂xν
(∂µV

ν) +
∂xµ

∂xµ′

∂2xν′

∂xν∂xµ
V µ . (31)

The first term is what we want to see, but the second term ruins it. So we define a covariant

derivative to be a partial derivative plus a correction that is linear in the original tensor:

∇µV
ν = ∂µV

ν + Γν
µλV

λ . (32)

Here, the symbol Γν
µλ stands for a collection of numbers, called connection coefficients,

with an appropriate non-tensorial transformation law chosen to cancel out the non-tensorial

term in (31). Thus we need to have

Γν′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν′

∂xν
Γν

µλ −
∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν′

∂xµ∂xλ
. (33)

Then ∇µV
ν is guaranteed to transform like a tensor. The same kind of trick works to define

covariant derivatives of tensors with lower indices; we simply introduce a minus sign and

change the dummy index which is summed over:

∇µων = ∂µων − Γλ
µνωλ . (34)

If there are many indices, for each upper index you introduce a term with a single +Γ, and

for each lower index a term with a single −Γ:

∇σT
µ1µ2···µk

ν1ν2···νl
= ∂σT

µ1µ2···µk
ν1ν2···νl

+Γµ1

σλ T
λµ2···µk

ν1ν2···νl
+ Γµ2

σλ T
µ1λ···µk

ν1ν2···νl
+ · · ·

−Γλ
σν1
T µ1µ2···µk

λν2···νl
− Γλ

σν2
T µ1µ2···µk

ν1λ···νl
− · · · . (35)
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This is the general expression for the covariant derivative.

What are these mysterious connection coefficients? Fortunately they have a natural

expression in terms of the metric and its derivatives:

Γσ
µν =

1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (36)

It is left up to you to check that the mess on the right really does have the desired transfor-

mation law. You can also verify that the connection coefficients are symmetric in their lower

indices, Γσ
µν = Γσ

νµ. These coefficients can be nonzero even in flat space, if we have non-

Cartesian coordinates. In principle there can be other kinds of connection coefficients, but

we won’t worry about that here; the particular choice (36) are sometimes called Christoffel

symbols, and are the ones we always use in GR. With these connection coefficients, we get

the nice feature that the covariant derivative of the metric and its inverse are always zero,

known as metric compatibility:

∇σgµν = 0 , ∇σg
µν = 0 . (37)

So, given any metric gµν , we proceed to calculate the connection coefficients so that

we can take covariant derivatives. Many of the familiar equations of physics in flat space

continue to hold true in curved space once we replace partial derivatives by covariant ones.

For example, in special relativity the electric and magnetic vector fields ~E and ~B can be

collected into a single two-index antisymmetric tensor Fµν :

Fµν =


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 , (38)

and the electric charge density ρ and current ~J into a four-vector Jµ:

Jµ = (ρ, ~J) . (39)

In this notation, Maxwell’s equations

∇×B− ∂tE = 4πJ

∇ · E = 4πρ

∇× E + ∂tB = 0

∇ ·B = 0 (40)

shrink into two relations,

∂µF
νµ = 4πJν

∂[µFνλ] = 0 . (41)
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These are true in Minkowski space, but the generalization to a curved spacetime is immediate;

just replace ∂µ → ∇µ:

∇µF
νµ = 4πJν

∇[µFνλ] = 0 . (42)

These equations govern the behavior of electromagentic fields in general relativity.

4 Curvature

We have been loosely throwing around the idea of “curvature” without giving it a care-

ful definition. The first step toward a better understanding begins with the notion of a

manifold. Basically, a manifold is “a possibly curved space which, in small enough regions

(infinitesimal, really), looks like flat space.” You can think of the obvious example: the

Earth looks flat because we only see a tiny part of it, even though it’s round. A crucial

feature of manifolds is that they have the same dimensionality everywhere; if you glue the

end of a string to a plane, the result is not a manifold since it is partly one-dimensional and

partly two-dimensional.

