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9 Inflation

* Problems of the hot Big Bang theory revisited
e Conditions for Inflation

e Distances and horizons

* Cosmological scales and horizons;

* Scalar Field Dynamics;
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* Reheating



References

Ch. 2

Cosmology

Part 111 Mathematical Tripos

The Early
Universe

Primordial Cosmology

Edward W. Kolb
Michael S. Turner

. Ch. 3
Cosmological

Inflation
Large-Scale
Structure

Andrew R. Liddle David H. Lyth 3

Inflation

Problems of the hot Big Bang theory revisited
Friedmann-Lemaitre-Robertson-Walker (FLRW) models are able to describe the
Universe expansion but they imply a decelerated expansion for any fluid component
with an equation state parameter w = p/pc? > —1/3.

((’1)2_8‘”6' AC ke

p+3 a2

a 4rG

ot PPN o e 1

2 3 (/’ 3(»2) —— W>—§=>'('1<0
p(1+3w)

Since common matter and radiation have equations of state parameters with w >
— 1/3 this leads to the fatal conclusion that the Universe’s fate is to expand in a
decelerated way.

This leads to a number of difficulties known as the hot Big Bang problems (see next
slides). A way to solve these problems is to develop a dynamical framework where
the FLRW Universes may be allowed to expand in a accelerated way, at least during
some periods of the Universe’s history. These periods are called inflationary and
allows one to define inflation as any phase of the universe’s expansion when:

Inflation< a > 0 4
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FIGURE30.4 Thecvolution of the temperature of the universe and the scale factor, without and with
inflation. Except for the bottom value, the temperature is given in terms of k7. (Figure adapted from
Edward W. Kolb and Michael S. Turner, The Early Universe (page 274), ©1990 by Addison-Wesley
Publishing Company, Inc., Reading, MA. Reprinted by permission of the publisher.)

Inflation

Problems of the hot Big Bang theory revisited
FLRW models with decelerated expansions are inconsistent with some important
observational evidences facts and pose a number of puzzling questions:

The horizon problem: The FRLW models allow one to compute the particle horizon
of observer at any given time/redshift. The sky angular size of the particle horizon of
an observer, 8y, at high redshift can be approximated by:
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so an observer at z = 1100 (living at epoch of CMB decoupling) has a particle horizon
with an angular size on our observed sky of about , 8y =~ 0.95 deg.

This means that there are about age of universe

54000 casual disconnect regions We can see gas at

. . ints A and B bef
in the sky at CMB decoupling. e Kivew abolitaach

")/% other.

So, why is CMB
intensity spectrum so

. 500,000 yr
uniform temperature
(2.725 °K) in all sky —— distance
Gas at point A has received signals Gas at point B has received signals

directionS? from this part of the universe. from this part of the universe.

Copyright © Addison Wesley.



Inflation

Problems of the hot Big Bang theory revisited

The flatness problem: At early times the Friedmann equation can be written as
Q=Q,,+Q,):

Since a(t) decreases with
O 1 |A | |k | time (because d < 0) this
) I & . .
( ) | [) H2( 2 ~— | denominator increases
ast—-0

So the left hand side term should approach rapidly to zero as t — 0 (actually

a(t - 0) > o). Fort =~ 1x10~*3 (~Planck time) Q should deviate no more than ~
1x107°9 from the unity.

So, why is the Universe “starting” with a energy density parameter
so extremely close to 1?

The universe might take
one of these shapes

Negatively curved

Inflation
Problems of the hot Big Bang theory revisited

The monopole and other exotic particles problem:

Quantum field theories (e.g. GUT, superstring) predict that a variety of “exotic” stable
particles, such as magnetic monopoles, should be produced in the early Universe and
remain in measurable amounts until the present.

No such particles have yet been observed. Why?

This either implies that the predictions from particle physics are wrong, or their
densities are very small and therefore there's something missing from this
evolutionary picture of the Big Bang.




