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The cyanide-insensitive alternative oxidase (AOX) is a non-proton-pumping ubiquinol oxidase that catalyzes the reduction of
oxygen to water and is posttranslationally regulated by redox mechanisms and 2-oxo acids. Arabidopsis (Arabidopsis thaliana)
possesses five AOX isoforms (AOX1A–AOX1D and AOX2). AOX1D expression is increased in aox1a knockout mutants from
Arabidopsis (especially after restriction of the cytochrome c pathway) but cannot compensate for the lack of AOX1A, suggesting
a difference in the regulation of these isoforms. Therefore, we analyzed the different AOX isoenzymes with the aim to identify
differences in their posttranslational regulation. Seven tricarboxylic acid cycle intermediates (citrate, isocitrate, 2-oxoglutarate,
succinate, fumarate, malate, and oxaloacetate) were tested for their influence on AOX1A, AOX1C, and AOX1D wild-type protein
activity using a refined in vitro system. AOX1C is insensitive to all seven organic acids, AOX1A and AOX1D are both activated
by 2-oxoglutarate, but only AOX1A is additionally activated by oxaloacetate. Furthermore, AOX isoforms cannot be transformed
to mimic one another by substituting the variable cysteine residues at position III in the protein. In summary, we show that AOX
isoforms from Arabidopsis are differentially fine-regulated by tricarboxylic acid cycle metabolites (most likely depending on the
amino-terminal region around the highly conserved cysteine residues known to be involved in regulation by the 2-oxo acids
pyruvate and glyoxylate) and propose that this is the main reason why they cannot functionally compensate for each other.

Higher plant mitochondria possess two distinct
pathways for the transfer of electrons from ubiquinol to
molecular oxygen: the cytochrome c oxidase (COX)
pathway and the alternative oxidase (AOX) pathway.
In the COX pathway, electron transport is coupled to
proton translocation and concomitant ATP formation.
Electron transport through the AOX pathway occurs
without proton translocation and, consequently, is not
coupled to ATP synthesis or energy conservation (for
review, see Millar et al., 2011). In this case, most of the
energy is dissipated as heat (Sluse and Jarmuszkiewicz,
1998; Affourtit et al., 2002). The dimeric AOX mediates
the terminal step of the alternative pathway and is lo-
calized to the inner mitochondrial membrane, with its
catalytic centers oriented toward the matrix (Juszczuk
and Rychter, 2003).

In different plant species, the number of nuclear
genes encoding AOX isoforms varies between two
(e.g. Nelumbo nucifera) and seven (e.g. Arum maculatum).
Studies on various transgenic plants indicate that these
isoforms are not redundant and cannot compensate for
each other under stress or adverse growth conditions
(Table I). These include studies on Arabidopsis (Arabi-
dopsis thaliana), which has five nuclear AOX genes: four

AOX1 type (A–D) and one AOX2 type (Polidoros et al.,
2009). In Arabidopsis, an aox1a knockout cannot be
compensated by the expression of other isogenes (Table
I; Strodtkötter et al., 2009; Kühn et al., 2015). Although
the expression of AOX1D is increased in aox1a mutants,
it cannot functionally replace the lack of AOX1A, since,
in contrast to the wild type, Ataox1a knockout plants do
not survive treatment with antimycin A, an inhibitor of
the cytochrome c pathway acting at the site of cyto-
chrome bc1 in complex III (Alexandre and Lehninger,
1984; Campo et al., 1992; Maguire et al., 1992; Xia et al.,
1997; Pham et al., 2000; Strodtkötter et al., 2009; Kühn
et al., 2015). Moreover, a double mutant impaired in
both the COX and AOX pathways (aox1a:rpoTmp)
shows more severe growth impairment, even though
AOX1D is highly expressed at the transcript and pro-
tein levels (Kühn et al., 2015). These results suggest that
differences in posttranslational activation of AOX iso-
forms are more likely to occur than differences in
transcriptional regulation in the aox1a:rpoTmp mutants
(Strodtkötter et al., 2009; Kühn et al., 2015).

