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Dark Matter



Brief history of the universe



In the “beginning” the was a hot and dense universe. The interactions between particles were  
frequent and energetic. Then, the primordial plasma cooled and the light elements were 
formed (hydrogen, helium and lithium).  

With the drop in energy the first stable atoms appeared. This is also the moment when 
photons started to roam freely.  

What we see today is the microwave radiation from this afterglow. The radiation is nearly 
uniform (about 2.7 K) in all directions. 

There are however small variations in the cosmic microwave background in temperature at a 
level of 1 part in 10 000. These fluctuations reflect tiny variations in the primordial density 
of matter.  

Over time, and under the influence of gravity, these matter fluctuations grew. Dense regions 
were getting denser. Eventually, galaxies, stars and planets formed.
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The early years



However what we “see” today as matter and energy is barely what we have access to in 
experiments on earth. Most of the universe today consists of forms of strange matter and 
energy. 

Dark matter is required to explain the stability of galaxies and the rate of formation of the 
large-scale structure of the universe. Dark energy is required to rationalise the striking fact 
that the expansion of the universe started to accelerate recently (meaning a few billion 
years ago). What dark matter and dark energy are is still a mystery.  

Finally, there is growing evidence that the primordial density perturbations originated from 
microscopic quantum fluctuations, stretched to cosmic sizes during a period of inflationary 
expansion. The physical origin of inflation is still a topic of active research. 
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The early years
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So what now?

Missing ingredients: 

Dark matter  - no good dark matter candidates in the SM  

Mater-antimatter asymmetry - more CP violation is needed 

Neutrino masses…

Unexplained experimental results: 

Muon magnetic moment 

There is also gravity and dark energy



“Should this turn out to be true, the surprising result would follow that dark matter is 
present in a much higher density than radiating matter.”

Fritz Zwicky (1930) When discussing the discrepancy between the observed and the 
expected rotation velocity of galaxies.

Satellite

At a distance of 640 Km, the satellite  has a velocity of 27000 Km/h.

Earth

m v2

r
= G

m M
r2
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Keplerian prediction

Experimental Results

Contrary to luminosity, mass is not concentrated close to centre of spiral galaxies. 
The distribution of light does not match the distribution of mass. 

Raio (Kpc)

If the galaxy had only visible matter the 
expected behaviour for radius above 10 Kpc 

(for a typical spiral galaxy) would be that the 
velocity should decrease as:
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Rotation curves of galaxies
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Dark matter interacts very weakly! 

Two galaxies colliding – several sets of 
observational data superimposed: optical, 

X-ray, gravitational lensing. 

Hot and dense gas. Typical shape of a 
high speed collision (4000 km/s).

Lines of gravitation potential – from gravitational lensing show that the dark matter is 
concentrated around the galaxies and that it is not affected by the collisions.
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The Bullet Cluster
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In the Standard Model of Cosmology, it is assumed that just after the Big Bang the Universe was 
extremely hot, it then inflated (very rapidly) and cooled down. One effect of the rapid cooling was 

predicted to be a very low temperature radiation that would populate all space until today.  

In 1965, astronomers Arno Penzias e Robert Wilson found (by accident – or so they say) an 
isotropic radiation of 2.725 Kelvin (- 270º C) (Nobel Prize 1978). 

What can we learn from the 
CMB?

Planck
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The Cosmic Microwave Background
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Once upon a time all particles were in thermal equilibrium. 
As the Universe expanded and cooled, the rate of interactions was not enough to 

maintain thermal equilibrium (freeze out). 
The unstable particles disappeared (decayed); number of stable particles reached a 
constant (thermal relic density) which has still approximately the same value today.

Planck +  
cosmological model

Fluctuation in the Cosmic Background Radiation are due to the 
matter density fluctuations in the early Universe.
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The Cosmic Microwave Background
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Freeze-out

Before inflation – thermal 
equilibrium

Measure of the interaction rate

Measure of density
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What happened to dark matter?

There are other mechanisms like 
freeze-in!
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• It completely changes our perception of the universe. Just a while ago we 
thought all matter was made of essentially the same stuff. 

• It is the most interdisciplinary (inside physics) subject as it needs general 
relativity, nuclear physics, particle physics, cosmology, classical physics 
(thermodynamics and mechanics...)  

• Mystery – “we know” it exists, “we know where it is”, we have some hints on 
how it behaves but we do not know what it is ... 
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Why is dark matter so interesting?

R. Santos, METFOG, 2024



• Massive, stable, neutral, weak (or none) interaction with SM

WIMP - weakly interacting massive particles/ Many 
other possibilities - essentially no mass limits/ all spins 
possible

14

Why is dark matter so interesting?

Searches for DM
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Lagrangian term that links the SM with the hidden sector. Dark Matter 
particle has to be stable. Can be done with a  new quantum number.

Hidden SectorPotential

Vint = λφ
†φS2

φ S

Standard 
Model
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Extensions of the SM - a new model is needed

R. Santos, METFOG, 2024



Model should conserve darkness - we need a stable 
particle. It is like electric charge - darkness 

number is constant.

Darkness (Z) conserved

S = DM

H

S = DM

S = DM
H

H

Not possible - darkness not conserved.

Z(H ) = 1; Z(DM ) = − 1

qq̄ → g DM DM Z(qq̄) = Z(q)Z(q̄) = 1 × 1 = 1

Z(qq̄) = Z(g)Z(DM )Z(DM ) = 1 × (−1) × (−1) = 1

All spins allowed
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Conserved quantities – darkness
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Model should conserve “darkness” - we need a stable 
particle. The invisible width of the Higgs and the dark 
matter direct detection experiments set a bound on 

the so-called portal coupling(s).

Searches need some kind of handle

DM

h

DM

g, h, Z
qq̄ → (g, h, Z, . . . ) DM DM

Z(qq̄) = Z(q)Z(q̄) = 1 × 1 = 1

Z(qq̄) = Z(H )Z(DM )Z(DM ) = 1 × (−1) × (−1) = 1

Dark Matter (IDM)
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DM

DM

Hidden 
SectorSM

Vportal = Φ†Φ S2

SΦ
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Fermions

Gauge  
bosons

Higgs

Direct 
detection

DM production

DM annihilation

Dark Matter (IDM)
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WIMPs - Weakly interacting 
massive particles.

Model constrained mainly by 
relic density and direct 

detection.
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Where the protons travel

ATLAS CMS

People
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A collider is useful
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Particles collide…



Darkness quantum number is conserved 
and therefore dark particles are 

produced in pairs p  p

 χ

 χ

 PT
Total = 0

LHC

But dark matter does not interact (or it does but very weakly) with the SM 
particles. We see nothing!

There will be MET – but still we see nothing!
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Back to the LHC - Dark matter production
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 PT
Total = 0

So the scenario where only dark matter is produced cannot simply 
be probed at any level.
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Back to the LHC - Dark matter production
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However these can O que está 
do outro lado podem 

simplesmente ser neutrinos 
com origem num bosão Z.

If one or more (high-energy) 
particles are also produced in 
the process then we have a 

mono-X (multi-X – still called 
mono-X) event! The X (for 

instance a jet) has a very large 
pT. 

However, this can also be MET 
from neutrinos.
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Mono-X (X = Z, jet, Higgs…)
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O caso

In the transverse plane.

Monojet event in the ATLAS 
detector.
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A monojet in ATLAS
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We know the SM background. This 
particular case is for an effective 

vertex with gluons.

Dark matter line for a 
given cross section and 
mass of dark matter.
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Mono-jet model interpretation in CMS
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 pp→ hjj→ χχ jj→METjj

This is just one of the 
several possible 

channels.
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Another possibility
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CMS results for the 
exclusion in the 

different channels

Assuming a SM production cross section for the Higgs boson, CMS obtains a limit
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Invisible decays

R. Santos, METFOG, 2024



The Fermi Large Area Telescope (LAT) detects gamma 
radiation with energies between 0.3 and 300 GeV. It 
also detects electrons and positrons.