Inflation
Problems of the hot Big Bang theory revisited

The origin of density fluctuations problem:
On large scales our present universe is fairly isotropic and homogeneous.

Why is that so?

At early times, that homogeneity and isotropy was even more “perfect” (due to the
flattening effect effect at early times). Moreover, the FLRW universes form a very
special subset of solutions of the GR equations.

So, why nature “prefers” homogeneity and isotropy from the beginning as opposed
to having evolved into that stage?

Distant Objects in the Hubble Ultra Deep Field
2 T & 3

Inflation
Problems of the hot Big Bang theory revisited

The origin of density fluctuations problem:

Locally the universe is not homogeneous. It displays a complex hierarchical pattern of
galaxies, clusters and super clusters.

What's the origin of cosmological structure?
Does it grew from gravitational instability?
What is the origin of the initial perturbations?

Without a mechanism to explain the
existence of fluctuations one has to
assume that they “"were born" with the
universe already showing the correct
amplitudes on all scales, so that gravity can
correctly reproduce the present-day
structures?




Inflation

Conditions for Inflation
If the Universe experience periods of accelerated expansion

Inflation< a > 0

This requires that during these periods the Universe has to be dominated by a fluid
component with an equation of state parameterw < —1/3 :
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Let’s us first look at the acceleration condition

.. d d ._1 d _]_ d _1
a>0@—?<0¢>£(a )<0<:>£(aH) <O<:>E(CH Ja) <0

The quantity Ry = cH ™! is the Hubble radius (vy; = ¢ = HRy).

So inflation can also be defined as any period of the universe history when the

commoving Hubble radius Ry is decreasing (shrinking). o

Inflation

Cosmological scales and horizons
During inflation

* any comoving cosmological scale, 4, is fixed in time as: 1, = A/a(t)
* but the comoving (particle) horizon ~ R, = (aH) ™! decreases with time

So, during inflation, physical scales inside the horizon at a given time grow faster and
may become larger than (go beyond) the horizon.

scales
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inflation ———>
reheating

“Big Bang” —>
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Inflation

Conditions for Inflation

The inflation conditions can be expressed in terms of other conditions. Let us first note
that:
d
laEHY " =

aH + aH 1 _ H
—Wz—a(l—&'), where 6:—1?

From

d 1
i>0e —(aH) 1<0e ——(1-6)<0
a dt(a) a( €)

So we conclude that inflation happens whenever

 H
6——?<1

€ is known as the slowly-varying Hubble parameter. As long as it is smaller than 1
inflation happens. The case € = 0 is known as perfect inflation:

« The commoving Hubble radius is constant: H = 0 & H = constant
* de Sitter Universe expansion:% =Heoea(t)=a;exp(H(t—t;))
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Inflation

Conditions for Inflation
The inflation condition can also be written as:

H _M__dln(H)__dln(H)

€E = —— =

H? a/a dIn(a) dN <0

Where dN = d In(a) is known as the e-fold number:
a a
N = j dIn(a) = In (—)
a; a;

The e-fold number is used to quantify how long the inflationary period must be in
order to solve the Hot Big-Bang problems (usually N ~ 40 — 70).

During the inflationary period, €, needs to remain small (below 1). It is then useful
introduce a new parameter, 1, that measures how fast € changes during inflation:

_dhne ¢
"= AN T He
Since € needs to remain small this means that 7 needs to remain small, as well.
In general one should have:n < land e <1

14



Inflation

Conditions for Inflation
The Friedmann and the continuity equations

H? = P/3M§z
p=-3H(p+P)

Can be combined to relate, €, with the equation of state parameter.
One has:

6_—£_§ 1+£ <1 & w=
 H? 2 p -

W=

' %
_<_
p

Combining this equation with the continuity equation It is also possible to conclude
that:

B |

dlnp
dlna

Which shows that for small € the energy density of the universe remains
approximately constant during inflation. Conventional matter sources would dilute
with the (exponential expansion). The energy density of whatever causes inflation

needs to be an unconventional/unusual form of matter/energy.
15

Inflation

Conditions for Inflation (summary table):
f
e Accelerated expansion | dlaH)™' d a

= a)l=-—
=@ (a)?

a>0 dt dt

<0 = Jla>0

® Slouv['z/-u(njz{mg Hubble d(aH)"! A Gl (e-1) 4 ‘

= — — = <0 = g1
. <1 dt (aH)? a
=1p
|
e Exponential expansion l a ]
5 g .ol ekl - H=—-~=~const. = |a(t)=e""
ds® =~ dt* — e“'dx” a I
e Negative pressure l
PEISERE PSS i p+3P b
P 1 —=——7>0 = /)+3P<()‘
W= == a ()‘\[1:1 : :
p 3

e Constant density

[123(/) > QHHX/) = |lge= ————

dnp — B i €= 2Hp

dlna
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Inflation

Basic Picture
Let us now look intuitively how the inflation condition

inflation ® d > 0 % (cH 1/a)<0

may be used to solve the Hot Big-Bang problems

Flatness problem:
If the expansion is accelerating, @ > 0, the derivative of the scale factor a is an
increasing function of time. So it decreases as we go back in time

) “1 Is an increasing
52(\ I‘) - 1| — / H?2 [ / function of time,
) ( so: a(t—-0)—-0

the flatness problem is therefore solved because...

The Universe can in principle “start” with a energy density
parameter far from 1.

17

Inflation

Basic Picture
Let us now look intuitively how the inflation condition

inflation ® d > 0 % (cH 1/a)<0

may be used to solve the Hot Big-Bang problems

Flatness problem:

How much inflation do we need?

Note that during inflation € = —H/H2 <1 issmall,so H ~ 0 and H ~ constant
during the period of inflation t € [t;, t.]. This means that:

2

a; _oON

e =) ="
( Qe

~ constant
Since, by the end of inflation one needs to have |Q — 1|,~107%° and one wants not to
have Q arbitrarily different from 1, let’s say |Q — 1|; ~ 1, one concludes that:

e 2N ~ 10790 = N ~ 69.

18



Inflation

Basic Picture
Let us now look intuitively how the inflation condition

inflation ©® d > 0 % (cH™1/a)<0

may be used to solve the SMC problems

The horizon problem: If the accelerated expansion happens in a early phase of the
Universe, during a long enough period, in principle, all causally disconnected sky

patches of the CMB can be put in causal contact.
I OUr present universe

time us
ol

I Ur present Universe

now

A_
500,000 yr |- (%

""" - period
}' of

inflation

distance

Copyright © Addison Wesley.

Inflation

Distances and Horizons
Let us consider the travel of light along radial (d6 = d¢ = 0) geodesics in a FLRW

metric 2

ds* = dt® - a*(t) [1 —&a
= dt? - a®(t) [dx® + fir(x)(d6? + sin® 6dg?)]

+ r%(df? + sin® 0d¢2)] ,

written in a conformal way with the introduction of the conformal time dt = dt/a

ds? = a?(7) [d'r2 - dxz]

(with dy = dr for flat geometries), So light rays (ds? = 0) travel along geodesics with

Ax(T) = £ AT
From integrating this we can define the notions of:
.
t
* Particle horizon: Xph(7) =7—7; = / —  witht; =0
ti a(t)

b dt
* Eventhorizon: xn(7) =7 —T = / ——  witht; =
t

a(t)

h 4
P




Inflation

Distances and Horizons

comoving particle outside

the particle horizon at p _ T
i Xen =Tf =T

Tf
event horizon at p
.
particle horizon at p
Ti

- >
Xph =7 — Ti

Figure 2.1: Spacetime diagram illustrating the concept of horizons. Dotted lines show the worldlines of
comoving objects. The event horizon is the maximal distance to which we can send signal. The particle
horizon is the maximal distance from which we can receive signals.
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Inflation

Distances and Horizons
The particle horizon, y,y, the maximal commoving distance travelled by light until a
time t, can be computed as follows:
t dt e da Ina
=1
T) = — = — = aH) “dlna
o= [ G= 5= @m

na;

with ti = 0; a; = 0.

