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10 Inflation: the origin of perturbations
• The Basic Picture; 
• Cosmological perturbation theory
• Quantum fluctuations in the de Sitter space;
• Primordial power spectra from inflation;
• CMB power spectrum
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The Inflationary phase of the Universe needs to happen at very early times. Present 
data is consistent with an inflationary period that lasted for about around Δt ∼ 10!"#

at cosmic time of about & ∼ 10!"$ − 10!""seconds

In these conditions the inflaton field has a quantum nature and its energy density is 
quantified. The Heisenberg uncertainty principle allows the origin of energy density 
fluctuations given the short timescales involved.

ΔE% > ℎ/(4.Δ&)

The inflation field, 0 1, & , 
therefore acquires a 
spatial dependence due to 
quantum fluctuations,
30 1, & , about its 
“background” Value, 0 & :

! ", $ = ! $ + '! ", $
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Inflation: the basic picture
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Relativistic (GR) perturbation theory
Metric perturbations:
Metric perturbations can be described as: 

Let us assume the unperturbed metric          is FLRW, written in a conformal way, 

The perturbed metric,           ,  can be written in a general way as,

Which is symmetric and A, 4& and ℎ&' are functions of time and space. In total these 
encapsulate 10 independent functions (degrees of freedom, d.o.f.):

<latexit sha1_base64="(null)">(null)</latexit>
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Scalar, Vector Tensor (SVT) decomposition
The perturbation variables can be decomposed into their scalar, vector and tensor 
dependences. This is useful because these dependences do not mix at linear order:

with,

where:

SVT d.o.f.
4

4
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Relativistic (GR) perturbation theory
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Gauge freedom
GR is a gauge theory where the gauge 
transformations are generic coordinate 
transformations.

A gauge choice is a way of choosing the (time) 
slicing and (spatial) threading of spacetime. 

How to  treat Perturbations?
• Either find gauge invariant variables to 

describe perturbations. These variables 
are called real spacetime perturbations.

• Or fix a gauge choice and keep track of all 
perturbations and check how quantities 
transform.

Relativistic (GR) perturbation theory
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Gauge-invariant perturbation variables
One avoids gauge problems by defining special combinations of the SVT perturbations 
that do not change under coordinate transformations. These are known as the 
Bardeen potentials (or Bardeen Variables)

where ´ is derivative with respect to conformal time, 5, and                       is the Hubble 
parameter in conformal time.

Useful Gauge fixing choices
The gauge freedom can be used to conveniently set some of the above variables to 
zero:
• Newtonian Gauge: 6 = 4 = 0

The metric simply becomes: 

where the remaining non-zero variables were renamed to                ,   

Relativistic (GR) perturbation theory
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Useful Gauge fixing choices 
(continuation)

• Spatially flat gauge : C = 6 = 0
This is a convenient gauge choice for the calculation of the inflationary 
perturbations.

• Uniform density gauge: consists in choosing the time-slicing in a way that the 
total density perturbation (see perturbed stress-energy tensor subsection) is set 
to zero: 39 = 0

• Comoving gauge: consists in choosing coordinates in a way that the total 
momentum density vanishes (see perturbed stress-energy tensor subsection):  
:& = 9̅ + => ?& = 0.  One has that :& = 4& = 0.
This choice is naturally connected to the inflationary initial conditions  

Relativistic (GR) perturbation theory



11

Perturbed Stress-Energy Tensor
For small perturbations the perturbed stress-energy tensor can be written as: 

where the unperturbed stress-energy tensor  is

and one has that,                                                ,  for a comoving observer. 
The perturbation to the stress-energy tensor  can be written as:

where @(
) is the anisotropic stress tensor and the perturbed density, pressure and 

four-velocity vectors generally depend on space and time. 
To 1st order one has (see eg Baumann):

and
<latexit sha1_base64="(null)">(null)</latexit>
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Perturbed Stress-Energy Tensor
(continuation)
Using these expressions of A* and A+ in 3U,

* one gets

The quantity :& = 9̅ + => ?& is called the momentum density three-vector. Note that 
the perturbed (peculiar) velocity                           is not additive quantity, but :& is 
additive. If there are several fluid components all the quantities bellow are additive:

And the stress-energy tensor is also additive: 

The SVT decomposition can also be applied to the perturbed stress-energy tensor: 39
and 3> only have scalar parts; :& = C&: + D:& has a scalar and a vector part; Π&' has 
scalar, vector and tensor parts:  

Relativistic (GR) perturbation theory
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Gauge-invariant perturbation quantities
Comoving-gauge density perturbation: The quantity :

Where ? is a scalar velocity function such that ?& = C&? , is gauge-invariant. It is very 
useful to study density perturbations . 

Comoving Curvature perturbation: In a arbitrary gauge, the intrinsic curvature of 
hypersurfaces of constant time can be computed using the spacial part of the 
perturbed metric. Since this is a scalar it only receives contributions from the scalar 
variables of the spatial part of metric (                             ) :

After some long calculations (see Baumann) the intrinsic curvature is given by:

The comoving curvature perturbation 

Is gauge-invariant and it is defined as the comoving curvature computed in the 
comoving gauge (:& = 4& = 0). In the Newtonian gauge this is                               .