The most famous examples of manifolds are n-dimensional flat space Rn (“R” as in real,

as in real numbers), and the n-dimensional sphere Sn. So, R1 is the real line, R2 is the

plane, and so on. Meanwhile S1 is a circle, S2 is a sphere, etc. For future reference, the most

popular coordinates on S2 are the usual θ and φ angles. In these coordinates, the metric on

S2 (with radius r = 1) is

ds2 = dθ2 + sin2 θ dφ2 . (43)

The fact that manifolds may be curved makes life interesting, as you may imagine.

However, most of the difficulties encountered in curved spaces are also encountered in flat

space if you use non-Cartesian coordinates. The thing about curved space is, you can never

use Cartesian coordinates, because they only describe flat spaces. So the machinery we

developed for non-Cartesian coordinates will be crucial; in fact, we’ve done most of the work

already.

It should come as no surprise that information about the curvature of a manifold is

contained in the metric; the question is, how to extract it? You can’t get it easily from the

Γρ
µν , for instance, since they can be zero or nonzero depending on the coordinate system

(as we saw for flat space). For reasons we won’t go into, the information about curvature

is contained in a four-component tensor known as the Riemann curvature tensor. This

supremely important object is given in terms of the Christoffel symbols by the formula

Rσ
µαβ ≡ ∂αΓσ

µβ − ∂βΓσ
µα + Γσ

αλΓ
λ
µβ − Γσ

βλΓ
λ
µα . (44)

11



(The overall sign of this is a matter of convention, so check carefully when you read anybody

else’s papers. Note also that the Riemann tensor is constructed from non-tensorial elements

— partial derivatives and Christoffel symbols — but they are carefully arranged so that the

final result transforms as a tensor, as you can check.) This tensor has one nice property that

a measure of curvature should have: all of the components of Rσ
µαβ vanish if and only if

the space is flat. Operationally, “flat” means that there exists a global coordinate system in

which the metric components are everywhere constant.

There are two contractions of the Riemann tensor which are extremely useful: the Ricci

tensor and the Ricci scalar. The Ricci tensor is given by

Rαβ = Rλ
αλβ . (45)

Although it may seem as if other independent contractions are possible (using other indices),

the symmetries of Rσ
µαβ (discussed below) make this the only independent contraction. The

trace of the Ricci tensor yields the Ricci scalar:

R = Rλ
λ = gµνRµν . (46)

This is another useful item.

Although the Riemann tensor has many indices, and therefore many components, using

it is vastly simplified by the many symmetries it obeys. In fact, only 20 of the 44 = 256

components of Rσ
µαβ are independent. Here is a list of some of the useful properties obeyed

by the Riemann tensor, which are most easily expressed in terms of the tensor with all indices

lowered, Rµνρσ = gµλR
λ

νρσ:

Rµνρσ = −Rµνσρ = −Rνµρσ

Rµνρσ = Rρσµν

Rµνρσ +Rµρσν +Rµσνρ = 0 . (47)

These imply a symmetry of the Ricci tensor,

Rµν = Rνµ . (48)

In addition to these algebraic identities, the Riemann tensor obeys a differential identity:

∇[λRµν]ρσ = 0 . (49)

This is sometimes known as the Bianchi identity. If we define a new tensor, the Einstein

tensor, by

Gµν ≡ Rµν −
1

2
Rgµν , (50)
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then the Bianchi identity implies that the divergence of this tensor vanishes identically:

∇µGµν = 0 . (51)

This is sometimes called the contracted Bianchi identity.

Basically, there are only two things you have to know about curvature: the Riemann

tensor, and geodesics. You now know the Riemann tensor – lets move on to geodesics.