Besides transcriptional regulation, AOX activity has
been shown to be posttranslationally regulated at the
two highly conserved Cys residues (CysI and CysII)
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present in the N-terminal domain of the protein (Millar
et al., 1993, 1996; Umbach and Siedow, 1993, 1996; Day
and Wiskich, 1995; Day et al., 1995; Rhoads et al., 1998;
Siedow and Umbach, 2000; Umbach et al., 2006;
Selinski et al., 2016, 2017). Two interrelated mecha-
nisms were identified regulating the activation/
inactivation of AOX: (1) oxidation/reduction of the
disulfide bridge formed between the two CysI residues
in the AOX dime; and (2) further activation of the re-
duced form via allosteric regulation by 2-oxo acids, also
involving the conserved Cys residues (Millar et al.,
1993, 1996; Umbach and Siedow, 1993; Rhoads et al.,
1998; Umbach et al., 2006; Moore and Albury, 2008;
Selinski et al., 2016, 2017).

Although recombinant AOX1A, AOX1C, and
AOX1D from Arabidopsis are posttranslationally acti-
vated by pyruvate and glyoxylate (Rhoads et al., 1998;
Umbach et al., 2002, 2006; Selinski et al., 2016, 2017), the
influence of tricarboxylic acid cycle (TCAC) interme-
diates on AOX activity has not been studied in detail. In
soybean (Glycine max) mitochondria and submito-
chondrial particles, the AOX pathway also is activated
by oxaloacetate (OAA) and 2-oxoglutarate (2-OG), but
at higher concentrations than pyruvate (Day et al., 1995;
Millar et al., 1996). However, these effectors have not
been studied in detail, and their effects have not been
confirmed directly with AOX protein. Furthermore,
these studies used mitochondria isolated from soybean
cotyledons, where the only expressed AOX isoform is
AOX2a (Finnegan et al., 1997), and tell us nothing about
AOX1 isoforms, which are predominant in most other
plants. In this work, a detailed comparison of

posttranslational activation by TCAC intermediates of
the three Arabidopsis isoforms AOX1A, AOX1C, and
AOX1D was performed using a sensitive experimental
setup with prolonged linear time intervals, based on
Escherichia coli membranes enriched in individual AOX
isoforms after heterologous expression, as described by
Selinski et al. (2016, 2017).

RESULTS

AOX Isoforms Are Differentially Activated by Organic
Acids of the TCAC

To analyze the isoform-specific sensitivities of
Arabidopsis AOX1A, AOX1C, and AOX1D to TCAC
intermediates, each isoform was recombinantly
expressed in E. coli BHH8, and membrane vesicles
enriched in individual AOX proteins were isolated. A
one-letter code for amino acids was used to describe the
composition at Cys sites I, II, and III occurring in native
and mutant forms combined with a three-letter code,
resulting in CCC for the AOX1A wild type (AOX1A-
WT), CCF for AOX1C-WT, and CCL for AOX1D-WT,
respectively (Selinski et al., 2017). Due to the fact that
AOX proteins were heterologously expressed under
reducing conditions (these conditions are present in the
E. coli cytosol) and that a reductant (DTT) was present
during membrane vesicle isolation and activity mea-
surements, AOX proteins are present in their reduced,
and therefore activatable, state. Isoform-specific oxygen
consumption was measured by linking the NADH de-
hydrogenases and ubiquinol pool of the E. coli respi-
ratory chain to the heterologously expressed AOX
isoform using a Clark-type oxygen electrode (Selinski
et al., 2016, 2017).

Based on the observations that monocarboxylic 2-oxo
acids such as pyruvate and glyoxylate stimulate
AOX1A, AOX1C, and AOX1D activity (Rhoads et al.,
1998; Umbach et al., 2002, 2006; Selinski et al., 2016,
2017) and that the dicarboxylic acid succinate activates
AOX1A from Arabidopsis after substitution of CysI by
Ser or Ala (Djajanegara et al., 1999; Umbach et al., 2002;
Selinski et al., 2017), a variety of other organic acids
(dicarboxylic acids: fumarate, malate, OAA, 2-OG [and
succinate]; tricarboxylic acids: citrate and isocitrate)
were tested for their effects on the activity of the three
AOX wild-type proteins (Fig. 1A). Neither of the tested
tricarboxylic acids (citrate nor isocitrate) influenced the
activity of any isoform (Fig. 1A). This also was the case
for the dicarboxylic acids fumarate, malate, and succi-
nate. However, OAA and 2-OG (the only TCAC inter-
mediates belonging to the group of 2-oxo acids)
significantly stimulated the activity of AOX1A-CCC
(WT) (Fig. 1A) but not AOX1A-SCC derivatives
(Supplemental Fig. S1). While the AOX1A protein
exhibited a 7-fold increase in activity after treatment
with OAA compared with its basal activity (no effec-
tor), the addition of 2-OG led to a 3-fold increase only.
This indicates that AOX1A is more prone to be
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activated by OAA than by 2-OG. Due to the fact that
OAA and 2-OG belong to the group of 2-oxo acids, it is
likely that the activation of AOX1A by OAA and 2-OG
is based on the same mechanism as is the case for py-
ruvate and glyoxylate, namely the proposed formation
of a thiohemiacetal. AOX1D was activated by 2-OG (2-
fold increase) but was insensitive to OAA (Fig. 1A),
while the AOX1C-WT protein was insensitive to all
tested dicarboxylic and tricarboxylic acids (Fig. 1A).
That is, AOX1A responds differentially to metabolites
compared with AOX1C and AOX1D, suggesting that
isoform-specific functions depend on environmental
and/or tissue-specific conditions.
The influence of metabolites on AOX activity also