 MP

 χ

 χ

 MP

WIMPs collide producing either photons or 
particle anti-particle pairs.
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Indirect detection
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Direct detection
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 MP

 χ χ

 MP

WIMP collides with nucleus - recoil energy 
can be measured.
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Direct detection
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χN→ χN

Xenon 31

Direct detection vs. LHC

R. Santos, METFOG, 2024



31’

Halos

R. Santos, METFOG, 2024

It is now believed that about 95% of the galaxy is composed of dark matter. The luminous 
matter makes up approximately 9×1010 solar masses. The dark matter halo is likely to include 

around 6×1011 to 3×1012 solar masses of dark matter. A 2014 analysis of stellar motions 
calculated the dark matter density (at the sun's distance from the galactic centre) = 0.0088 

(+0.0024 −0.0018) solar masses/parsec^3.  

The radial velocity dispersion shows an almost constant value of 120 km/s out to 30 kpc and 
then continuously declines down to 50 km/s at about 120 kpc. This fall-off puts important 

constraints on the density profile and total mass of the dark matter halo of the Milky Way.

The visible disk of the Milky Way 
Galaxy is thought to be embedded 
in a much larger, roughly spherical 

halo of dark matter. The dark 
matter density drops off with 

distance from the galactic center.

https://en.wikipedia.org/wiki/Solar_mass
https://en.wikipedia.org/wiki/Milky_Way
https://en.wikipedia.org/wiki/Milky_Way


The simplest DM models



Scalar DM Model



The SM is extended by an extra real scalar singlet S. The most general Lagrangian we can write is 

with (in the unitary gauge)

ℒ = ℒSM +
1
2

(∂μS )(∂μS ) − aS − bS2 − cS3 − dS4 − κ1SH†H − κ2SH†H − μ2H†H − λ(H†H )2

H = (0
h)

The minimum conditions for the potential are
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The spin 0 extension - real

If we include the  symmetry , the potential reduces toZ2 S → − S

VN = bS2 + dS4 + κ1S2H†H + μ2H†H + λ(H†H )2

∂V
∂S = 2bS + 4dS3 + 2κ1Sh2 = 0

∂V
∂h = 2hμ2 + 4λh3 + 2κ1S2h = 0
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This set equation has four solutions

1) S = 0; h = 0; 2) S = − b /(2d ); h = 0; 3) S = 0; h2 = − μ2 /(2λ); 4) S ≠ 0; h ≠ 0
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The spin 0 extension - real

The first is the symmetric solution. So SSB does not occur. This is also true for solution 2. Solution 3 is 
the DM + SM one. In solution 4 the dark symmetry is broken by the vacuum.

P: Show that solution 3) has a DM candidate

P: Find solution 4) explicitly; find the mass eigenstates in this scenario; is there a DM 
candidate?

P: Why doesn’t SSB occur is scenario 2)?

R. Santos, METFOG, 2024



ℒ = ℒSM + (Dμ𝕊)†(Dμ𝕊) + μ2
S 𝕊

2
− λS 𝕊

4
− κ 𝕊

2
H†H+μ2(𝕊2 + 𝕊*2)

36

The spin 0 extension - complex

Let us now consider the extension by a complex singlet . The most general Lagrangian we can write is 𝕊

𝕊 =
1

2
(vS + S + iA)

R. Santos, METFOG, 2024



ℒ = ℒSM + (Dμ𝕊)†(Dμ𝕊) + μ2
S 𝕊

2
− λS 𝕊

4
− κ 𝕊

2
H†H+μ2(𝕊2 + 𝕊*2)

One particular case: black Lagrangian is U(1) symmetric. Black plus red 

𝕊 → 𝕊*

(h1

h2) = ( cos α sin α
−sin α cos α) (h

S)
The mass eigenstates fields h1 and h2 are obtained from h and S via

m± = λHv2
H + λSv2

S ± λ2
Hv4

H + λ2
S v4

S + κv2
Hv2

S − 2λHλSv2
Hv2

S

S ¼ 1ffiffiffi
2

p ðvS þ ivA þ ϕS þ iAÞ;

H0 ¼ 1ffiffiffi
2

p ðvþ ϕH þ iσHÞ where H ¼
"
Hþ

H0

#
; ð2:3Þ

where we have temporarily allowed hSi to be complex.
Locations of extrema of the potential (2.1), correspond-

ing values of the potential and corresponding curvatures in
the basis ðϕH;ϕS; AÞ are as follows
v1:

v2 ¼ 4λSμ2H − 2κðμ2S − 2μ2Þ
4λHλS − κ2

;

v2S ¼
4λHðμ2S − 2μ2Þ − 2κμ2H

4λHλS − κ2
; v2A ¼ 0 ð2:4Þ

V1 ¼
−1

4λHλS − κ2
fλHðμ2S − 2μ2Þ2

þ μ2H½λSμ2H − κðμ2S − 2μ2Þ&g ð2:5Þ

M2 ¼

0

B@
2λHv2 κvvS 0

κvvS 2λSv2S 0

0 0 −4μ2

1

CA; ð2:6Þ

v2:

v2 ¼ 4λSμ2H − 2κðμ2S þ 2μ2Þ
4λHλS − κ2

; v2S ¼ 0;

v2A ¼ 4λHðμ2S þ 2μ2Þ − 2κμ2H
4λHλS − κ2

; ð2:7Þ

V2 ¼
−1

4λHλS − κ2
fλHðμ2S þ 2μ2Þ2

þ μ2H½λSμ2H − κðμ2S þ 2μ2Þ&g ð2:8Þ

M2 ¼

0

B@
2λHv2 0 κvvS
0 4μ2 0

κvvS 0 2λSv2S

1

CA; ð2:9Þ

v3:

v2 ¼ μ2H
λH

; v2S ¼ 0; v2A ¼ 0; ð2:10Þ

V3 ¼ −
μ4H
4λH

ð2:11Þ

M2 ¼

0

BB@

2μ2H 0 0

0 2μ2 þ κμ2H
2λH

− μ2S 0

0 0 −2μ2 þ κμ2H
2λH

− μ2S

1

CCA;

ð2:12Þ

v4:

v2 ¼ 0; v2S ¼
μ2S − 2μ2

λS
; v2A ¼ 0; ð2:13Þ

V4 ¼ −
ðμ2S − 2μ2Þ2

4λS
ð2:14Þ

v5:

v2 ¼ 0; v2S ¼ 0; v2A ¼ μ2S þ 2μ2

λS
; ð2:15Þ

V5 ¼ −
ðμ2S þ 2μ2Þ2

4λS
ð2:16Þ

Note that vS ≠ 0 and vA ≠ 0 may happen only if μ2 ¼ 0.
Since nonzero μ2 is essential to avoid the appearance of a
Goldstone boson, we do not consider those points any
more.
Forcing the vacuum v1 to be the global minimum implies

that we have to assume λH > 0, 4λHλS − κ2 > 0 and
μ2 < 0. Then for consistency we enforce the conditions

2λSμ2H > κðμ2S − 2μ2Þ and 2λHðμ2S − 2μ2Þ > κμ2H

ð2:17Þ

It turns out that V1 < V4 for any choice of parameters,
while V4 < V5 for μ2 < 0. From (2.17) one can find that
the vacuum v3 is never a minimum. Obviously, v2 is not a
minimum either for μ2 < 0. Therefore we conclude that for
μ2 < 0 the vacuum v1 is the global minimum. Note that in
this case A is indeed a pseudo-Goldstone boson and its
mass vanishes in the limit of exact global Uð1Þ as it was
discussed and anticipated below (2.1). The presence of the
Uð1Þ breaking term μ2ðS2 þ S'2Þ implies a trivial shift of
the μ2S → μ2S − 2μ2 and an addition of the Goldstone boson
mass −4μ2. In fact, an equivalent Uð1Þ breaking would be
to add just the Goldstone boson mass without the trivial
shift by replacing μ2ðS2 þ S'2Þ by μ2ðS − S'Þ2.
Similar models have been considered in a more general

context including a possibility of fast first order phase
transition in [7,20,30]. In the VDM that we consider here,
A becomes a longitudinal component of the massive DM
vector X, but it remains an independent degree of freedom.