Informally, a geodesic is “the shortest distance between two points.” More formally,

a geodesic is a curve which extremizes the length functional
∫
ds. That is, imagine a path

parameterized by λ, i.e. xµ(λ). The infinitesimal distance along this curve is given by

ds =

√√√√∣∣∣∣∣gµν
dxµ

dλ

dxν

dλ

∣∣∣∣∣ dλ . (52)

So the entire length of the curve is just

L =
∫
ds . (53)

To find a geodesic of a given geometry, we would do a calculus of variations manipulation

of this object to find an extremum of L. Luckily, stronger souls than ourselves have come

before and done this for us. The answer is that xµ(λ) is a geodesic if it satisfies the famous

geodesic equation:
d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0. (54)

In fact this is only true if λ is an affine parameter, that is if it is related to the proper

time via

λ = aτ + b . (55)

In practice, the proper time itself is almost always used as the affine parameter (for timelike

geodesics, at least). In that case, the tangent vector is the four-velocity Uµ = dxµ/dτ , and

the geodesic equation can be written

d

dτ
Uµ + Γµ

ρσU
ρUσ = 0 . (56)

The physical reason why geodesics are so important is simply this: in general relativity,

test bodies move along geodesics. If the bodies are massless, these geodesics will be null

(ds2 = 0), and if they are massive the geodesics will be timelike (ds2 < 0). Note that when

we were being formal we kept saying “extremum” rather than “minimum” length. That’s

because, for massive test particles, the geodesics on which they move are curves of maximum

proper time. (In the famous “twin paradox”, two twins take two different paths through

flat spacetime, one staying at home [thus on a geodesic], and the other traveling off into
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space and back. The stay-at-home twin is older when they reunite, since geodesics maximize

proper time.)

This is an appropriate place to talk about the philosophy of GR. In pre-GR days, Newto-

nian physics said “particles move along straight lines, until forces knock them off.” Gravity

was one force among many. Now, in GR, gravity is represented by the curvature of space-

time, not by a force. From the GR point of view, “particles move along geodesics, until forces

knock them off.” Gravity doesn’t count as a force. If you consider the motion of particles

under the influence of forces other than gravity, then they won’t move along geodesics – you

can still use (54) to describe their motions, but you have to add a force term to the right

hand side. In that sense, the geodesic equation is something like the curved-space expression

for F = ma = 0.

5 General Relativity

Moving from math to physics involves the introduction of dynamical equations which relate

matter and energy to the curvature of spacetime. In GR, the “equation of motion” for the

metric is the famous Einstein equation:

Rµν −
1

2
Rgµν = 8πGTµν . (57)

Notice that the left-hand side is the Einstein tensor Gµν from (50). G is Newton’s constant

of gravitation (not the trace of Gµν). Tµν is a symmetric two-index tensor called the energy-

momentum tensor, or sometimes the stress-energy tensor. It encompasses all we need to

know about the energy and momentum of matter fields, which act as a source for gravity.

Thus, the left hand side of this equation measures the curvature of spacetime, and the right

measures the energy and momentum contained in it. Truly glorious.

The components Tµν of the energy-momentum tensor are “the flux of the µth component of

momentum in the νth direction.” This definition is perhaps not very useful. More concretely,

we can consider a popular form of matter in the context of general relativity: a perfect fluid,

defined to be a fluid which is isotropic in its rest frame. This means that the fluid has no

viscosity or heat flow; as a result, it is specified entirely in terms of the rest-frame energy

density ρ and rest-frame pressure p (isotropic, and thus equal in all directions). If use Uµ to

stand for the four-velocity of a fluid element, the energy-momentum tensor takes the form

Tµν = (ρ+ p)UµUν + pgµν . (58)

If we raise one index and use the normalization gµνUµUν = −1, we get an even more under-
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standable version:

Tµ
ν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (59)

If Tµν encapsulates all we need to know about energy and momentum, it should be able

to characterize the appropriate conservation laws. In fact these are formulated by saying

that the covariant divergence of Tµν vanishes:

∇µTµν = 0 . (60)

Recall that the contracted Bianchi identity (51) guarantees that the divergence of the Ein-

stein tensor vanishes identically. So Einstein’s equation (57) guarantees energy-momentum

conservation. Of course, this is a local relation; if we (for example) integrate the energy den-

sity ρ over a spacelike hypersurface, the corresponding quantity is not constant with time. In

GR there is no global notion of energy conservation; (60) expresses local conservation, and

the appearance of the covariant derivative allows this equation to account for the transfer of

energy back and forth between matter and the gravitational field.