was investigated in isolated mitochondria from Arabi-
dopsis (Fig. 2). The AOX pathway in these mitochon-
dria was stimulated by the 2-oxo acids 2-OG, pyruvate,
and glyoxylate in a similar manner to that in isolated
E. coli membrane vesicles (Fig. 2). Likewise, the AOX
pathway was insensitive to the addition of citrate, iso-
citrate, fumarate, andmalate compared with its activity
under reducing conditions solely (no effector; Fig. 2).
However, isolated mitochondria pose some problems
when testing different metabolites. (1) Isoform-specific
responses to the tested metabolites cannot be observed
because the isoforms cannot be analyzed separately
and, in any case, AOX1A is the predominant form. (2)
The effect of OAA on the activity of the AOX pathway
cannot be analyzed due to the presence of free ma-
late dehydrogenase (MDH) in isolated mitochondria.

Although the intactness of mitochondria was deter-
mined to be 90% to 91%, the few broken mitochondria
release MDH that then will catalyze NADH oxidation
directly in competition with the electron transport
chain. (3) The influence of succinate on AOX activity
cannot be analyzed accurately because it is an electron
transport substrate (Jacoby et al., 2015).

AOX Isoforms Cannot Be Transformed into One Another
by Amino Acid Substitutions at Position CysIII

Given that the AOX1A-WT protein is differentially
regulated by metabolites compared with AOX1C and
AOX1D (Fig. 1) and that AOX1A possesses a third Cys
residue (CysIII) near the diiron center, while AOX1C
and AOX1D contain a Phe or Leu residue at this posi-
tion (Selinski et al., 2017), derivatives containing Phe or
Leu at the position of CysIII in AOX1A were generated
to mimic AOX1C or AOX1D and vice versa.

Conversion of AOX1A into the CCF form (i.e. like
AOX1C-WT) did not change its activation by 2-oxo acids
or its basal activity (Fig. 3, top); in this respect, AOX1A-
CCF resembled AOX1C. However, AOX1A-CCF was
much more sensitive to pyruvate and glyoxylate (25- to
18-fold increase) compared with AOX1A-CCC#(WT)
(7-fold increase) and AOX1C (Fig. 3).

Conversion of AOX1C to the CCC form (like
AOX1A-WT), on the other hand, had little effect on its
response to organic acids: it remained stimulated by

Table I. Overview of studies on aox mutants

AS, Antisense; ir, RNA interference construct harboring a fragment of a gene in an inverted repeat orientation; OE, overexpression; RNAi, RNA
interference; rpoTmp, T3/T7 bacteriophage-type RNA polymerase, mitochondrial and plastidial. So far, in no case could compensation by another
isoform be observed.