Let us evaluate this integral for a perfect (single component), with EoS w, where the
scale factor evolves as a = a;t2/3(*") The commoving Hubble radius inside the last
integral is (Exercise):

(aH)—l - Ho—la%(l+3w)

For any fluid component with an equation state parameter w. All familiar matter
sources have 1 + 3w > 0 (this is an implication of the so called strong energy
condition (SEC)). So in the Hot Big-Bang theory model the commoving Hubble radius is
always increasing.

Using the above expressions in the integral one finds (with t; = 0), see next page:
22




Inflation

Distances and Horizons
The particle horizon, xpp, will then give:

2H; ! (143w 1(1+3w)
Xph(a) = ﬁ paEE)_ a?

Note that for standard Friedmann evolution, where SEC grants 1 + 3w > 0, the
second term goes to zero: t;(a; = 0) — 0.
So in that case

2

1(1+3w) e
alg)? (1 + 3w)

(aH)™!

2H 1
Xph(t) = (1‘*'—%“))

And one concludes that:

* the comoving particle horizon is proportional (and of the same order) to the
comoving Hubble radius
* The comoving Hubble radius is always increasing.

But since during inflation, SEC is violated, 1 + 3w < 0, the second term in the first
equation of this slide goes to minus infinity: ;(a; - 0) - —oo . The first term, 7, also
is negative, but less negative than t; and therefore and y,,, > 0, x(a; » 0) = 3!

Inflation

Distances and Horizons

D
o T TODAY . .
Hot Big-Bang evolution
QJ 7, >0
CMB PHOTON
» q e+p—>H+4
Trec RECOMBINATION
Ti /\ SINGULARITY
D
To 1+
BIG BANG
P, q
Trec RECOMBINATION
0 END OF INFLATION
INFLATION
G:> CAUSAL
_ =— CONTACT
Tj > —®© i > SINGULARITY

Hot Big-Bang + inflation evolution 24



Inflation

Basic Picture
Let us now look intuitively how the inflation condition

inflation ©® d > 0 d% (cH™1/a)<0

may be used to solve the SMC problems

The monopole problem: If the universe expands sufficiently after monopoles are
produced their abundance can be too low to be observed.

The homogeneity problem: our visible universe comes from a causally connected
region that expanded a lot so it looks fairly isotropic and homogeneous

time us

4 Our present universe
o . ”
),

the CMB
G

OUr present Universe

A
500,000 yr

) ‘the CMB

L T,
VA

1036
1038

- period

o
“ inflation

distance "
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The Theory of Inflation

Inflation also provides a mechanism
for the origin of fluctuations...

... fluctuations (density and grav.
waves) are due to quantum
fluctuations about the inflaton field’s
vacuum state

The inflation (inflaton) field has energy density
fluctuations allowed by the Heisenberg
uncertainty principle:

AEg, > h/(4mAt)

The simplest models of inflation predict random §
fluctuations with a “power spectrum” that has
the same amplitude on all scales (scale

Invariant power spectrum). Just like...
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The Theory of Inflation

Inflation also provides a mechanism
for the origin of fluctuations...