The exotic appearance of Einstein’s equation should not obscure the fact that it a natural

extension of Newtonian gravity. To see this, consider Poisson’s equation for the Newtonian

potential Φ:

∇2Φ = 4πGρ , (61)

where ρ is the matter density. On the left hand side of this we see a second-order differential

operator acting on the gravitational potential Φ. This is proportional to the density of

matter. Now, GR is a fully relativistic theory, so we would expect that the matter density

should be replaced by the full energy-momentum tensor Tµν . To correspond to (61), this

should be proportional to a 2-index tensor which is a second-order differential operator acting

on the gravitational field, i.e. the metric. If you think about the definition of Gµν in terms

of gµν , this is exactly what the Einstein tensor is. In fact, Gµν is the only two-index tensor,

second order in derivatives of the metric, for which the divergence vanishes.

So the GR equation is of the same essential form as the Newtonian one. We should ask

for something more, however: namely, that Newtonian gravity is recovered in the appro-

priate limit, where the particles are moving slowly (with respect to the speed of light), the

gravitational field is weak (can be considered a perturbation of flat space), and the field is

also static (unchanging with time). We consider a metric which is almost Minkowski, but

with a specific kind of small perturbation:

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)d~x2 , (62)

where Φ is a function of the spatial coordinates xi. If we plug this into the geodesic equation

and solve for the conventional three-velocity (using that the particles are moving slowly), we
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obtain
d2~x

dt2
= −∇Φ , (63)

where ∇ here represents the ordinary spatial divergence (not a covariant derivative). This is

just the equation for a particle moving in a Newtonian gravitational potential Φ. Meanwhile,

we calculate the 00 component of the left-hand side of Einstein’s equation:

R00 −
1

2
Rg00 = 2∇2Φ . (64)

The 00 component of the right-hand side (to first order in the small quantities Φ and ρ) is

just

8πGT00 = 8πGρ . (65)

So the 00 component of Einstein’s equation applied to the metric (62) yields

∇2Φ = 4πGρ , (66)

which is precisely the Poisson equation (61). Thus, in this limit GR does reduce to Newtonian

gravity.

Although the full nonlinear Einstein equation (57) looks simple, in applications it is not.

If you recall the definition of the Riemann tensor in terms of the Christoffel symbols, and

the definition of those in terms of the metric, you realize that Einstein’s equation for the

metric are complicated indeed! It is also highly nonlinear, and correspondingly very difficult

to solve. If we take the trace of (57), we obtain

−R = 8πGT . (67)

Plugging this into (57), we can rewrite Einstein’s equations as

Rµν = 8πG
(
Tµν −

1

2
Tgµν

)
. (68)

This form is useful when we consider the case when we are in the vacuum – no energy or

momentum. In this case Tµν = 0 and (68) becomes Einstein’s equation in vacuum:

Rµν = 0 . (69)

This is somewhat easier to solve than the full equation.

One final word on Einstein’s equation: it may be derived from a very simple Lagrangian,

L =
√
−gR (plus appropriate terms for the matter fields). In other words, the action for

GR is simply

S =
∫
d4x
√
−gR , (70)

an Einstein’s equation comes from looking for extrema of this action with respect to variations

of the metric gµν . What could be more elegant?
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6 Schwarzschild solution

In order to solve Einstein’s equation we usually need to make some simplifying assumptions.