Plant Species AOX Isoforms Mutants References

Arabidopsis thaliana AOX1A to AOX1D, AOX2 aox1a Giraud et al. (2008); Watanabe et al. (2008, 2010);
Strodtkötter et al. (2009); Yoshida et al. (2010, 2011a,
2011b, 2011c); Gandin et al. (2012, 2014);
Vishwakarma et al. (2014, 2015); Keunen et al. (2015)

aox1a/rpoTmp Kühn et al. (2015)
AOX1A AS Fiorani et al. (2005); Umbach et al. (2005); Florez-Sarasa

et al. (2011)
Chlamydomonas

reinhardtii
AOX1, AOX2 AOX1 RNAi Mathy et al. (2010)

Glycine max AOX1A, AOX2a, AOX2b GmAOX2b AS Chai et al. (2010)
Nicotiana tabacum AOX1A, AOX1B, AOX2 AOX1a RNAi Wang et al. (2011); Cvetkovska and Vanlerberghe (2012,

2013); Wang and Vanlerberghe (2013); Cvetkovska
et al. (2014); Dahal et al. (2014)

AOX1A AS Vanlerberghe et al. (1997); Maxwell et al. (1999);
Parsons et al. (1999); Robson and Vanlerberghe
(2002); Guy and Vanlerberghe (2005); Sieger et al.
(2005); Zhang et al. (2009); Dahal et al. (2017); Dahal
and Vanlerberghe (2017)

AOX1A OE Guy and Vanlerberghe (2005); Dahal et al. (2017);
Dahal and Vanlerberghe (2017)

Nicotiana attenuata AOX1A, AOX1B, AOX2 irAOX Zhang et al. (2012)
Solanum lycopersicum AOX1A to AOX1C, AOX2 AOX1A RNAi Xu et al. (2012)
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pyruvate and glyoxylate and insensitive to the other,
larger 2-oxo acids tested (Figs. 1 and 3, middle). Obvi-
ously, the transformation of AOX1A into AOX1C and
vice versa is not possible simply by substituting CysIII
in AOX1A by Phe or PheIII in AOX1C byCys. Likewise,
neither isoform can be transformed into AOX1D simply
by substitution of CysIII in AOX1A or PheIII in AOX1C
by Leu. In both cases, the basal activity was increased

dramatically (20-fold for AOX1A-CCL and 7-fold for
AOX1C-CCL) over the activity of the WT proteins. In
addition, AOX1A-CCL activity was insensitive to 2-oxo
acids (Fig. 3), in contrast to the AOX1D-WT protein,
which is stimulated by 2-OG (Fig. 1).

AOX1D-CCL#(WT) and AOX1D-CCF (like AOX1C)
exhibited nearly identical basal activities and were ac-
tivated by pyruvate and glyoxylate (Fig. 3, bottom). The

Figure 1. Influence of organic acids on the activity of AOX wild-type proteins. A, The effect of different organic acids on the
activity of AOX1A-, AOX1C-, and AOX1D-WTproteinswas analyzed. AOX activity was determined as described by Selinski et al.
(2016) using 5 mM citrate, isocitrate, 2-OG, succinate, fumarate, malate, or OAA as effectors. Measurements were carried out as
three independent biological replicates. Each biological replicatewasmeasured twice, leading to a total of six values per column.
Basal activities (no effector) were 5.76 0.21 nmol oxygenmin21 density units (DU)21 for AOX1A-WT, 39.286 3.94 nmol oxygen
min21 DU21 for AOX1C-WT, and 15.266 0.67 nmol oxygenmin21 DU21 for AOX1D-WT. Asterisks indicate that the differences
(*, P , 0.05 and ***, P , 0.001) between the basal activity (no effector) and activities in the presence of the effectors are sta-
tistically significant as determined by two-way ANOVA with posthoc Tukey’s honestly significant difference (HSD) test. B,
Schematic overview of AOX activation by TCAC intermediates.

1426 Plant Physiol. Vol. 176, 2018
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substitution of LeuIII in AOX1D by Cys (as in the
AOX1A-WT protein), on the other hand, resulted in a
very low overall activity, but this form was nonetheless
stimulated by the 2-oxo acids pyruvate and glyoxylate.
However, as found with AOX1C-CCC, AOX1D-CCC
was insensitive to the 2-oxo acids OAA and 2-OG
(Fig. 3), indicating that substitution of LeuIII by Cys or
Phe does not, in itself, confer similar responsiveness to
2-OG to that seen with AOX1A-WT or AOX1C-WT.
Overall, these results demonstrate that the differen-

tial regulation bymetabolites is not dependent solely on
the amino acid present at position CysIII in the AOX
protein.

