Deteção Remota e Processamento Imagem

Licenciatura em Engenharia GeoEspacial Licenciatura em Tecnologias da Informação João Catalão / Fernando Soares 2024 / 2025

Antes das aulas:

- Instalação do software SNAP (Science Toolbox exploitation platform) http://step.esa.int/main/download/snap-download/
- Dowload dos dados de cada laboratório na plataforma CIRRUS
 Server address: cirrus.ciencias.ulisboa.pt

Laboratório 3: temperatura da superfície

(http://semiautomaticclassificationmanualv5.readthedocs.io/en/latest/thematic_tutorial_temperature.html)

Imagem Landsat-9: (escolher apenas uma das imagens)
Verão: LC09_L1TP_204033_20240914_20240914_02_T1.tar
Inverno: LC09_L1TP_204033_20240203_20240203_02_T1.tar

Este tutorial é sobre a estimativa da temperatura da superfície com recurso a imagens Landsat-9. A temperatura da superfície é dependente da emissividade da superfície que por sua vez é dependente da ocupação do solo. Por isso, vamos numa primeira fase determinar a ocupação do solo para calcular a emissividade da superfície. A relação entre a emissividade e a ocupação do solo é apresentada na tabela 2.1.

Tabela 3.1 Valores de emissividade para alguns tipos de ocupação do solo.

Ocupação do solo	Emissividade (e)
Água	0.98
Urbano	0.94
Vegetação	0.98
Solo nu	0.93

Será usada a banda do infravermelho térmico (B10, TIRS) para calcular a temperatura da superfície e avaliar a diferença de temperatura entre a cidade e as zonas rurais e estudar o fenómeno das ilhas de calor.

Neste laboratório iremos converter a temperatura de brilho ao nível do satélite (@ Satellite Brightness Temperature) em Temperatura da superficie.

Algoritmo:

- 1. Conversão para TOA refletância e temperatura de brilho
- 2. Classificação de imagem: Classes: água, construção, vegetação e solo nu.
- 3. Reclassificar a ocupação do solo em emissividade (ver valores da tabela)
- 4. Converter a temperatura ao nível do satélite para temperatura da superfície (equação 1). Para este efeito é usada a banda 10 do Landsat-8 (10.8 um)

1. Conversão para TOA refletância e temperatura de brilho

Para o satélite Landsat-9 a radiância espectral (L_{λ}) ao nível da abertura do sensor é dada por:

$$L_{\lambda}$$
 (Watts m⁻² sr⁻¹ μ m⁻¹) =M_L*Q_{cal}+A_L

em que:

- M_L = Fator multiplicativo especifico de cada banda (RADIANCE_MULT_BAND_x, em que x é o numero da banda)
- AL = Fator aditivo especifico de cada banda (RADIANCE_ADD_BAND_x, em que x é o número da banda)
- Qcal = Valor do pixel calibrado (DN)

Exemplo:

RADIANCE_MULT_BAND_10 = 3.3420E-04 RADIANCE_MULT_BAND_11 = 3.3420E-04 RADIANCE_ADD_BAND_10 = 0.10000 RADIANCE_ADD_BAND_11 = 0.10000

No caso do Landsat, as imagens de radiância podem ainda ser convertidas para refletâncias TOA de modo a reduzir a variabilidade inter-imagem através de uma normalização da irradiância solar. A refletância TOA é calculada como:

$$\rho_{\lambda} = \frac{\pi . L_{\lambda} . d^2}{E_{SUN_{\lambda}} \cos \theta_{S}}$$

em que:

- L_{λ} é a radiância espectral ao nível do satélite
- d = distancia da terra ao Sol em unidades astronómicas (valor fornecido no ficheiro de metadados. É também disponibilizado um ficheiro excel com a distância para cada dia do ano: http://landsathandbook.gsfc.nasa.gov/excel_docs/d.xls
- ESUNλ = Irradiancia solar exo-atmosférica
- θs = Angulo zenital Solar em graus, que é igual a 90 graus menos o ângulo de elevação (θs = 90°-θe, em que θe é a elevação do Sol).

As imagens Landsat são disponibilizadas com um ficheiro de metadados que contem os parâmetros de escala para cada banda que permitem a conversão direta de radiâncias para refletâncias TOA.

Exemplo:

```
REFLECTANCE_MULT_BAND_1 = 2.0000E-05
REFLECTANCE_ADD_BAND_1 = -0.100000
```

Para as bandas térmicas, a conversão de radiâncias para temperatura do brilho (T_B) ao nível do satélite é dada por:

$$T_B=K_2/ln[(K_1/L_{\lambda})+1]$$
 (eq. 1)

em que

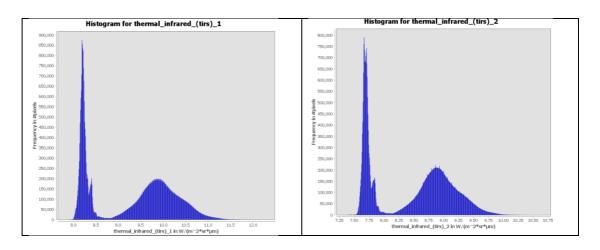
- K_1 = Band-specific thermal conversion constant (in watts m⁻² sr⁻¹ μ m⁻¹))
- K₂= Band-specific thermal conversion constant (in Kelvin)
- L_{λ} é a radiância espectral ao nível do satélite (em watts.m⁻².sr⁻¹. μ m⁻¹).