For example, in many physical situations, we have spherical symmetry. If we want to solve

for a metric gµν , this fact is very helpful, because the most general spherically symmetric

metric may be written (in spherical coordinates) as

ds2 = −A(r, t)dt2 +B(r, t)dr2 + r2(dθ2 + sin2 θdφ2) , (71)

where A and B are positive functions of (r, t), and you will recognize the metric on the sphere

from (43). If we plug this into Einstein’s equation, we will get a solution for a spherically

symmetric matter distribution. To be even more restrictive, let’s consider the equation in

vacuum, (69). Then there is a unique solution:

ds2 = −
(
1− 2Gm

r

)
dt2 +

(
1− 2Gm

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) . (72)

This is the celebrated Schwarzschild metric solution to Einstein’s equations. The param-

eter m, of course, measures the amount of mass inside the radius r under consideration. A

remarkable fact is that the Schwarzschild metric is the unique solution to Einstein’s equation

in vacuum with a spherically symmetric matter distribution. This fact, known as Birkhoff’s

theorem, means that the matter can oscillate wildly, as long as it remains spherically sym-

metric, and the gravitational field outside will remain unchanged.

Philosophy point: the metric components in (72) blow up at r = 0 and r = 2Gm. Of-

ficially, any point at which the metric components become infinite, or exhibit some other

pathological behavior, is known as a singularity. These beasts come in two types: “co-

ordinate” singularities and “true” singularities. A coordinate singularity is simply a result

of choosing bad coordinates; if we change coordinates we can remove the singularity. A

true singularity is an actual pathology of the geometry, a point at which the manifold is

ill-defined. In the Schwarzschild geometry, the point r = 0 is a real singularity, an unavoid-

able blowing-up. However, the point r = 2Gm is merely a coordinate singularity. We can

demonstrate this by making a transformation to what are known as Kruskal coordinates,

defined by

u =
(

r

2Gm
− 1

)1/2

er/4Gmcosh(t/4Gm)

v =
(

r

2Gm
− 1

)1/2

er/4Gmsinh(t/4Gm). (73)

In these coordinates, the metric (72) takes the form

ds2 =
32(Gm)3

r
e−r/2Gm(−dv2 + du2) + r2(dθ2 + sin2 θdφ2) , (74)
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where r is considered to be an implicit function of u and v defined by

u2 − v2 = er/2Gm
(

r

2Gm
− 1

)
. (75)

If we look at (74), we see that nothing blows up at r = 2Gm. The mere fact that we could

choose coordinates in which this happens assures us that r = 2Gm is a mere coordinate

singularity.

The useful thing about the Schwarzschild solution is that it describes both mundane

things like the solar system, and more exotic objects like black holes. To get a feel for it,

let’s look at how particles move in a Schwarzschild geometry. It turns out that we can cast

the problem of a particle moving in the plane θ = π/2 as a one-dimensional problem for the

radial coordinate r = r(τ). In other words, the distance of a particle from the point r = 0

is a solution to the equation

1

2

(
dr

dτ

)2

+ V (r) =
1

2
E2 . (76)

This is just the equation of motion for a particle of unit mass and energy E in a one-

dimensional potential V (r). This potential, for the Schwarzschild geometry, is given by

V (r) =
1

2
ε− ε

Gm

r
+
L2

2r2
− GmL2

r3
. (77)

Here, L represents the angular momentum (per unit mass) of the particle, and ε is a constant

equal to 0 for massless particles and +1 for massive particles. (Note that the proper time

τ is zero for massless particles, so we use some other parameter λ in (76), but the equation

itself looks the same). So, to find the orbits of particles in a Schwarzschild metric, just solve

the motion of a particle in the potential given by (77). Note that the first term in (77) is a

constant, the second term is exactly what we expect from Newtonian gravity, and the third

term is just the contribution of the particle’s angular momentum, which is also present in

the Newtonian theory. Only the last term in (77) is a new addition from GR.