TESTING SCALAR VERSUS VECTOR DARK MATTER PHYS. REV. D 99, 015017 (2019)

015017-3

[14,27], these models not only provide a DM candidate but
they also improve the stability of the SM and present a
possibility to solve the baryon asymmetry problem.
In this article we explore possibilities of distinguishing

the scalar and the vector DM (VDM) models. The minimal
VDM requires an extra Uð1Þ gauge symmetry that is
spontaneously broken by a vacuum expectation value
(vev) of a complex scalar neutral field under the SM
symmetries but charged under the extra Uð1Þ. This model
bears many similarities with a model of scalar DM (SDM)
which is a component of an extra complex scalar field (that
develops a vev) which is added to the SM. In both cases
there are two scalar physical Higgs bosons h1;2 that mix in
the scalar mass matrix with a mixing angle α. So the goal of
this paper is to investigate if those two models could be
distinguished. This is a very pragmatic task, both models
are attractive candidates for simple DM theories, therefore
it is worth knowing if there are observables which can
distinguish them.
Using the SCANNERS program [28] we impose the most

relevant bounds: theoretical, collider experiment bounds,
precision electroweak physics, DM direct and indirect
detection experiments, and DM relic density. The param-
eter space of each model is scanned with all the above
constraints providing the regions of the parameter space
where the models can indeed be distinguished. Whenever
possible these results are presented in terms of physical
observables that can be measured at the LHC. Finally we
present a direct way to distinguishing the models by
looking at the energy distribution in Higgs associated
production, with the Higgs decaying to DM, at a future
electron-positron collider.
The paper is organized as follows. In Sec. II we present

the complex singlet extension of the SM, reviewing its
main properties and setting notation. In Secs. II A and II B
we discuss the scattering of scalar DM off nuclei and
invisible SM-like Higgs boson decays, respectively. In
Sec. III we set the review of most relevant aspects of the
vector DM model. In Secs. III A and III B constraints from
DM direct detection and invisible decays of SM-like Higgs
boson are formulated, respectively. In Sec. IV we present a
discussion of the possibility to distinguish the models at a
future electron-positron collider. The results of the scan
showing the allowed parameter space for each model are
presented in Sec. VI. In the conclusions, Sec. VII, we
summarize our findings. Technical details concerning
Goldstone Boson couplings to Higgs bosons are left to
the Appendices.

II. SCALAR DARK MATTER

Gauge singlet scalars as candidates for DM were first
proposed in [3,4] and then discussed by many authors.
Even though the minimal model of scalar DM assumes
merely an addition of a real scalar field odd under a Z2

symmetry, here we are going to consider a model that

requires an extension by a complex scalar filed S. The
motivation is to compare the VDM with a SDM that are in
some sense similar. In order to stabilize a component of S
we require an invariance under DM charge conjugation
C∶ S → S#, which guarantees stability of the imaginary
part of S, A≡ ImS=

ffiffiffi
2

p
. The real part, ϕS ≡ ReS=

ffiffiffi
2

p
, is

going to develop a real vacuum expectation value
hϕSi ¼ hSi ¼ vS=

ffiffiffi
2

p
.1 Therefore ϕS will mix with the

neutral component of the SM Higgs doublet H, in exactly
the same manner as it happens for the VDM. In order to
simplify the potential we impose in addition aZ2 symmetry
S → −S, which eliminates odd powers of S. Eventually the
scalar potential reads:

V ¼ −μ2HjHj2 þ λHjHj4 − μ2SjSj2 þ λSjSj4 þ κjSj2jHj2

þ μ2ðS2 þ S#2Þ ð2:1Þ

with μ2 real, as implied by the C symmetry. Note that the μ2

term breaks the Uð1Þ explicitly, so the pseudo-Goldstone
boson, A is massive. In the limit of exact symmetry, A
would be just a genuine, massless Goldstone boson. Since
the symmetry-breaking operator μ2ðS2 þ S#2Þ is of dimen-
sion less that 4, its presence does not jeopardize renorma-
lizability even if noninvariant higher dimension operators
were not introduced, see for instance [29]. Note that
dimension 3 terms are disallowed by the Z2’s and gauge
symmetries. In other words, we can limit ourself to
dimension 2 Uð1Þ breaking terms preserving the renorma-
lizability of the model. The freedom to introduce solely the
soft breaking operators offers a very efficient and eco-
nomical way to generate mass for the pseudoscalar A
without the necessity to introduce dimension 4 terms like
S4 or jSj2S2 and keeping the renormalizability of the model.
It is also worth noticing that the Z2 symmetry S → −S is
broken spontaneously by vS and therefore ϕS, the real part
of S, is not stable, making A the only DM candidate.
The requirement of asymptotic positivity of the potential

implies the following constraints that we impose in all
further discussions:

λH > 0; λS > 0; κ > −2
ffiffiffiffiffiffiffiffiffiffi
λHλS

p
: ð2:2Þ

Hereafter the above conditions will be referred to as the
positivity or stability conditions.
The scalar fields can be expanded around the corre-

sponding generic vev’s as follows

1This is a choice that fixes the freedom (phase rotation of the
complex scalar) of choosing a weak basis that could be adopted to
formulate the model. The model is defined by symmetries
imposed in this particular basis in which the scalar vacuum
expectation value is real.

DUARTE AZEVEDO et al. PHYS. REV. D 99, 015017 (2019)
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The conditions for the potential to be bounded from below are the same for the two models

The scalar mass matrix is

mDM = − 4μ2

SM + dark matter candidate A + a new scalar that mixes with the CP-even field in the doublet such that

37

The spin 0 extension - complex
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Vector DM Model



H =
G±

1

2
(vH + h + iG0)

ℒ = ℒSM −
1
4

XμνXμν + (Dμ𝕊)†(Dμ𝕊) − μ2
S 𝕊

2
+ λS 𝕊

4
+ κ 𝕊

2
H†H

Dark U(1)X gauge symmetry: all SM particles are U(1)X  neutral. 
New complex scalar field - scalar under the SM gauge group but has unit charge under U(1)X.  
Lagrangian invariant under

Xμ → − Xμ, 𝕊 → 𝕊*

Forbids kinetic mixing between the SM gauge boson from U(1)Y and the dark one from U(1)X. The 
Lagrangian is 

with
𝕊 =

1

2
(vS + S + iA)

h is the real doublet component, S is the new real scalar component and A is the Goldstone boson 
related with U(1)X .

Dμ = ∂μ + igX Xμ

39

A vector DM model

P: Find the mass of the new gauge boson.
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(h1

h2) = ( cos α sin α
−sin α cos α) (h

S)

mW =
1
2

gvH; mZ =
1
2

g2 + g′ 2 vH; mDM = gXvS

With the previous definitions, the masses of the gauge bosons are

The mass eigenstates fields h1 and h2 are obtained from h and S via (and the Goldstone is eaten 
by the vector DM)

and the masses of the two scalars are

m± = λHv2
H + λSv2

S ± λ2
Hv4

H + λ2
S v4

S + κv2
Hv2

S − 2λHλSv2
Hv2

S

I will come back to this model later.
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A vector DM model

R. Santos, METFOG, 2024



Fermion DM model



ℒ = ℒSM + VSM − VNew + χ̄(γμ∂μ − mχ)χ − iyχPχ̄ γ5 χ+

where  is the new DM fermion for which we impose a  symmetry   that is combined 
with  and  leading to the following new potential with two complex scalar 
doublets and one real singlet. 

χ Z2 χ → − χ
P → P ϕ2 → − ϕ2

We will need and extra  symmetry , to make sure that no other Yukawa terms can be 
built with the SM fermions. 

Z2 χ → − χ

42

A fermion DM model

Let us now build a model with a DM fermion. The Lagrangian is 

scalar kinetic terms

VNew = m2
11 |Φ1 |2 +m 2

22 |Φ2 |2 − m2
12 (Φ†

1Φ2 + h . c.)+
m2

S

2
P2 + κ(PΦ†

1Φ2 + h . c.)