DISCUSSION AND CONCLUSION

About 25 years ago, the posttranslational regulation
of plant AOX activity by redox mechanisms and 2-oxo
acids like pyruvate and glyoxylate was discovered
(Millar et al., 1993; Umbach and Siedow, 1993). Succi-
nate also was shown to activate specific AOX isoforms
that contain a Ser residue instead of a Cys residue at
position I (Djajanegara et al., 1999; Holtzapffel et al.,
2003). It also has been shown that AOX1A, AOX1C, and
AOX1D are activated by pyruvate and glyoxylate, al-
though AOX1A is activated to a greater extent (Selinski
et al., 2017). Consequently, we used isolated membrane
vesicles of E. coli BHH8 containing heterologously
expressed AOX protein and have confirmed that AOX-
WT proteins are insensitive to succinate but are all ac-
tivated by pyruvate and glyoxylate, consistent with the
previous studies. It has been shown that AOX2 in

soybean is activated by OAA and 2-OG (Day et al.,
1995; Millar et al., 1996), but these studies were carried
out with mitochondria that contain multiple isoforms
of AOX; thus, isoform-specific activation could not be
determined. Using a bacterial expression system
expressing individual AOX isoforms (Selinski et al.,
2016, 2017), differential activation by metabolites is
possible to detect. In this study, we used this system to
demonstrate several important differences between the
different isoforms in their responsiveness to the 2-oxo
acids OAA and 2-OG. AOX1A was stimulated by both
OAA and 2-OG, AOX1D was activated by 2-OG solely,
while AOX1C was insensitive to all tested TCAC
intermediates (Fig. 1).

Citrate does not directly influence AOX activity, but
its accumulation, triggered by the inhibition of aconi-
tase, was shown to induce AOX gene expression, es-
pecially AOX1A and AOX1D, and therefore leads to an
increased capacity of the AOX pathway under stress
conditions in plants (Vanlerberghe andMcIntosh, 1997;
Gray et al., 2004; Gupta et al., 2012; Konert et al., 2015).
Malate itself also does not influence AOX activity di-
rectly (Fig. 1). However, under various stress condi-
tions, malate [e.g. generated in the chloroplast via
NAD(P)-dependent MDH] can be transported into
mitochondria, where its conversion to pyruvate (via
malic enzyme) or OAA (via MDH) occurs (Fig. 1B). The
2-oxo acids pyruvate and OAA both stimulate AOX
activity (the latter only AOX1A) and, therefore, could
prevent an overreduction of the mitochondrial electron
transport chain under various stress conditions when
excess reducing equivalents are exported indirectly
from the chloroplast via the malate valve (Scheibe,
2004). This is likely to be particularly important under
photoinhibitory conditions in leaf cells. The accumula-
tion of OAA also could occur when citrate levels in-
crease and inhibit citrate synthase (Wiegand and
Remington, 1986). In isolated mitochondria, OAA ac-
cumulates substantially during malate oxidation under
conditions where malic enzyme is not activated and the
cytochrome c pathway is restricted by adenylates, cur-
tailing NADH oxidation and causing a severe inhibi-
tion of electron transport (Tobin et al., 1980; Day et al.,
1984). This is a consequence of the equilibrium condi-
tions of the MDH reaction. If this occurs in vivo, for
example under conditions where respiration is limited
by the energy status of the cell, then OAA activation of
AOXwould help to alleviate this problem by providing
an additional avenue for NADH oxidation.

While pyruvate and OAA possibly represent the
most important regulatory metabolites for AOX(1A)
activity under stress conditions, 2-OG and glyoxylate
also can accumulate in mitochondria, especially during
photorespiration (Bari et al., 2004). Glyoxylate, 2-OG,
and pyruvate also are substrates of the g-aminobutyric
acid (GABA) shunt, which is functionally linked to the
TCAC (Narayan and Nair, 1990; Bouché and Fromm,
2004; Studart-Guimarães et al., 2007). The interconver-
sion of Glu to GABA takes place in the cytosol. Subse-
quently, GABA is transported into mitochondria,