... fluctuations (density and grav.
waves) are due to quantum
fluctuations about the inflaton field’s
vacuum state

The inflation (inflaton) field has energy density
fluctuations allowed by the Heisenberg
uncertainty principle:

AEg, > h/(4mAt)

During inflation fluctuations are “inflated” to
macroscopic scales > physically connected
scales become larger than the horizon scale

and “freeze”. Latter they will re-enter the horizon

Standard Model of Cosmology (SMC)

Big Bang

SMC = Hot Big Bang + Inflation

et <509t Radiation = Matter

6,0 Energy -"!197
9 OO‘J'S L 2,95

7 Last Scattering <90 l
FLRW models provides a \ OhyFs Reloneecion ,Jj
provide a mechanism for
description for the origin of
the evolution of perturbations
the “background” in this
Universe “background
Universe”

. 8rG kc? Ac? 871G
H*(t) = 3 (pr+pm) — —5 + =3 T3 P
: & : PRESENT
13.7 Billion Years

py is the energy density of the inflationary after the Big Bang
field. It dominates during the inflation period!




Standard Model of Cosmology (SMC)

Big Bang

SMC = Hot Big Bang + Inflation

2nd uf luilaiciyy

I

| * Radiation = Matter i
- Wi Energy :*"97
CMB 2

1S
.-'jiu' Last Scattering

'/"1 l
6yrs Reionization 4
‘:&3"4

, 8 G k2 Ac?
2(4) — LD el
H*(t) = 3 (pr + pm) o - 3 + 5 Po
. ap\* ap\3 ap \?
= H; [Qm (%) +m0 (22)" + 20 (2) + o
* Background evolution is
progressively dominated by:
*Radiation
*Matter

PRESENT
*Dark Energy 13.7 Billion Years

after the Big Bang

After the end of inflation the
universe resumes the usual
Friedmann evolutionary periods

Inflation

Scalar field Dynamics
Inflation is usually modelled by a scalar field ¢ = qb(xi, t), called the inflaton field,
that can generally be a function of position and time.

V(o)

Associated with each field value
there’s a potential energy, V(¢),
and If the field depends on time,
the field also carries kinetic energy.

Using the Noether’s theorem one can
Prove that the energy-stress tensor of >
any scalar Field can be computed as:

Sliad 1 o8 14
rf/_w — u¢du¢_guu (59 ddud’dﬁ(rb_ V(¢))

For a homogeneous and isotropic FLRW universe, without perturbations (ie
inhomogeneities) the field is only a function of time, ¢ = ¢(t). Computing, Ty = py,
and Tji = —Py 5]‘: one obtains:

b= s#4VO)| [Py = F-V(®)




Inflation

Scalar field Dynamics: Klein-Gordan equation
Using py in the Friedmann equation gives:

1 1
H? = 3M§1 l§¢2 <+ V] (Friedmann equation)
Taking the time derivative one finds:
-1 4
2HH = g |96+ V'é)

where V' =dV /d¢.
Using pg and Py in the acceleration equation and combining it with the Friedmann
equation, one obtains:

y 1 ¢?
H=--"_
2M§1

(Acceleration equation)

This shows that the acceleration of the universe is sourced by the kinetic energy of
the inflaton field. Combining these two last expressions one obtains the Klein-Gordan
equation that describes the evolution of the inflationary field:

d+3Ho+V' =0 (Klein-Gordan equation)
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Inflation

Slow roll inflation
Combining the expressions: ¢ = —

i
M§1H2

This means that inflation € < 1 only
occurs if the contribution of the kinetic
energy of the field to the total energy
is small. When this happens the field

is said to be slow rolling.

The time derivative of € gives:

c_ 06 9°H
M2H? ~ M2H®

Which allows us to compute the n parameter as:

é é H
= —=2—-—-2—=2(e—-90

where § = —¢/H. .




Inflation

Slow roll inflation

The conditions € < 1 and |n| < 1 are a guaranty that inflation happens and persists.
Since this implies that the kinetic energy

of the field is small one can assume the /()

slow roll inflation conditions: A 54
0(¢

AVIESS! N

and approximate the Friedmann and
Klien Gordon equations as:

* Friedmann (¢%~0): H? =~ L4 \/

3M§1
« Klein Gordan ( $~0): 3Hd ~ —V’

fo.