There are two important effects of this extra term. First, it acts as a small perturbation

on any orbit – this is what leads to the precession of Mercury, for instance. Second, for r

very small, the GR potential goes to −∞; this means that a particle that approaches too

close to r = 0 will fall into the center and never escape! Even though this is in the context

of unaccelerated test particles, a similar statement holds true for particles with the ability

to accelerate themselves all they like – see below. However, not to worry; for a star such as

the Sun, for which the Schwarzschild metric only describes points outside the surface, you

would run into the star long before you approached the point where you could not escape.

Nevertheless, we all know of the existence of more exotic objects: black holes. A

black hole is a body in which all of the mass has collapsed gravitationally past the point

of possible escape. This point of no return, given by the surface r = 2Gm, is known as
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the event horizon, and can be thought of as the “surface” of a black hole. Although it

is impossible to go into much detail about the host of interesting properties of the event

horizon, the basics are not difficult to grasp. From the point of view of an outside observer,

a clock falling into a black hole will appear to move more and more slowly as it approaches

the event horizon. In fact, the external observer will never see a test particle cross the

surface r = 2Gm; they will just see the particle get closer and closer, and move more and

more slowly.

Contrast this to what you would experience as a test observer actually thrown into a black

hole. To you, time always seems to move at the same rate; since you and your wristwatch are

in the same inertial frame, you never “feel time moving more slowly.” Therefore, rather than

taking an infinite amount of time to reach the event horizon, you zoom right past – doesn’t

take very long at all, actually. You then proceed directly to fall to r = 0, also in a very short

time. Once you pass r = 2Gm, you cannot help but hit r = 0; it is as inevitable as moving

forward in time. The literal truth of this statement can be seen by looking at the metric

(72) and noticing that r becomes a timelike coordinate for r < 2Gm; therefore your voyage

to the center of the black hole is literally moving forward in time! What’s worse, we noted

above that a geodesic (unaccelerated motion) maximized the proper time – this means that

the more you struggle, the sooner you will get there. (Of course, you won’t struggle, because

you would have been ripped to shreds by tidal forces. The grisly death of an astrophysicist

who enters a black hole is detailed in Misner, Thorne, and Wheeler, pp. 860-862.)

The spacetime diagram of a black hole in Kruskal coordinates (74) is shown in Figure 2.

Shown is a slice through the entire spacetime, corresponding to angular coordinates θ = π/2

and φ = 0. There are two asymptotic regions, one at u→ +∞ and the other at u→ −∞; in

both regions the metric looks approximately flat. The event horizon is the surface r = 2Gm,

or equivalently u = ±v. In this diagram all light cones are at ±45◦. Inside the event horizon,

where r < 2Gm, all timelike trajectories lead inevitably to the singularity at r = 0. It should

be stressed that this diagram represents the “maximally extended” Schwarzschild solution

— a complete solution to Einstein’s equation in vacuum, but not an especially physically

realistic one. In a realistic black hole, formed for instance from the collapse of a massive

star, the vacuum equations do not tell the whole story, and there will not be two distinct

asymptotic regions, only the one in which the star originally was located. (For that matter,

timelike trajectories cannot travel between the two regions, so we could never tell whether

another such region did exist.)

In the collapse to a black hole, all the information about the detailed nature of the col-

lapsing object is lost: what it was made of, its shape, etc. The only information which

is not wiped out is the amount of mass, angular momentum, and electric charge in the

hole. This fact, the no-hair theorem, implies that the most general black-hole metric

will be a function of these three numbers only. However, real-world black holes will prob-
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r = 0
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r = 2GM

r = 2GM r = 2GM

r = 2GM
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Figure 2: The Kruskal diagram — the Schwarzschild solution in Kruskal coordinates (74),
where all light cones are at ±45◦. The surface r = 2Gm is the event horizon; inside the
event horizon, all timelike paths hit the singularity at r = 0. The right- and left-hand side
of the diagram represent distinct asymptotically flat regions of spacetime.
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ably be electrically neutral, so we will not present the metric for a charged black hole (the