Figure 2. Influence of organic acids on the activity of the AOX pathway
in plant mitochondria. The effect of different organic acids on the ac-
tivity of the AOX pathway in isolated mitochondria from Arabidopsis
was analyzed. AOX activity was determined as described by Jacoby
et al. (2015) using 5 mM citrate, isocitrate, 2-OG, fumarate, malate,
pyruvate, or glyoxylate as effectors. Measurements were carried out as
three independent biological replicates. Each biological replicate was
measured twice, leading to a total of six values per column. The basal
activity (no effector) of the AOX pathway was 3.966 0.6 nmol oxygen
min21 mg21 protein. Asterisks indicate that the differences (**, P, 0.01
and ***, P , 0.001) between the basal activity (no effector) and activ-
ities in the presence of the effectors are statistically significant as de-
termined by two-way ANOVA with posthoc Tukey’s HSD test.
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where it is converted to succinic-semialdehyde cata-
lyzed by GABA-transaminase (GABA-T). Depending
on the enzyme’s substrate specificity, the GABA-T
enzyme can be divided into two types: the 2-OG-
dependent GABA-T (GABA-TK) and the pyruvate-

dependent GABA-T (GABA-TP). While GABA-TK
uses 2-OG to generate Glu, the bispecific GABA-TP uses
pyruvate to generate Ala or glyoxylate to generate
Gly (Clark et al., 2009a, 2009b; Shimajiri et al.,
2013; Trobacher et al., 2013). Succinic-semialdehyde

Figure 3. Convertibility of AOX isoforms into
one another by substitutions of amino acid
residues at position CysIII. Oxygen consump-
tion measurements and calculations of spe-
cific respiration rates (nmol oxygen min21

density units [DU]21) were performed as de-
scribed by Selinski et al. (2016). Measure-
ments were carried out as three independent
biological replicates. Each biological replicate
was measured twice, leading to a total of six
values per column. Basal activities (no effec-
tor) were 5.71 6 0.15 nmol oxygen min21

DU21 for AOX1A-WT (CCC), 40.89 6
0.87 nmol oxygen min21 DU21 for AOX1C-WT
(CCF), and14.8160.34 nmol oxygenmin21DU21

for AOX1D-WT (CCL). Asterisks indicate that
the differences (*, P , 0.05; **, P , 0.01; and
***, P , 0.001) between the basal activity (no
effector) and activities in the presence of the ef-
fectors are statistically significant as determined
by two-way ANOVA with posthoc Tukey’s HSD
test. Wild types are as follows: AOX1A, CCC;
AOX1C, CCF; and AOX1D, CCL. Substitutions
are presented in the one-letter code for amino
acids in enlarged boldface letters. Note the dif-
ference in scale forAOX1Dproteins: the left yaxis
belongs to AOX1D-CCC, and the right y axis
belongs to AOX1D-CCF and AOX1D-CCL.
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generated by GABA-T is further converted to succinate,
which can be used in the TCAC and as an electron
donor of the mitochondrial electron transport chain. In
both cases, increased activity of AOX will be important
to avoid an overreduction of the mitochondrial electron
transport chain. Studies in vivo with a variety of plant
species show that AOX activities are correlated with
GABA and 2-OG (Florez-Sarasa et al., 2016), and the
correlation of increases in AOX activity with 2-OG is
consistent with the stimulatory effect of 2-OG observed
in the study outlined here.
In Arabidopsis, AOX1A and AOX1D are highly

stress responsive at the transcriptional level, in contrast
to the other AOX genes, which do not respond to var-
ious stress conditions (Clifton et al., 2006). It is inter-
esting, therefore, that these two isoforms are activated
by 2-OG (both), OAA (only AOX1A), while AOX1C is
insensitive to all tested TCAC intermediates. This may
ensure that electron flux through the AOX pathway is
optimized, helping to minimize oxidative stress under
various environmental conditions.
Differential posttranslational activation of AOX1

isoforms also may explain why these proteins are un-
able to functionally substitute for each other in planta.
While this is clearly the case for plants under stress
conditions, cyanide-resistant respiration has been
reported in vivo in aox1a T-DNA lines under nonstress
conditions but was proposed to be due to a variety of
other oxidases, as it was inhibited by salicylhydroxamic
acid, an inhibitor of AOX (Watanabe et al., 2008, 2010).
In our hands in two different laboratories, the Ataox1a
T-DNA lines do not show expression of any of the other
AOX genes under normal conditions, as measured by
real-time quantitative reverse transcription-PCR, and
mitochondria isolated from these lines do not contain
detectable AOX protein or activity (J. Selinski, D.A.
Day, and J. Whelan, unpublished data).
The differential activation by metabolites may be an