+
λ1

2
(Φ†

1Φ1)2+
λ2

2
(Φ†

2Φ2)2 + λ3(Φ†
1Φ1)(Φ†

2Φ2) + λ4(Φ†
1Φ2)(Φ†

2Φ1)

+
λ5

2 [(Φ†
1Φ2)2 + h . c . ]+

λ6

4
P4 +

λ7

2
(Φ†

1Φ1)P2 +
λ8

2
(Φ†

2Φ2)P2

P: Try to build one of these terms

R. Santos, METFOG, 2024



(a cos θ + A sin θ)χ̄ γ5 χ

43

A fermion DM model

The new dark fermion  couples to two new fields, that come from the rotation of P and the CP-odd field 
from the doublet.

χ

In turn, a and A provide the link to the remaining SM particles. So the pseudo scalar acts here as the 
portal.

P: Could we do this with a scalar instead of a pseudoscalar?

P: If a pseudo scalar is indeed needed, could we do this with one doublet only?

P: What are the diagrams for ? What is the background? pp → χχ j

R. Santos, METFOG, 2024



ℒ = ℒSM + (Dμ𝕊)†(Dμ𝕊) + μ2
S 𝕊

2
− λS 𝕊

4
− κ 𝕊

2
H†H+μ2(𝕊2 + 𝕊*2)

44

The spin 0 extension - complex

Let us now go back to 5th model on the list

𝕊 =
1

2
(vS + S + iA)

P: What are the diagrams for ? What is the background? pp → χχ j

P: What are the diagrams for ? And for ? χu → χu χg → χg

P: What are the diagrams for ? And for ? χχ → hh χχ → γγ
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Rules for extended sectors



1. Direct detection of new physics - Motivate searches at the LHC in simple extensions 
of the scalar sector – benchmark models for searches. 

2. Indirect detection of new physics (via measurements of the 125 GeV Higgs couplings) 

a) Mixing effects with other Higgs bosons, 
e.g. singlet, doublet, CP admixtures.  

b) How efficiently can the parameter  
space of these simple extensions  
be constrained through measurements 
of Higgs properties? Focus on CP. 

c) What are higher order EW  
corrections (of extended models)  
good for?

LHC

RxSM 
CxSM NMSSM

2HDM
C2HDM

N2HDMGM
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Extended scalar sectors
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u-type d-type leptons

Type I �2 �2 �2

Type II �2 �1 �1

Lepton-specific �2 �2 �1

Flipped �2 �1 �2

Table 1: The four Yukawa types of the Z2-symmetric 2HDM defined by the Higgs doublet that couples to each

kind of fermions.

CxSM (RxSM) 2HDM C2HDM N2HDM

Model SM+Singlet SM+Doublet SM+Doublet 2HDM+Singlet

Scalars h1,2,(3) (CP even) H, h, A, H±
H1,2,3 (no CP), H±

h1,2,3 (CP-even), A, H±

Motivation DM, Baryogenesis + H
± + CP violation + ...

Table 2: Components of the Yukawa couplings of the Higgs bosons Hi in the C2HDM. The expressions correspond

to [c
e
(Hiff) + ic

o
(Hiff)�5] from Eq. (2.6) and t� stands for tan�.

and gHSMV V denotes the SM Higgs coupling factors. In terms of the gauge boson massesMW and
MZ , the SU(2)L gauge coupling g and the Weinberg angle ✓W they are given by gHSMV V = gMW

for V = W and gMZ/ cos ✓W for V = Z.
Both the 2HDM and C2HDM are free from tree-level FCNCs by extending the global Z2

symmetry to the Yukawa sector. The four independent Z2 charge assignments of the fermion
fields determine the four types of 2HDMs depicted in Table 1. The Yukawa Lagrangian is defined
by

LY = �
3X

i=1

mf

v
 ̄f [c

e(Hiff) + ic
o(Hiff)�5] fHi , (2.6)

where  f is the fermion field with mass mf . In Table 2 we present the CP-even and the CP-odd
components of the Yukawa couplings, ce(Hiff) and c

o(Hiff), respectively [?].
All Higgs branching ratios can be obtained from C2HDM HDECAY [?]1 which implements the

C2HDM in HDECAY [?, ?]. These include state-of-the art higher order QCD corrections and
possible o↵-shell decays. The complete set of Feynman rules for the C2HDM is available at:

http://porthos.tecnico.ulisboa.pt/arXiv/C2HDM/

where for the SM subset the notation for the covariant derivatives is the one in [?] with all ⌘’s
positive, where the ⌘’s define the sign of the covariant derivative (see [?]). Note that the 2HDM
branching ratios are part of the HDECAY release (see [?,?,?] for details).

2.2 The N2HDM

The version of the N2HDM used in this work was discussed in great detail in [?]. This extension
consists of the addition of an extra doublet and an extra real singlet to the SM field content.

1
The program C2HDM HDECAY can be downloaded from the url: https://www.itp.kit.edu/~maggie/C2HDM.

2

There is a 125 GeV Higgs (other scalars can be lighter and/or heavier). 
From the 2HDM on, tan β=v2/v1. Also charged Higgs are present. 
Models (except singlet extensions) can be CP-violating. 
They all have ρ=1 at tree-level. 
You get a few more scalars (CP-odd or CP-even or with no definite CP) 
In case all neutral scalars mix there will be three mixing angles  
They can have dark matter candidates (or not)

Similar neutral Higgs sector but different underlying symmetries
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Many simple model with new and interesting physics
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Potential

Φ1 =
ϕ+

1
1

2
(v1 + ρ1 + iη1)

Φ2 =
ϕ+

2
1

2
(v2+ρ2 + iη2) ΦS = vS+ρS

with fields

V = m2
11 |Φ1 |2 +m 2

22 |Φ2 |2 − m2
12 (Φ†

1Φ2 + h . c.)+
m2

S

2
Φ2

S

+
λ1

2
(Φ†

1Φ1)2+
λ2

2
(Φ†

2Φ2)2 + λ3(Φ†
1Φ1)(Φ†

2Φ2) + λ4(Φ†
1Φ2)(Φ†

2Φ1)

+
λ5

2 [(Φ†
1Φ2) + h . c . ]+

λ6

4
Φ4

S +
λ7

2
(Φ†

1Φ1)Φ2
S+

λ8

2
(Φ†

2Φ2)Φ2
S

Particle (type) spectrum 
depends on the 

symmetries imposed 
on the model, and 
whether they are  

spontaneously broken or 
not. There are two 

charged particles and 4 
neutral.

magenta + blue ⟹ RxSM (also CxSM)

magenta + black ⟹ 2HDM (also C2HDM)

magenta + black + blue + red ⟹ N2HDM

magenta ⟹ SM

softly broken Z2 : Φ1 → Φ1; Φ2 → − Φ2

softly broken Z2 : Φ1 → Φ1; Φ2 → − Φ2; ΦS → ΦS

exact Z′ 2 : Φ1 → Φ1; Φ2 → Φ2; ΦS → − ΦS• m2
12 and λ5 real 2HDM

• m2
12 and λ5 complex C2HDM

The model can be CP 
violating or not.
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Potential(s)
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• Should contain a SM-like Higgs boson

• Electroweak ρ parameter should be close to 1 (relation between W and Z mass)

ρ =
m2

W

m2
Z cos θ2

W
=

∑i [4Ti(Ti + 1) − Y2
i ] |vi |

2 ci

∑i 2Y2
i |vi |

2

Ti SU(2)L Isospin
Yi Hypercharge
vi VEV
ci 1(1/2) for complex (real) representations

Q = T3 + Y/2
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Constraints

• Perturbative unitarity

• Boundness from below
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DM Direct detection



51

Distribution of Dark Matter in the galaxy
Hard problem - there are only averages over long volumes. There are attempts to measure locally and 
globally the shape of the Milky Way DM halo.

But what we really need is the kinematic distribution of DM in our solar system.