Reissner-Nordstrom metric). Of considerable astrophysical interest are spinning black

holes, described by the Kerr metric:

ds2 = −
[
∆− ω2 sin2 θ

Σ

]
dt2 −

[
4ωmGr sin2 θ

Σ

]
dtdφ+

Σ

∆
dr2 + Σdθ2

+

[
(r2 + ω2)2 −∆ω2 sin2 θ

Σ

]
sin2 θdφ2, (78)

where

Σ ≡ r2 + ω2 cos2 θ, ∆ ≡ r2 + ω2 − 2Gmr , (79)

and ω is the angular velocity of the body.

Finally, among the many additional possible things to mention, there’s the cosmic cen-

sorship conjecture. Notice how the Schwarzschild singularity at r = 0 is hidden, in a

sense – you can never get to it without crossing an horizon. It is conjectured that this is

always true, in any solution to Einstein’s equation. However, some numerical work seems to

contradict this conjecture, at least in special cases.

7 Cosmology

Just as we were able to make great strides with the Schwarzschild metric on the assumption

of sperical symmetry, we can make similar progress in cosmology by assuming that the

Universe is homogeneous and isotropic. That is to say, we assume the existence of a “rest

frame for the Universe,” which defines a universal time coordinate, and singles out three-

dimensional surfaces perpendicular to this time coordinate. (In the real Universe, this rest

frame is the one in which galaxies are at rest and the microwave background is isotropic.)

“Homogeneous” means that the curvature of any two points at a given time t is the same.

“Isotropic” is trickier, but basically means that the universe looks the same in all directions.

Thus, the surface of a cylinder is homogeneous (every point is the same) but not isotropic

(looking along the long axis of the cylinder is a preferred direction); a cone is isotropic around

its vertex, but not homogeneous.

These assumptions narrow down the choice of metrics to precisely three forms, all given

by the Robertson-Walker (RW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (80)

where the constant k can be −1, 0, or +1. The function a(t) is known as the scale factor

and tells us the relative sizes of the spatial surfaces. The above coordinates are called

comoving coordinates, since a point which is at rest in the preferred frame of the universe
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will have r, θ, φ = constant. The k = −1 case is known as an open universe, in which the

preferred three-surfaces are “three-hyperboloids” (saddles); k = 0 is a flat universe, in which

the preferred three-surfaces are flat space; and k = +1 is a closed universe, in which the

preferred three-surfaces are three-spheres. Note that the terms “open,” “closed,” and “flat”

refer to the spatial geometry of three-surfaces, not to whether the universe will eventually

recollapse. The volume of a closed universe is finite, while open and flat universes have

infinite volume (or at least they can; there are also versions with finite volume, obtained

from the infinite ones by performing discrete identifications).

There are other coordinate systems in which (8.1) is sometimes written. In particular, if

we set r = (sinψ, ψ, sinhψ) for k = (+1, 0, −1) respectively, we obtain

ds2 = −dt2 + a2(t)


dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)
dψ2 + ψ2(dθ2 + sin2 θdφ2)
dψ2 + sinh2ψ(dθ2 + sin2 θdφ2)


(k = +1)
(k = 0)

(k = −1)
(81)

Further, the flat (k = 0) universe also may be written in almost-Cartesian coordinates:

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)

= −a2(η)(−dη2 + dx2 + dy2 + dz2). (82)

In this last expression, η is known as the conformal time and is defined by

η ≡
∫ dt

a(t)
. (83)

The coordinates (η, x, y, z) are often called “conformal coordinates.”