example of a neofunctionalization of AOX isoforms,
where, due to activation by different metabolites, vari-
ous isoforms are only active under certain conditions.
This proposal is consistent with the variation in the
number of AOX genes that are observed in plants, which
is not linked to their phylogenetic history. Expression of
a number of isoproteins that are differentially activated
by metabolites may allow fine-tuning of their activity in
different tissues and under different circumstances.
Differential activation is likely to occur at the N-terminal
end of the AOX protein that displays more variation in
sequence identity (amino acid identity of 19%–43%,
calculated for the first 50 amino acids in the N-terminal
region of the mature proteins) compared with the
C-terminal end (amino acid identity of 82%–94%, cal-
culated for the last 50 amino acids in the C-terminal re-
gion). The fact that the stimulation of AOX isoforms does
not depend just on the size of the binding pockets (oth-
erwise, OAA also would stimulate AOX1D, because this
molecule is smaller than 2-OG, which is activating; Fig. 1)
further supports the importance of the N-terminal
region. Especially the position of the additional negative

charge in the 2-oxo acids OAA and 2-OG in relation to
the 2-oxo group appears to be essential for their inter-
action with the amino acid residues in close proximity to
the conserved Cys residues.

In this study, we used a concentration of 5 mM of
added metabolites to ensure maximal activation, as the
mitochondrial concentration of these metabolites
in vivo is unknown. The concentration of OAA in vivo
has not been measured even in whole cells, presumably
due to rapid conversion to citrate or the spontaneous
decarboxylation to pyruvate.While it is recognized that
the TCAC exists in plants inmany situations, it does not
always operate as a complete cycle, with intermediates
used in various biosynthetic reactions. For example,
2-OG is used in the assimilation of nitrogen and GABA
synthesis (Sweetlove et al., 2010). Again, the extent of
these pathways differs between species and tissues, and
inmature illuminated leaves, noncyclicflux is proposed
(Sweetlove et al., 2010). Added onto this is the occur-
rence of metabolic channeling of citrate and fumarate,
but not 2-OG, in plant mitochondria (Zhang et al.,
2017), and the fact that most steps in the TCAC can be
bypassed by similar nonmitochondrial activities in
other cellular locations means that the matrix sub-
compartment concentrations are unknown. Finally, the
existence of alternative respirasomes, where AOX iso-
forms are associated with alternative NAD(P)H dehy-
drogenases, suggests subcompartmentalizations of
respiration and that local concentrations of substrates
may differ significantly from the concentrations in a
given compartment (Senkler et al., 2017).

While our results offer a possible explanation for the
finding that different AOX isoforms cannot completely
substitute for each other, the situation in planta needs to
be considered under normal and stress conditions. In-
activation of AOX1 in Arabidopsis and tobacco (Nico-
tiana tabacum) has no apparent physiological or growth
consequences under normal, optimal growth condi-
tions. This can be interpreted as either that AOX is not
required for growth under normal conditions or that
other isoforms can compensate for each other. How-
ever, an alternative explanation is that, under normal
conditions, changes in the underlying transcriptional
program compensate for a lack of AOX. In Arabidopsis,
it has been shown that the transcriptome of aox1a plants
is greatly altered compared with that in wild-type
plants under conditions where no changes in growth
or physiology are apparent (Giraud et al., 2008). In
these and other studies, no other AOX isoforms are
expressed or detected in aox1a T-DNA lines (Giraud
et al., 2008; Watanabe et al., 2008, 2010). This differs
from antisense lines, where significant, albeit reduced,
AOX can be detected (Guy and Vanlerberghe, 2005;
Florez-Sarasa et al., 2011), and in Arabidopsis, the
remaining AOX capacity in antisense lines appears to
be fully engaged (Florez-Sarasa et al., 2011). Thus, un-
der normal growth conditions, while the other isoforms
are not expressed, changes in the complete underlying
transcriptional program in T-DNA lines suggest that
compensation occurs via other mechanisms.
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In contrast, under stress conditions, other isoforms
are induced in Arabidopsis, in particular AOX1D
(Table I). Despite this induction, the altered phenotypes
of aox1a mutants indicate that they are not able to com-
pensate for the absence of AOX1a. This may be due to
the fact that there is not sufficient AOX1D protein, but
in several studies, it took several days for the altered
phenotypes to emerge and significant AOX1D tran-
scripts and protein could be detected (Giraud et al.,
2008; Strodtkötter et al., 2009; Kühn et al., 2015). This
suggests that the biochemical properties of isoforms
may differ, as shown in this study. Supportive for this
suggestion is that, in investigations of the in vivo ac-
tivities in different plant species under high light, the
activity of AOX was independent of AOX protein a-
bundance, and differential posttranslational regulation
of AOX was proposed (Florez-Sarasa et al., 2016). Our
findings are consistent with this in vivo study high-
lighting that differences may occur between species.