We assume the Standard Halo Model (SHM) with a density profile of . The velocities obey a 
Boltzmann-Maxwell distribution. The local circular speed of DM is (218-246) Km/s. The velocity 
distribution is cut at the escape velocity, which is about 530 Km/s.

ρ(r) ∼ r−2

The prediction for the direct detection of DM on the Earth is separated into a kinematical part involving 
the velocity distribution and one part that deals with the collision. This allows us to compare different 
experiments independently of the local DM distribution. 

MB distribution - system containing a large number of identical non-interacting, non-relativistic classical 
particles in thermodynamic equilibrium, the fraction of the particles within an infinitesimal element of the 
three-dimensional velocity space, cantered on a velocity vector of magnitude v, is 
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Direct detection
We assume we have a WIMP that has an electroweak interaction that comes via some portal. Since the 
DM is coupled to a mediator (in the case of the scalar extension is the Higgs) and the mediator is coupled 
to the remaining SM particles, there will be an effective DM-SM interaction. 

Also, we assume there is a local DM density  in which the earth is traveling. The DM stream may 
interact with a nucleus and transfer a small amount of energy (recoil energy). So far no event was 
recorded and bounds were set on coupling vs. mass. The differential scattering can be written as

ρ0

dR(ER, t)
dER

= NT
ρ

mχ ∫v>vmin

v f ( ⃗v + ⃗vE(t))
dσ(ER, v)

dER
d3v

where  is the recoil energy,  is the number of nuclei,  is the velocity in the rest frame of the 
experiment,  is the velocity distribution function and  is the minimum velocity of DM causing a recoil 
energy. The minimum velocity for elastic scattering is 

ER NT v
f vmin

vmin =
mNER

2μ2
, μ =

mNmχ

mN + mχ

where  is the nucleon mass.mN

[σ vn] = m2 m
s

1
m3

=
1
s
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Direct detection

The differential rate can further be divided in a spin-dependent (SD) and a spin-independent (SI) part. 
The time integrated differential cross section is then written as

σ(ER, v)
dER

=
mN

2μ2v2
(σSIF2

SI(ER) + σSDF2
SD(ER))

where  are nuclear form factors. The DM velocity is non-relativistic, , and therefore the 
recoil energies are low (order KeV) and the momentum transfer is of order GeV. This in turn means that 
nuclei cannot be treated as point-like in the scattering process with DM. The cross section with a target 
nucleus is 

F v/c ≈ 10−3

σSI
i =

μi

π
|ZigSI

p + (Ai − Zi)gSI
n |2 |Fi(q) |2

where  indicates the material and Z and A are the proton and mass numbers, respectively.i

Now we need to find a way to link the quarks to the nucleons.

Let us see how exactly we can do this.
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Let us go back to the Fermi theory of weak interactions, with Lagrangian

We say that we have matched the Wilson coefficient  to the coefficient of the actual model. 
This yields GF = 1.17 × 10-5 GeV-2 . Theory works well for and energy well below the W boson mass. At 
higher energies one should use the proper electroweak theory.

GF / 2

54

Intermission - EFTs

ℒint =
GF

2 ∑
i, j

ψ̄iγμ(1 − γ5)ψi ψ̄iγμ(1 − γ5)ψi

In the electroweak theory this interaction would have been written as

ℒint =
g2

8 ∑
i, j

ψ̄iγμ(1 − γ5)ψi
−1

q2 − m2
W

ψ̄iγμ(1 − γ5)ψi

ℒint ≈
g2

8m2
W

∑
i, j

ψ̄iγμ(1 − γ5)ψi ψ̄iγμ(1 − γ5)ψi (q2 ≪ m2
W)

And in the limit  we can writeq2 ≪ m2
W

GF

2
=

g2

8m2
W
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and the LO amplitude reads

A
LO

h!⌧⌧
= gh⌧⌧ ū(p⌧ )u(p⌧ ) =

gm⌧ cos↵

2mW

ū(p⌧ )u(p⌧ ) , (3.52)

with u(p⌧ ) (ū(p⌧ )) denoting the spinor (anti-spinor) of the ⌧ with four-momentum p⌧ . Dividing
the weak NLO amplitude into the LO amplitude, the weak virtual corrections to the amplitude,
and the corresponding counterterm part,

A
NLO,weak

h!⌧⌧
= A

LO + A
virt,weak + A

ct
, (3.53)

the condition Eq. (3.50) translates into

A
virt,weak + A

ct = 0 , (3.54)

and we get the mixing angle counterterm in the process-dependent scheme as

�↵ =

✓
2mW

gm⌧ cos↵

◆ h
A

virt,weak + A
ct

��
�↵=0

i
. (3.55)

Here A
ct

��
�↵=0

denotes the complete counterterm amplitude but without the contribution from
�↵.

4 Dark Matter Direct Detection at Tree Level

In the following we want to set our notation and conventions used in the calculation of the
spin-independent (SI) cross section of DM-nucleon scattering. The interaction between the DM
and the nucleon is described in terms of e↵ective coupling constants. The major contribution
to the cross section comes from the light quarks q = u, d, s and gluons. For the VDM model the
e↵ective operator basis contributing to the SI cross section is given by [49]

L
e↵ =

X

q=u,d,s

L
e↵

q + L
e↵

G , (4.56)

with

L
e↵

q = fq�µ�
µ
mq q̄q +

gq

m2
�

�
⇢
i@

µ
i@

⌫
�⇢O

q

µ⌫ , (4.57a)

L
e↵

G = fG�⇢�
⇢
G

a

µ⌫G
aµ⌫

, (4.57b)

where G
a
µ⌫ (a = 1, ..., 8) denotes the gluon field strength tensor and O

q
µ⌫ the quark twist-2

operator corresponding to the traceless part of the energy-momentum tensor of the nucleon
[50,51],

O
q

µ⌫ =
1

2
q̄i

✓
@µ�⌫ + @⌫�µ �

1

2
/@

◆
q . (4.58)

Operators suppressed by the DM velocities and the momentum transfer of the DM particle to
the nucleon are neglected in the analysis. Furthermore, we neglect contributions introduced
by the gluon twist-2 operator O

g
µ⌫ , since these contributions are one order higher in the strong
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Figure 2: Higgs bosons hi mediating the coupling of two gluons to two VDM particles through a heavy quark
loop.

coupling constant ↵s [49].

For vanishing momentum transfer and on-shell nucleon states, the nucleon matrix elements
are given by

hN |mq q̄q |Ni = mNf
N

Tq
(4.59a)

�
9↵S

8⇡
hN |G

a

µ⌫G
a,µ⌫

|Ni =

0

@1 �

X

q=u,d,s

f
N

Tq

1

AmN = mNf
N

TG
(4.59b)

hN(p)| Oq

µ⌫ |N(p)i =
1

mN

✓
pµp⌫ �

1

4
m

2

Ngµ⌫

◆ �
q
N (2) + q̄

N (2)
�
, (4.59c)

where N denotes a nucleon, N = p, n, and mN is the nucleon mass. Furthermore, qN (2), q̄N (2)
are the second moments of the parton distribution functions of the quark q(x) and the antiquark
q̄(x), respectively. The four-momentum of the nucleon is denoted by p. The numerical values
for the matrix elements fN

Tq
, fN

TG
and the second moments qN (2) and q̄

N (2) are given in App. A.
The SI e↵ective coupling of the VDM particle with the nucleons is obtained from the nucleon
expectation value of the e↵ective Lagrangian, Eq. (4.56), by applying Eqs. (4.59), which yields

fN/mN =
X

q=u,d,s

fqf
N

Tq
+

X

q=u,d,s,c,b

3

4

�
q
N (2) + q̄

N (2)
�
gq �

8⇡

9↵S

f
N

TG
fG . (4.60)

In the contribution from the quark twist-2 operator all quarks below the energy scale ⇠ 1 GeV
have to be included, i.e. all quarks but the top quark. The SI scattering cross section between
the VDM particle and a nucleon, proton or neutron (N = p, n), is given by

�N =
1

⇡

✓
mN

m� +mN

◆2 ��fN
��2 . (4.61)

Note that the sum in the first term of Eq. (4.60) only extends over the light quarks. The
leading-order gluon interaction with two VDM particles is mediated by one of the two Higgs
bosons which couple to the external gluons through a heavy quark triangle diagram, cf. Fig. 2.
The charm, bottom and top quark masses are larger than the energy scale relevant for DM
direct detection and should therefore be integrated out for the description of the interaction at
the level of the nucleon. By calculating the heavy quark triangle diagrams and then integrating
out the heavy quarks we obtain the related operator in the heavy quark limit. This is equivalent
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coupling constant ↵s [49].