®CMB Qend reheating -
-t
Ag¢
Combining these equations (plus taking the time derivative of the Klein Gordon

equation) allows one to write the {¢, ||} parameters as function of the potential and
its derivatives:

2 "
L e Ll
7)o =1l .

Inflation

Slow roll inflation

The total amount of e-folds (which gives by how
much the universe expands during the inflationary
period) can be derived from our knowledge of

the inflationary potential.

ap tp
Niot E/ dlna = H(t)dt

ay tr

OCcMB Pend reheating
Here, t; and ty are the times when inflation begins Ad
and ends, which happens when:

e(t;y) = e(tg) =1

142
The integrand function above, can be approximated by (note that ¢ = M?2?H2 ):
P
H 1 do 1 |do|
Hdt = —do =% N —
0] vV 2¢ A\Il)l V 2F\' ‘\[pl
Which leads to:
/ %2 1 |dg|
NLOL = e 36




Inflation

Slow roll inflation
Using the the slow-roll expression €,

MZ% v\2
S (5)

in the number of e-folding integral one gets

V(o)

T
OCMB QPend reheating
-+

Ao
PE 1 \d_qﬂ B PE 174 |d(b‘ 1 /(PE V
b;  V2€v My, o1 My V' My, ]\42

Ntot —

T lde

b1

Since the number of e-foldings is counted from the moment inflation begins, it is usual

to refer to t; as the instant “N e-foldings before inflation ends”, and ¢, is often
expressed as ¢y, the inflaton field value N-efoldings before the end of inflation (In
fact, this instant scale is the latest to re-enter the “sound” horizon).

So one can also write:

ON
N = 8nG K/ do
¢ V
Inflation
Working example: V(¢) = m?¢?/2 V(9)
A
This case belongs to an important class of 9,2 /
potentials (V (¢) < ¢P ) known as Large field /’

inflation models (the potential evolves over
super-Planckian values).

This potential allows slow-rolling. The number of

e-foldings under these conditions gives: end dcMB
A¢

e P 8 C 8rG
A_8‘r(”/ 7746 = il od,o’: 1 (p3 — 02)

J de

So the value of the field at a moment N e-foldings before ¢, should be:

2 = &2 1 N
& 2nG
Now, we know that when inflation ends, €, = 1, so using this in €, one has:
| e m2d, \>
167G ( V >€ (%m?og) :

Solving for ¢ (see next slide)... %8



Inflation

Working example: V(¢) = m?¢p?/2
This case belongs to an important class of
potentials (V(¢) x ¢P ) known as Large field

inflation models (the potential evolves over
super-Planckian values).

Solving for ¢ 5 (continuation from previous slide),
one obtains:

1
2 - 2
Qe = m ~ 0.08mp1
B2 = b2 + N—m%l N+1 -
N—YeTorG"  o2n 2) "~

For N = 70 these give:

ng ~ O.3mp1

ON = 3.3mp)

Inflation
Re-heating

GeV

3K

3%

A - -3
L sg: 10 sec 10 :'024.
St

~ STD. COSMOLOGY ———e=
INFLATION

V(¢)

4

2

mp

INFLATICNARY COSMOLOGY

43
3x10 A f=—ADIABATIC —

T
Dend

PCcMB

A¢

FACTOR
£2
OF 3xIQ

_~REHEATING, RT WNCREASE
/" BY FACTOR OF 3x10%3

TODAY
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Inflation

Re-heating or INFLATIONARY COSMOLOGY
During the inflationary period most of i il
the energy density of the Universe is 02 |V L
given by the inflationary potential. Gev [ F a0
As inflation ends, the kinetic energy 0™ T X :
GeV | ~REHEATING, RT NCREASE

associated with the inflaton field is no

longer negligible and the energy in the \
field is transferred to the matter/energy o )

8Y FACTOR OF 3x10%3

. . .1
species of the fluid. N4 34 % i
O e O sec 10 sez. TODAY
. . — = STD. COSMOLOGY —==
p¢ ‘+‘ l;HpO ‘+‘ Fpo — () INFLATION

pr+3Hpr —Tpy =0,

Where I' is the so called energy width
of the inflaton decay (py is the energy
density of relativistic fields).