Relativistic (GR) perturbation theory
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Adiabatic versus Isocurvature perturbations
Density perturbations are said to be adiabatic if

for all fluid components, I. This implies:

If fluid components obey to independent continuity equations, 
one gets:  

This also implies that the total density density of the fluid is perturbed and is given 
simply  by

Relativistic (GR) perturbation theory



15

Adiabatic versus Isocurvature perturbations
(continuation)
Isocurvature perturbations are perturbation in the different fluid components in a 
way that conserves the total energy density. This implies that different fluid 
components have fluctuations such as the quantity:

is different from zero.

Linear perturbation GR equations & conservation laws
Once the perturbed stress-energy tensor and perturbed metric are defined one 
proceeds with the calculation of the: 

• Perturbed metric connections; 
• The conservation laws of the perturbed stress-energy tensor;
• The Einstein equations involving the perturbed quantities up to linear order of 

the perturbed quantities (higher order calculations are more complex or 
impossible to do). (e.g. Ch.4 Baumann)

• Solve the resulting equations to derive the evolution of perturbations (e.g. 
Ch.5 Baumann)

Relativistic (GR) perturbation theory
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Linear perturbation GR equations & conservation laws (Newton. gauge)
Relativistic (GR) perturbation theory
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Inflation: the basic picture
Key steps to understand how perturbations are generated by inflation: 
• At early time all perturbation modes of interest are casually connected, i.e. 

correspond to F = 1/G larger then the horizon: F > HI.

• On these (small) scales perturbations in the inflaton field are described by a 
collection of harmonic oscillators 

• These perturbations have quantum nature and can be followed using quantum 
mechanics canonical quantification. Their amplitudes have a non-zero variance:

• Inflaton perturbations induce 
comoving curvature fluctua-
tions. In the spatially flat gauge

• Thus the curvature (gauge-inva-
riant) fluctuations have a non-
zero variance:
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Inflation: the basic picture
Relation between curvature and inflaton field perturbations
The relation between the inflaton field perturbation and the curvature perturbations is 
the simplest if one computes it using  the spatially flat gauge. This is given by:
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Inflation: the basic picture
Relation between curvature and inflaton field perturbations
The relation between the inflaton field perturbation and the curvature perturbations is 
the simplest if one computes it using  the spatially flat gauge. This is given by:

Therefore the variance of the curvature and the inflaton field perturbations are also 
related in a simple way,

Expending both perturbations in Fourier series, taking each k mode independently, 
one obtains a similar relation between the coefficients of the Fourier expansions (i.e. 
the perturbations in Fourier space) 
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Inflation: the basic picture
At horizon crossing of a given comoving scale G = 1/F, one necessarily has: 

So the (comoving) Fourier mode k are simply giving (the inverse) of the comoving 
Hubble radius at a given epoch.

(!"# = ($%&"#

('"#

(("#
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Classical inflaton field fluctuations:
Let us first see how the inflaton field action can be used to derive the inflaton
perturbations. The action is:

(the integrand function is the Lagrangian density). Evaluating for a unperturbed FLRW 
metric one gets (exercise: prove this):

To introduce perturbations it is convenient to write them in the following way:

To derive an equation of motion for the perturbation J(5, 1) one usually does:
• Assume 0(5, 1) in the action S.
• Expand the action up to 2nd order in the fluctuations J
• Collect all 1st order and 2nd order action terms in 2 separate actions: K(.) and K($).
• Apply the Euler-Lagrange equations to both actions.

Mukahnov-Sasaki equation
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Classical inflaton field fluctuations:
The result for using the action, K(.), gives the Kein-Gordan equation for the 
background field:

From the K($), which can be approximated by (see Baumann Sect. 6.2),

the Euler-Lagrange equation gives the so called Mukahnov-Sassaki equation

(real space-time)

(fourier space-time)

This has an exact solution of the form: 

Mukahnov-Sasaki equation
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Classical inflaton field fluctuations:
where L, and M are set by imposing as initial conditions a plane-wave solution at 
early times, N → P. Assuming a pure de Sitter space (                ) one has:        

;

The solution is then

On sub-horizon scales,                                   , the M-S equation becomes

which is a classical harmonic oscillator with spatial frequency R F = F .

However we expect these fluctuations to be of quantum mechanics (QM) nature. To 
treat this one applies the canonical formalism of QM to the classical harmonic 
oscillator.