For vanishing momentum transfer and on-shell nucleon states, the nucleon matrix elements
are given by

hN |mq q̄q |Ni = mNf
N

Tq
(4.59a)

�
9↵S

8⇡
hN |G

a

µ⌫G
a,µ⌫

|Ni =

0

@1 �

X

q=u,d,s

f
N

Tq

1

AmN = mNf
N

TG
(4.59b)

hN(p)| Oq

µ⌫ |N(p)i =
1

mN

✓
pµp⌫ �

1

4
m

2

Ngµ⌫

◆ �
q
N (2) + q̄

N (2)
�
, (4.59c)

where N denotes a nucleon, N = p, n, and mN is the nucleon mass. Furthermore, qN (2), q̄N (2)
are the second moments of the parton distribution functions of the quark q(x) and the antiquark
q̄(x), respectively. The four-momentum of the nucleon is denoted by p. The numerical values
for the matrix elements fN

Tq
, fN

TG
and the second moments qN (2) and q̄

N (2) are given in App. A.
The SI e↵ective coupling of the VDM particle with the nucleons is obtained from the nucleon
expectation value of the e↵ective Lagrangian, Eq. (4.56), by applying Eqs. (4.59), which yields

fN/mN =
X

q=u,d,s

fqf
N

Tq
+

X

q=u,d,s,c,b

3

4

�
q
N (2) + q̄

N (2)
�
gq �

8⇡

9↵S

f
N

TG
fG . (4.60)

In the contribution from the quark twist-2 operator all quarks below the energy scale ⇠ 1 GeV
have to be included, i.e. all quarks but the top quark. The SI scattering cross section between
the VDM particle and a nucleon, proton or neutron (N = p, n), is given by

�N =
1

⇡

✓
mN

m� +mN

◆2 ��fN
��2 . (4.61)

Note that the sum in the first term of Eq. (4.60) only extends over the light quarks. The
leading-order gluon interaction with two VDM particles is mediated by one of the two Higgs
bosons which couple to the external gluons through a heavy quark triangle diagram, cf. Fig. 2.
The charm, bottom and top quark masses are larger than the energy scale relevant for DM
direct detection and should therefore be integrated out for the description of the interaction at
the level of the nucleon. By calculating the heavy quark triangle diagrams and then integrating
out the heavy quarks we obtain the related operator in the heavy quark limit. This is equivalent
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And now we need to get all the Wilson coefficients  at the order we are working atfq, gq, fG

Write the effective Lagrangian

and the LO amplitude reads

A
LO

h!⌧⌧
= gh⌧⌧ ū(p⌧ )u(p⌧ ) =

gm⌧ cos↵

2mW

ū(p⌧ )u(p⌧ ) , (3.52)

with u(p⌧ ) (ū(p⌧ )) denoting the spinor (anti-spinor) of the ⌧ with four-momentum p⌧ . Dividing
the weak NLO amplitude into the LO amplitude, the weak virtual corrections to the amplitude,
and the corresponding counterterm part,

A
NLO,weak

h!⌧⌧
= A

LO + A
virt,weak + A

ct
, (3.53)

the condition Eq. (3.50) translates into

A
virt,weak + A

ct = 0 , (3.54)

and we get the mixing angle counterterm in the process-dependent scheme as

�↵ =

✓
2mW

gm⌧ cos↵

◆ h
A

virt,weak + A
ct

��
�↵=0

i
. (3.55)

Here A
ct

��
�↵=0

denotes the complete counterterm amplitude but without the contribution from
�↵.

4 Dark Matter Direct Detection at Tree Level

In the following we want to set our notation and conventions used in the calculation of the
spin-independent (SI) cross section of DM-nucleon scattering. The interaction between the DM
and the nucleon is described in terms of e↵ective coupling constants. The major contribution
to the cross section comes from the light quarks q = u, d, s and gluons. For the VDM model the
e↵ective operator basis contributing to the SI cross section is given by [49]

L
e↵ =

X

q=u,d,s

L
e↵

q + L
e↵

G , (4.56)

with

L
e↵

q = fq�µ�
µ
mq q̄q +

gq

m2
�

�
⇢
i@

µ
i@

⌫
�⇢O

q

µ⌫ , (4.57a)

L
e↵

G = fG�⇢�
⇢
G

a

µ⌫G
aµ⌫

, (4.57b)

where G
a
µ⌫ (a = 1, ..., 8) denotes the gluon field strength tensor and O

q
µ⌫ the quark twist-2

operator corresponding to the traceless part of the energy-momentum tensor of the nucleon
[50,51],

O
q

µ⌫ =
1

2
q̄i

✓
@µ�⌫ + @⌫�µ �

1

2
/@

◆
q . (4.58)

Operators suppressed by the DM velocities and the momentum transfer of the DM particle to
the nucleon are neglected in the analysis. Furthermore, we neglect contributions introduced
by the gluon twist-2 operator O

g
µ⌫ , since these contributions are one order higher in the strong
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and the LO amplitude reads

A
LO

h!⌧⌧
= gh⌧⌧ ū(p⌧ )u(p⌧ ) =

gm⌧ cos↵

2mW

ū(p⌧ )u(p⌧ ) , (3.52)

with u(p⌧ ) (ū(p⌧ )) denoting the spinor (anti-spinor) of the ⌧ with four-momentum p⌧ . Dividing
the weak NLO amplitude into the LO amplitude, the weak virtual corrections to the amplitude,
and the corresponding counterterm part,

A
NLO,weak

h!⌧⌧
= A

LO + A
virt,weak + A

ct
, (3.53)

the condition Eq. (3.50) translates into

A
virt,weak + A

ct = 0 , (3.54)

and we get the mixing angle counterterm in the process-dependent scheme as

�↵ =

✓
2mW

gm⌧ cos↵

◆ h
A

virt,weak + A
ct

��
�↵=0

i
. (3.55)

Here A
ct

��
�↵=0

denotes the complete counterterm amplitude but without the contribution from
�↵.

4 Dark Matter Direct Detection at Tree Level

In the following we want to set our notation and conventions used in the calculation of the
spin-independent (SI) cross section of DM-nucleon scattering. The interaction between the DM
and the nucleon is described in terms of e↵ective coupling constants. The major contribution
to the cross section comes from the light quarks q = u, d, s and gluons. For the VDM model the
e↵ective operator basis contributing to the SI cross section is given by [49]

L
e↵ =

X

q=u,d,s

L
e↵

q + L
e↵

G , (4.56)

with

L
e↵

q = fq�µ�
µ
mq q̄q +

gq

m2
�

�
⇢
i@

µ
i@

⌫
�⇢O

q

µ⌫ , (4.57a)

L
e↵

G = fG�⇢�
⇢
G

a

µ⌫G
aµ⌫

, (4.57b)

where G
a
µ⌫ (a = 1, ..., 8) denotes the gluon field strength tensor and O

q
µ⌫ the quark twist-2

operator corresponding to the traceless part of the energy-momentum tensor of the nucleon
[50,51],

O
q

µ⌫ =
1

2
q̄i

✓
@µ�⌫ + @⌫�µ �

1

2
/@

◆
q . (4.58)

Operators suppressed by the DM velocities and the momentum transfer of the DM particle to
the nucleon are neglected in the analysis. Furthermore, we neglect contributions introduced
by the gluon twist-2 operator O

g
µ⌫ , since these contributions are one order higher in the strong
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Define the nucleon matrix elements
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coupling constant ↵s [49].