Since the RW metric is the only possible homogeneous and isotropic metric, all we have

to do is solve for the scale factor a(t) by using Einstein’s equation. If we use the vacuum

equation (69), however, we find that the only solution is just Minkowski space. Therefore

we have to introduce some energy and momentum to find anything interesting. Of course

we shall choose a perfect fluid specified by energy density ρ and pressure p. In this case,

Einstein’s equation becomes two differential equations for a(t), known as the Friedmann

equations: (
ȧ

a

)2

=
8πG

3
ρ− k

a2

ä

a
= −4πG

3
(ρ+ 3p) . (84)

Since the Friedmann equations govern the evolution of RW metrics, one often speaks of

Friedman-Robertson-Walker (FRW) cosmology.

The expansion rate of the universe is measured by the Hubble parameter:

H ≡ ȧ

a
, (85)
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and the change of this quantity with time is parameterized by the deceleration parameter:

q ≡ − äa
ȧ2

= −
(

1 +
Ḣ

H2

)
. (86)

The Friedmann equations can be solved once we choose an equation of state, but the

solutions can get messy. It is easy, however, to write down the solutions for the k = 0

universes. If the equation of state is p = 0, the universe is matter dominated, and

a(t) ∝ t2/3 . (87)

In a matter dominated universe, the energy density decreases as the volume increases, so

ρmatter ∝ a−3 . (88)

If p = 1
3
ρ, the universe is radiation dominated, and

a(t) ∝ t1/2 . (89)

In a radiation dominated universe, the number of photons decreases as the volume increases,

and the energy of each photon redshifts and amount proportional to a(t), so

ρrad ∝ a−4 . (90)

If p = −ρ, the universe is vacuum dominated, and

a(t) ∝ eHt . (91)

The vacuum dominated universe is also known as de Sitter space. In de Sitter space, the

energy density is constant, as is the Hubble parameter, and they are related by

H =

√
8πGρvac

3
= constant . (92)

Note that as a→ 0, ρrad grows the fastest; therefore, if we go back far enough in the history

of the universe we should come to a radiation dominated phase. Similarly, ρvac stays constant

as the universe expands; therefore, if ρvac is not zero, and the universe lasts long enough, we

will eventually reach a vacuum-dominated phase.

Given that our Universe is presently expanding, we may ask whether it will continue to

do so forever, or eventually begin to recontract. For energy sources with p/ρ ≥ 0 (including

both matter and radiation dominated universes), closed (k = +1) universes will eventually

recontract, while open and flat universes will expand forever. When we let p/ρ < 0 things

get messier; just keep in mind that spatially closed/open does not necessarily correspond to

temporally finite/infinite.
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The question of whether the Universe is open or closed can be answered observationally.

In a flat universe, the density is equal to the critical density, given by

ρcrit =
3H2

8πG
. (93)

Note that this changes with time; in the present Universe it’s about 5 × 10−30 grams per

cubic centimeter. The universe will be open if the density is less than this critical value,

closed if it is greater. Therefore, it is useful to define a density parameter via

Ω ≡ ρ

ρcrit

=
8πGρ

3H2
= 1 +

k

ȧ2
, (94)

a quantity which will generally change with time unless it equals unity. An open universe

has Ω < 1, a closed universe has Ω > 1.

We mentioned in passing the redshift of photons in an expanding universe. In terms of

the wavelength λ1 of a photon emitted at time t1, the wavelength λ0 observed at a time t0
is given by

λ0

λ1

=
a(t0)

a(t1)
. (95)

We therefore define the redshift z to be the fractional increase in wavelength

z ≡ λ0 − λ1

λ1

=
a(t0)

a(t1)
− 1 . (96)

Keep in mind that this only measures the net expansion of the universe between times t1 and

t0, not the relative speed of the emitting and observing objects, especially since the latter

is not well-defined in GR. Nevertheless, it is common to speak as if the redshift is due to a

Doppler shift induced by a relative velocity between the bodies; although nonsensical from a

strict standpoint, it is an acceptable bit of sloppiness for small values of z. Then the Hubble

constant relates the redshift to the distance s (measured along a spacelike hypersurface)

between the observer and emitter:

z = H(t0)s . (97)

This, of course, is the linear relationship discovered by Hubble.
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