Mukahnov-Sasaki equation
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Canonical quantization of the inflaton fluctuations:
One proceeds as for the harmonic oscillator theory in QM. The relevant classical 
quantities in the action K($) are the:

• Inflaton fluctuation: J = H30

• Momentum conjugate of J:  

One then promotes the fields J(5, 1) and .(5, 1) to quantum operators that satisfy 
the following commutation rules:

i.e. they commute in real and fourier spaces for 1 ≠ 1′ and F ≠ −F0, respectively

Quantum fluctuations in de Sitter space
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Canonical quantization of the inflaton fluctuations:
The inflaton perturbation operator can then be written in terms of the creation and 
annihilation operators:

where J1(5) and J1
∗(5) are the solution of the M-S equation, 

The creation and annihilation operators verify

The quantum states (in the Hilbert space) are constructed by defining a vacuum state 
|0 > via  the condition DH1|0 > = 0 .

Excited states of the inflaton perturbation are created using the usual creation rule:

Quantum fluctuations in de Sitter space
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Quantum fluctuations about the zero point (vacuum state):
Finally one can obtain inflaton perturbation operator spectrum by computing the 
mean and variance expectation values about the vacuum state |0 >. One has:

The expectation value for < WX > = P naturally, but the variance does not. One has:

Quantum fluctuations in de Sitter space
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Quantum fluctuations about the zero point (vacuum state):
One defines the dimensionless power spectrum of the inflaton fluctuations as

This means that the classical solution J1(5) determines the variance of the quantum 
fluctuations. Given the relation between the fluctuation J and the inflaton field, 30 =

J / H one has:

So at horizon crossing one can use the following approximation:

Going back to the relation between the inflaton fluctuation and the curvature 
fluctuations,

Quantum fluctuations in de Sitter space
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Comoving curvature power spectrum:
The power spectra of these quantities is related via:

So the power spectrum of the comoving curvature fluctuations is:

which is gauge invariant and remains constant when the wavenumber F leaves the 
horizon scale (F3 = HI) during inflation.

Since the right-hand size of the power spectra is evaluated at horizon crossing, Y =
Z[, the power spectrum is purely a function of Y. It is often useful to model this k 
dependence as:

CMB observations impose constrains on \4 = 2.196 ± 0.060 ×10!5 at F∗ = 0.05
Mde!.. For the scalar spectral index constraints are f4 = 0.9603 ± 0.0073.

Quantum fluctuations in de Sitter space
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Comoving curvature power spectrum:
The spectral index one can be defined as:    

This can be split in two factors:

Quantum fluctuations in de Sitter space
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The observable matter perturbations at a given time (redshift) are related to the 
curvature perturbations at horizon re-entry:

where i(F, j) is known as transfer function that gives the way fluctuations evolve 
from horizon re-entry until a given time (redshift)

The corresponding matter power 
spectrum is simply:

To compute the transfer function 
one needs a Boltzmann code that
Is able to properly describe the 
full evolution of all matter 
components throughout the  
phases of the standard Big Bang 
Model evolution.

The matter power spectrum



CMB Sky statistics: The 
angular power spectrum 
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Temperature fluctuation field
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Why a ellipse-like map?
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Why a ellipse-like map?
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Temperature fluctuation field
• Decomposition of the temperature field on the sky:

• the alm, the decomposition coeficients, are called multi-pole 
moments:

these can be computed directly from the sky map. Are generaly 
complex quantities.
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Spherical harmonics



41

Why a ellipse-like map?
Form a vector basis on the sphere
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Map with all multipoles
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Angular correlation function
• the temperature fluctuation field is assumed as Gaussian Random 
variable. It’s angular correlation function

fully characterizes the temperature fluctuation field (brackets denote 
averages over an ensemble of Universes). It is conventional to write 
(the alm are not correlted):

Cl is the angular power spectrum.  Then we have
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CMB angular power spectra
• temperature fluctuation spectrum:

• Polarization and cross correlation power spectra:

these quantities are highly sensitive to the cosmological parameters. 
They can be computed theoretically and measured from sky maps. 
Powerful tool to constrain cosmological parameters
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CMB angular power spectra
Planck
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CMB angular power spectra

Sachs-Wolfe
plateau

Acoustic 
Oscilation

Dumping 
tail
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CMB angular power spectra
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CMB angular power spectra
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CMB angular power spectra
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CMB angular power spectra
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CMB angular power spectra
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CMB angular power spectra
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CMB angular power spectra
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CMB angular power spectra
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CMB angular power spectra
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temperature power spectrum: parameter dependence

Examples: effect of changing Ho, Ωm, Ωλ

There are model degeneracies among parameters. 
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Exercise:

Examples: effect of changing Ho, Ωm, ΩλGo online to http://lambda.gsfc.nasa.gov/toolbox/ and use the CAMB 
online tool to assess the effect of the following parameters on the 
temperature angular power spectrum of the CMB; �b h^2; �m h^2, ��. 

Reprinted from: Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination, Wayne Hu, arXiv:0802.3688
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Exercise:

Examples: effect of changing Ho, Ωm, ΩλGo online to http://lambda.gsfc.nasa.gov/toolbox/ and use the CAMB 
online tool to assess the effect of the following parameters on the 
temperature angular power spectrum of the CMB; �b h^2; �m h^2, ��. 

Reprinted from: Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination, Wayne Hu, arXiv:0802.3688
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CMB angular power spectra