For vanishing momentum transfer and on-shell nucleon states, the nucleon matrix elements
are given by

hN |mq q̄q |Ni = mNf
N

Tq
(4.59a)

�
9↵S

8⇡
hN |G

a

µ⌫G
a,µ⌫

|Ni =

0

@1 �

X

q=u,d,s

f
N

Tq

1

AmN = mNf
N

TG
(4.59b)

hN(p)| Oq

µ⌫ |N(p)i =
1

mN

✓
pµp⌫ �

1

4
m

2

Ngµ⌫

◆ �
q
N (2) + q̄

N (2)
�
, (4.59c)

where N denotes a nucleon, N = p, n, and mN is the nucleon mass. Furthermore, qN (2), q̄N (2)
are the second moments of the parton distribution functions of the quark q(x) and the antiquark
q̄(x), respectively. The four-momentum of the nucleon is denoted by p. The numerical values
for the matrix elements fN

Tq
, fN

TG
and the second moments qN (2) and q̄

N (2) are given in App. A.
The SI e↵ective coupling of the VDM particle with the nucleons is obtained from the nucleon
expectation value of the e↵ective Lagrangian, Eq. (4.56), by applying Eqs. (4.59), which yields

fN/mN =
X

q=u,d,s

fqf
N
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In the contribution from the quark twist-2 operator all quarks below the energy scale ⇠ 1 GeV
have to be included, i.e. all quarks but the top quark. The SI scattering cross section between
the VDM particle and a nucleon, proton or neutron (N = p, n), is given by

�N =
1

⇡

✓
mN

m� +mN

◆2 ��fN
��2 . (4.61)

Note that the sum in the first term of Eq. (4.60) only extends over the light quarks. The
leading-order gluon interaction with two VDM particles is mediated by one of the two Higgs
bosons which couple to the external gluons through a heavy quark triangle diagram, cf. Fig. 2.
The charm, bottom and top quark masses are larger than the energy scale relevant for DM
direct detection and should therefore be integrated out for the description of the interaction at
the level of the nucleon. By calculating the heavy quark triangle diagrams and then integrating
out the heavy quarks we obtain the related operator in the heavy quark limit. This is equivalent

10

And calculate the cross section

Shifman, Vainshtein, Zakharov, PLB78 443 (1978)

fraction of the nucleon momentum carried by the quarks (PDFs)

fTq denotes the fraction of the nucleon mass that is due to light 
quark q (lattice)
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b
P (2) = 0.012 , b̄

P (2) = 0.012 . (4.70e)

The identification of the corresponding contributions of the operators and the relation to the
SI operator O1 in Eq. (4.65) has to be discussed for di↵erent spin configurations of the DM
candidate. In the following, we will introduce the identification for scalar and vector-like DM
candidates.

4.3.1. Scalar Dark Matter

Scalar DM as present in the PNGDM cannot produce spin-dependent interactions with the
nuclei12, thus only the SI contributions are unsuppressed by the perpendicular velocity or
the momentum transfer. The e↵ective Lagrangian with the parton operators is given as
[116,119,120]
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with the Wilson coe�cients C
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T
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The sum runs over all contributing quarks. The SI-cxn on a single nucleon n is then given
by
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(4.73)
with mn either the proton or neutron mass, the Wilson coe�cients in accordance to Eq. (4.71)
and the nuclear matrix elements as in Eqs. (4.68) and (4.70). Note that the first sum runs
solely over the light quarks q = u, d, s, whereas the second sum runs over all quarks, except
for the top quark.

4.3.2. Vector Dark Matter

Analogous to the previous subsection, the SI-cxn on a single nucleon can be determined for
vector-like DM. The VDM introduces a vector-like DM candidate, which is coupled to the
Higgs sector. The e↵ective Lagrangian with the contributing parton operators reads [121]

L
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G , (4.74)
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12Even though there are operators in Eq. (4.65) depending on the spin of the nucleon, the corresponding operators
are suppressed by the perpendicular velocity or momentum transfer. These operators are neglected in our
analysis.
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with mn either the proton or neutron mass, the Wilson coe�cients in accordance to Eq. (4.71)
and the nuclear matrix elements as in Eqs. (4.68) and (4.70). Note that the first sum runs
solely over the light quarks q = u, d, s, whereas the second sum runs over all quarks, except
for the top quark.

4.3.2. Vector Dark Matter

Analogous to the previous subsection, the SI-cxn on a single nucleon can be determined for
vector-like DM. The VDM introduces a vector-like DM candidate, which is coupled to the
Higgs sector. The e↵ective Lagrangian with the contributing parton operators reads [121]
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12Even though there are operators in Eq. (4.65) depending on the spin of the nucleon, the corresponding operators
are suppressed by the perpendicular velocity or momentum transfer. These operators are neglected in our
analysis.
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The operator structure reflects Eq. (4.72), however, we have a vector-like state �µ in the
parton operators. The SI-cxn on a single nucleon, either a proton (n = P ) or a neutron
(n = N) reads

�n =
1

⇡

✓
mn

m� + mn

◆2 ��fn

��2 , (4.76)

with the e↵ective nucleon coupling
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Again the prefactors fq, gq and fG are the Wilson coe�cients of the parton operators, respec-
tively. The corresponding nuclear matrix elements are given in Eqs. (4.68) and (4.70).

4.3.3. Extracting the Wilson Coe�cients

The only missing piece required for the determination of the SI-cxn of an underlying model
is the matching of the Wilson coe�cients in front of the ChEFT operators in Eqs. (4.72)
and (4.75). The procedure applied in this thesis will be discussed in the following section,
followed by a separate discussion on the inclusion of NLO EW corrections in Chapter 5 and 6.
Comparing the contributing operators in Eqs. (4.72) and (4.75), we have two di↵erent kinds
of DM interactions with the nuclei. The first one is induced through an e↵ective DM-quark
interaction, whereas the latter is induced through an e↵ective DM-gluon interaction. Even
though there is no direct coupling between the DM candidate and quarks neither to gluons
in PNGDM and VDM, there exist Feynman diagrams generating this interaction.
Quark Contributions:
The t-channel interaction between the DM and a quark mediated through a Higgs boson can
be generically described as

Agen =
X

i

C��hi
Cqqhi

1

q2 � m
2
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q
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m
2
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ū(p)u(p) , (4.78)

with the generic trilinear coupling C��hi
between two �’s and the i-th Higgs boson and the

generic trilinear coupling Cqqhi
between two quarks and the i-th Higgs boson, respectively.

The sum runs over all involved Higgs bosons of the underlying model. The quark spinor with
its corresponding momentum p is described as u(p). The explicit zero momentum transfer
limit (q2 ! 0) is taken to extract the SI-cxn, since we neglect the velocity or momentum
transfer suppressed operator contributions. For simplicity let us assume scalar DM implying
scalar-like couplings. Such a diagram would be produced by the EFT operators

Le↵ � �

X

i

C��hi
Cqqhi

2m
2
hi

��q̄q , (4.79)

with the scalar fields � and the quark spinor q. Note the additional factor 1/2 to account for
the symmetry factor due to the scalar fields. The comparison with Eq. (4.72) allows us to
extract the contribution to the Wilson coe�cient for the quark operator ��mq q̄q to be

C
q

S
� �

X

i

C��hi
Cqqhi

2mqm
2
hi

. (4.80)

Furthermore, there can be additional contributions to the quark operators generated through
other diagrams, even though at tree level the t-channel exchange is the only topology con-
tributing to this operator in the models under investigation. This method can be applied to

Assuming scalar-like couplings we can write
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Furthermore, there can be additional contributions to the quark operators generated through
other diagrams, even though at tree level the t-channel exchange is the only topology con-
tributing to this operator in the models under investigation. This method can be applied to

And so the Wilson coefficient is 

There can be additional contributions to the quark operators generated through other diagrams, even though at tree 
level the t-channel exchange is the only topology contributing to this operator in the models under investigation. 
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This transformation can be used to write

And so the final cross section is
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� �

hi

Q

Figure 2: Higgs bosons hi mediating the coupling of two gluons to two VDM particles through a heavy quark
loop.

coupling constant ↵s [49].