This process is know as reheating and
It is followed by the hot big bang
evolutionary phase of the universe. - O

Inflation
Re-heating . INFLATIONARY COSMOLOGY
The basic idea behind reheating is that l
this period starts when ¢ begins to

oscillate with a friction term about the
minimum of the inflationary potential.

- ADIABATIC -

~REHEATING, RT WNCREASE

For example, taking a quadratic potential Y FACTOR OF 3x10%3

V =m?¢?/2, the Klein-Gordon
and the continuity equations give:

é+3Hp = —m?¢

) sec. TODAY

STD. COSMOLOGY ——

lHFl_ l.o TICN

. 3 -
po+3Hpy = —3HPy = —- H(m*¢* — §7)

Oscillations decrease in

amplitude due to the friction term.
By the end of the process all energy
of the field is transferred, leading to
the beginning of the hot Big-Bang
evolution.




Standard Model of Cosmology (SMC)

Big Bang

SMC = Hot Big Bang + Inflation

2nd uf luilaiciyy

After the end of inflation the
universe resumes the usual
Friedmann evolutionary periods

- = Radiation = Matter
"“* e
CMB I
rs
‘,.J:,) Last Scattering <975 l
6yrs Reionization
\ I /

8 G ke Ac?
(or+pm) — —5 +—
3 a 3

= H; [Qm (a“) + Qo (au) + Qo (au> + Qo

* Background evolution is
progressively dominated by:

H*(t) =

|

*Radiation
eMatter
PRESENT

*Dark Energy 13.7 Billion Years
after the Big Bang

Chapter 10 (summary)

Inflation: the origin of perturbations

 The Basic Picture;
* Cosmological perturbation theory

*  Quantum fluctuations in the de Sitter
space;

* Primordial power spectra from inflation;
« CMB power spectrum
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Inflation: the basic picture

The Inflationary phase of the Universe needs to happen at very early times. Present data
is consistent with an inflationary period that lasted for about around At ~ 1073¢ at
cosmic time of about t ~ 10732 — 10~ 33seconds

In these conditions the inflaton field has a quantum nature and its energy density is
quantified. The Heisenberg uncertainty principle allows the origin of energy density
fluctuations given the short timescales involved.

AE4 > h/(4mAt)

The inflation field, ¢ (x, t),
therefore acquires a
spatial dependence due to
quantum fluctuations,
d¢p(x,t), about its
“background” Value, ¢ (t):

d(x,t) = () + 6p(x, 1) ; > 0

inflation reheatin
end ¢

Figure 6.1: Quantum fluctuations 6¢(t,x) around the classical background evolution ¢(t). Regions acquir-
ing a negative fluctuations ¢ remain potential-dominated longer than regions with positive d¢. Different
parts of the universe therefore undergo slightly different evolutions. After inflation, this induces density
fluctuations dp(t, ).



Inflation: the basic picture

comoving
scales
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Figure 6.2: Curvature perturbations during and after inflation: The comoving horizon (aH)~! shrinks
during inflation and grows in the subsequent FRW evolution. This implies that comoving scales k™' exit
the horizon at early times and re-enter the horizon at late times. While the curvature perturbations R are
outside of the horizon they don’t evolve, so our computation for the correlation function {|R|?) at horizon

exit during inflation can be related directly to observables at late times.

Inflation: the basic picture

At horizon crossing of a given comoving scale A = 1/k, one necessarily has:

kl=(aH)™' < | k=aH

So the (comoving) Fourier mode k are simply giving (the inverse) of the comoving

Hubble radius at a given epoch.

scales
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Inflation: the basic picture

Key steps to understand how perturbations are generated by inflation:

* At early time all perturbation modes of interest are casually connected, i.e.
correspond to k = 1/A larger then the horizon: k > aH.