Para o Landsat 9, os valores de K1 e K2 são fornecidos no ficheiro de metadados.

Exemplo:

```
K1_CONSTANT_BAND_10 = 774.89;
K2_CONSTANT_BAND_10 = 1321.08
```

K1 and K2 are calculated as (Jimenez-Munoz & Sobrino, 2010):


```
K1=c1/\lambda^5
K2=c2/\lambda
```

where (Mohr, Newell, & Taylor, 2015):

- c1 = first radiation constant = 1.191*10⁻¹⁶Wm²sr⁻¹
- c2 = second radiation constant = 1.4388*10⁻²mK

Inicio do laboratório

- a) Cálculo da radiância ao nível do sensor
 - 1. Abrir a ficheiro imagem Landsat-9 (cirrus Laboratorio 3)
 - 2. Ver os metadados
 - 3. Guardar a imagem em formato BEAM-DIMAP
 - 4. Fazer Histograma da banda 10 e 11.

5. Conversão em radiância

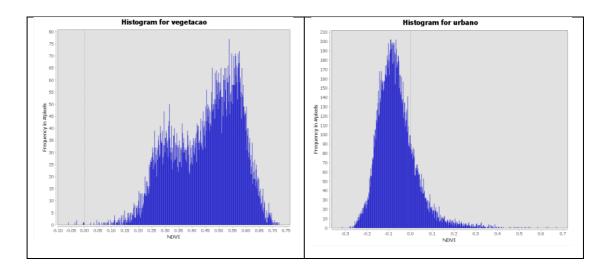
As imagens estão em radiâncias. Ver as unidades dos píxeis no "Pixel Info". Verificar também o header da imagem "thermal_infrared_(tirs)_1.hdr"

b) Temperatura de Brilho ao nível do satélite

Landsat	GROUP = TIRS_THERMAL_CONSTANTS	
Matada	K1_CONSTANT_BAND_10 = 774.8853	
Metada	K2_CONSTANT_BAND_10 = 1321.0789	
(*MTL.txt)	K1_CONSTANT_BAND_11 = 480.8883	
,	, K2_CONSTANT_BAND_11 = 1201.1442	
	END_GROUP = TIRS_THERMAL_CONSTANTS	

1. bandMath:

 $TB_TIRS1 = 1321.0789 / log(774.8853 / L_{TIRS1} + 1)$


2. Efetuar o mesmo para a banda 11 (TIRS2)

c) Classificação da cobertura do solo

- 1. Reamostragem das bandas para 30 m
- 2. Água: usar a banda do infravermelho (IV < 5 w/m2)

3. Vegetação: usar o NDVI (NDVI > 0.25)

4. Urbano: NDVI < 0.1 & ~agua

5. Solo_nu: NDVI > 0.1 & NDVI < 0.25

Aplicar filtro para eliminar píxeis isolados
 Filter > Convolution and morphology > median

7. Reclassificar os píxeis

BandMath: 0.93*(urbano == 1)+0.98*(agua == 1)+ 0.98*(vegetacao == 1)+ 0.94 *

(solo_nu==1)

Output image: Emissividade

d) Temperatura da superfície

A temperatura da superfície é calculada a partir da temperatura do brilho ao nível do satélite como:

T=TB/[1+(
$$\lambda$$
*TB/c²)*In(e)] Equação de Plank
$$L_{\lambda} = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{\frac{hc}{e^{\lambda kT}-1}} \quad Wm^{-3}sr^{-1}$$

Em que:

- λ = wavelength of emitted radiance
- $c2=h*c/s=1.4388*10^{-2}m K = 14388 \mu m K$
- h = Planck's constant = $6.626*10^{-34} \text{ J s}$
- $s = Boltzmann constant = 1.38*10^{-23} J/K$
- $c = velocity of light = 2.998*10^8 m/s$

Para o Landsat-9 o comprimento de onda da banda 10 e 11 é : 10.8 e 12μm respetivamente.

1. Usar Bandmath para calcular a temperatura da superfície.

Temperatura= Tb /(1+(10.8 * Tb/14388)*log(emissividade)) - 273 (para converter em Celsius)

Tb: imagem temperatura de brilho (TB_TIRS1) emissividade: imagem emissividade

2. Mudar a Color Table (derived 8 color)