Some further questions remain to be answered in fu-
ture studies. (1) Homodimerization/heterodimerization
of AOX isoforms. AOX has been proposed to be present
in plant mitochondria as covalently and noncovalently
linked homodimers (Umbach and Siedow, 1993). How-
ever, it is not possible to distinguish AOX homodimers
and heterodimers based on SDS-PAGE, because mono-
mers of different isoforms are of nearly identical size
(e.g. for Arabidopsis, molecular masses of mature mono-
meric proteins vary between 32 kD [AOX1B and AOX1D]
and 33 kD [AOX1A and AOX1C]). AOX2 is larger (38 kD)
but is poorly expressed in Arabidopsis. It is possible that
heterodimers possess different properties from homo-
dimers, which would allow further fine-tuning of their
activities. (2) Amount of total AOX protein and capacity
in plant cells. Although the expression of AOX1D is in-
creased when AOX1A is lacking (Strodtkötter et al.,
2009), the total amount of AOX protein is lower com-
pared with wild-type plants (data not shown). There-
fore, the total AOX protein present in aox1a mutants
might not be sufficient to compensate for the lack of
AOX1A, depending on the AOX pathway capacity. As
shown by Selinski et al. (2017), fully activated AOX1A
and AOX1D (after the addition of pyruvate or glyox-
ylate) exhibit similar activities, indicating that AOX1D
should be able to compensate for the lack of AOX1A in
aox1a knockout mutants. Since this is not the case, other
regulatory mechanisms must play a role in this context.
(3) Cell-specific expression patterns of AOX isoforms. It
is also conceivable that AOX isoforms cannot compen-
sate for each other because of differences in their cell-
specific localizations. This has to be investigated further.

MATERIALS AND METHODS

Plasmids Used in This Study

Plasmids p536 (AOX1A in pET-22b), p537 (AOX1D in pET-22b), and p583
(AOX1C in pET-22b) were obtained from former studies by Selinski et al. (2016,
2017). For mutagenesis, plasmids p536, p537, and p583 were amplified via PCR
using PfuUltra II Fusion HS DNA-Polymerase (Agilent Technologies) and

specific mutagenesis primers for amplification (Supplemental Table S1). Fol-
lowing PCR, products were treated with DpnI for 1 h at 37°C to eliminate the
maternal DNA template. Constructs were verified by sequencing.

Isolation and Oxygen Consumption Measurements of
Plant Mitochondria

Intact plant mitochondria were isolated from Arabidopsis (Arabidopsis
thalianaColumbia-0) water cultures, and subsequent respiratory measurements
were carried out as described by Murcha and Whelan (2015) with some mod-
ifications. To analyze the effect of metabolites on the activity of the AOX
pathway, citrate, isocitrate, 2-OG, fumarate, malate, pyruvate, or glyoxylate
was added to the reaction chamber. The final concentration of each effector used
in this studywas 5mM solubilized in respirationmedium (for details, see Jacoby
et al., 2015) with a pH adjusted to 7.

Activity Measurements of Recombinantly Expressed AOXs

Cell growth, protein expression, Escherichia coli membrane vesicle isolation,
and AOX activity measurements with concomitant immunoblot analysis and
calculations were carried out according to Selinski et al. (2016). The final con-
centration of each effector (citrate, isocitrate, 2-OG, succinate, fumarate, malate,
or OAA) used in this study was 5 mM. The pH of all effectors was adjusted to
7 using NaOH before use.

Statistical Analysis

Statistical evaluations were conducted by means of two-way ANOVA with
posthoc Tukey’s HSD test integrated in GraphPad Prism 7 (GraphPad Soft-
ware). Differences with P , 0.05, P , 0.01, and P , 0.001 were considered as
significant and indicated as *, **, and ***, respectively.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Influence of organic acids on the activity of AOX
derivatives after substitution of CysI by Ser.

Supplemental Table S1. Primers used in this study.
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