* On these (small) scales perturbations in the inflaton field are described by a
collection of harmonic oscillators (see Mukahnov-Sasaki Equation — chap 10)

* These perturbations have quantum nature and can be followed using quantum
mechanics canonical quantification. Their amplitudes have a non-zero variance:

<|5¢k|2> = <0H5¢k|2’0> A

1
. . Si I('I;lssi('u] stochastic field ‘ L7 (””)
* Inflaton perturbations induce e | ok
H b i 12 R ~ const. s
comoving curvatl.Jre fluctua gibborison, s P gupeifotisen . AT—C,
tions. In the spatially flat gauge g —— — k
(|66x) b g e : 1
H & ' \\ /,
R = _g 5¢ quantum \\\ ,’,
fluctuations A 5%
e Thus the curvature (gauge-inva- Y
riant) fluctuations have a non- ﬁ I P .
zero variance: s reheating horizon CMB. today
2 )
S 2 T
<’Rk| > _ (&/) <|5¢k| > switch from d¢ to R lwn-l |('ump|1lv evolution from now on

Quantum fluctuations in de Sitter space

Comoving curvature power spectrum:

The power spectra of these quantities is related via:

2 1 12
1 A().(,‘) ‘_7()
where ¢

2% M2’ ~ M2H?
p P

JAY

;JIG

So the power spectrum of the comoving curvature fluctuations is:

5 iy 1 1 H?

= o2 12
87 E A[l)l

k=aH

which is gauge invariant and remains constant when the wavenumber k leaves the
horizon scale (kg = aH) during inflation.

Since the right-hand size of the power spectra is evaluated at horizon crossing, k =
aH, the power spectrum is purely a function of k. It is often useful to model this k

dependence as:
L\ ns—1
A%(k) = 4, (i)

CMB observations impose constrains on A; = (2.196 + 0.060)x10~° at k, = 0.05
Mpc~1. For the scalar spectral index constraints are ng = 0.9603 + 0.0073. o



The matter power spectrum

The observable matter perturbations at a given time (redshift) are related to the
curvature perturbations at horizon re-entry:

Am.k(:) = T(k. ZI) Rk

where T (k, z) is known as transfer function that gives the way fluctuations evolve
from horizon re-entry until a given time (redshift)

The corresponding matter power 10°}
spectrum is simply:

10*

Pa(k, 2) = |Amu(2)2 = T2(k, 2) [Ri|?

non-linear
~N

103}

(k) [Mpc?]

To compute the transfer function

one needs a Boltzmann Code that ::] 1[)2' ® Galaxy Clustering (Reid et al. 2010) \ “

. * CMB (Hlozek et al. 2011)
IS able to properly descrlbe the e LyA (McDonald et al. 2006)
full evolution of all matter 1 ¢ CMB Lensing (Das et al. 2011) Jnear

10%} 4 rs (Sehgal et al. 2 e

components throughout the R R .

. ¢ Weak Lensing (Tinker et al. 2011)
phases of the standard Big Bang u

. 1073 1072 1071 10°
Model evolution.
k [.\Ip(’fl]

Quantum fluctuations in de Sitter space

Comoving curvature power spectrum:

The spectral index one can be defined as:
2
dln Az
dInk

ns— 1=
This can be split in two factors:

dIn A% dIn A% dN

gk ~ 4y — dlE

The derivative with respect to e-folds is

dIn A% _9 dinH dlne R
dN dN dN 0.

The first term is just —2¢ and the second term is —n (see Chapter 2). The second factor
in (6.5.62) is evaluated by recalling the horizon crossing condition k£ = aH, or

Ink=N+InH. (6.5.64)

Hence, we have
dN__ [dink]™' T dmH]TH L (6.5.65)
dink | dN o dN - o Bl

To first order in the Hubble slow-roll parameters, we therefore find

‘ ns—1=-—-2¢— 7}‘ : (6.5.66)