For vanishing momentum transfer and on-shell nucleon states, the nucleon matrix elements
are given by

hN |mq q̄q |Ni = mNf
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(4.59a)
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where N denotes a nucleon, N = p, n, and mN is the nucleon mass. Furthermore, qN (2), q̄N (2)
are the second moments of the parton distribution functions of the quark q(x) and the antiquark
q̄(x), respectively. The four-momentum of the nucleon is denoted by p. The numerical values
for the matrix elements fN

Tq
, fN

TG
and the second moments qN (2) and q̄

N (2) are given in App. A.
The SI e↵ective coupling of the VDM particle with the nucleons is obtained from the nucleon
expectation value of the e↵ective Lagrangian, Eq. (4.56), by applying Eqs. (4.59), which yields
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In the contribution from the quark twist-2 operator all quarks below the energy scale ⇠ 1 GeV
have to be included, i.e. all quarks but the top quark. The SI scattering cross section between
the VDM particle and a nucleon, proton or neutron (N = p, n), is given by

�N =
1

⇡

✓
mN

m� +mN

◆2 ��fN
��2 . (4.61)

Note that the sum in the first term of Eq. (4.60) only extends over the light quarks. The
leading-order gluon interaction with two VDM particles is mediated by one of the two Higgs
bosons which couple to the external gluons through a heavy quark triangle diagram, cf. Fig. 2.
The charm, bottom and top quark masses are larger than the energy scale relevant for DM
direct detection and should therefore be integrated out for the description of the interaction at
the level of the nucleon. By calculating the heavy quark triangle diagrams and then integrating
out the heavy quarks we obtain the related operator in the heavy quark limit. This is equivalent
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both models PNGDM and VDM. In addition, it can be generalized to NLO. The application
to the specific model will be discussed in Chapter 5 for the PNGDM and in Chapter 6 for
the VDM, respectively.
Gluon Contributions:
In the following, we discuss the extraction of the gluon interaction. The e↵ective DM-gluon

� �

g g

hi

Figure 4.4.: Interaction of a DM particle and a gluon via a Higgs boson mediator and a quark
loop.

interaction arises at one-loop level. One example of such a diagram is depicted in Fig. 4.4,
where the quark triangle induces the coupling to the Higgs mediator. This triangle can be
expanded for heavy quark masses and for vanishing momentum transfer, however there is
also the possibility to extract this coupling from the e↵ective Higgs-nuclei interaction [122].
The derivation is based on the QCD trace anomaly allowing us to determine the trace of the
energy-momentum tensor of the nuclei to be [122,123]
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with Nf being the number of active quark flavors, the anomalous dimension � and �Nf
as

the �-function. In the leading-order approximation, the three lightest quarks q = u, d, s yield
the mass of the nucleon n
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Eq. (4.82) implies that the heavy quarks Q = c, b, t do not contribute to the nucleon mass (at
leading order). By going from Nf ! Nf + 1 it is possible to determine the expectation value
for the heavy quark operator
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with �� ⌘ �4 � �3 = ↵
2
s/(3⇡)2 indicating the di↵erence of the �-function between Nf + 1 and

Nf . This coincides with the result for the e↵ective hG
a

µ⌫G
aµ⌫ vertex for small q

2 at the order
of ↵s [124].
Thus, in order to derive the e↵ective DM-gluon interaction, one can calculate the correspond-
ing diagram with a heavy quark line and replace
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12⇡
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. (4.84)

This replacement yields the Wilson coe�cient of the e↵ective gluon contributions to the
SI-cxn as depicted in Fig. 4.4. This method implies subtle problems when including NLO
EW corrections. We will discuss the implications of this problem and possible solutions in
the specific part of the calculation.

Besides the triangle quark loop, also a fermion box-like topology can induce an e↵ective
DM-gluon interaction. However, these contributions are of two-loop order. Nevertheless, we
want to investigate their overall e↵ect on the SI-cxn in suitable approximations.
The corresponding topology is shown in Fig. 4.5. The upper gray blob indicates possible
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Nf . This coincides with the result for the e↵ective hG
a

µ⌫G
aµ⌫ vertex for small q

2 at the order
of ↵s [124].
Thus, in order to derive the e↵ective DM-gluon interaction, one can calculate the correspond-
ing diagram with a heavy quark line and replace

mQQ̄Q ! �
↵s

12⇡
G

a

µ⌫G
aµ⌫

. (4.84)

This replacement yields the Wilson coe�cient of the e↵ective gluon contributions to the
SI-cxn as depicted in Fig. 4.4. This method implies subtle problems when including NLO
EW corrections. We will discuss the implications of this problem and possible solutions in
the specific part of the calculation.

Besides the triangle quark loop, also a fermion box-like topology can induce an e↵ective
DM-gluon interaction. However, these contributions are of two-loop order. Nevertheless, we
want to investigate their overall e↵ect on the SI-cxn in suitable approximations.
The corresponding topology is shown in Fig. 4.5. The upper gray blob indicates possible

obtained in Ref. [13] should be applicable to our model as well. Moreover, the box contribution
to the NLO SI direct detection cross section is only minor as we verified explicitly.

The diagram in Fig. 7 (right) yields the following contribution to the Lagrangian
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where C
ij

4 denotes the contribution from the triangle loop built up by hi, hj and the VDM
particle. It has to be extracted from the calculated amplitude of Fig. 7 (right). Using Eq. (4.57b)
the contributions by the box topology to the gluon-DM interaction are given by
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5.4 The SI One-Loop Cross Section

In the last sections we discussed the extraction of the one-loop e↵ective form factors for the
operators in Eq. (4.57). The NLO EW SI cross section can then be obtained by using the
e↵ective one-loop form factor
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with the Wilson coe�cients at one-loop level given by

f
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q + f
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Like at LO, the heavy quark contributions of f
vertex
q and f

med
q have to be attributed to the

e↵ective gluon interaction. With the LO form factor given by
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where f
LO
q has been given in Eq. (4.63), we have for the NLO EW SI cross section at leading

order in ↵S ,
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6 Numerical Analysis

In our numerical analysis we use parameter points that are compatible with current theoretical
and experimental constraints. These are obtained by performing a scan in the parameter space
of the model and by checking each data set for compatibility with the constraints. In order to
do so, the VDM model was implemented in the code ScannerS [53, 54] which automatises the
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� �

q q

hi

Figure 3: Generic tree-level diagram contribution to the SI cross section. The mediator S corresponds to the two
Higgs bosons h1 and h2. The quark line q corresponds to all quarks q = u, d, s, c, b, t.

corresponding to the e↵ective leading-order VDM-gluon interaction in Eq. (4.56).

For the tree-level contribution to the SI cross section the t-channel diagrams depicted in
Fig. 3 have to be calculated for vanishing momentum transfer. The respective Wilson coe�cient
for the e↵ective operator in Eq. (4.55) is extracted by projecting onto the corresponding tensor
structure, mqqq̄. Accounting for the additional symmetry factor of the amplitude, this yields
finally the following fq factor for the quarks,
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As explained above, the heavy quarks Q = b, c, t have to be integrated out, contributing thereby
to the e↵ective gluon interaction. By using Eq. (4.61), the Wilson coe�cient for the gluon
interaction, fG, can be expressed in terms of fq for q = c, t, b,

fG =
X
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fq , (4.63)

resulting in the SI LO cross section
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The twist-2 operator does not contribute to it. The obtained result is in agreement with
Ref. [35]2.

5 Dark Matter Direct Detection at One-Loop Order

As a next step, we want to include the NLO EW corrections in the calculation of the SI cross
section. For this, we evaluate the one-loop contributions to the Wilson coe�cients fq and fG in
front of the operators in Eq. (4.56). At this order, also the Wilson coe�cient gq is non-zero, as
opposed to at LO. The additional topologies contributing at NLO EW are depicted in Fig. 4.
Note that we do not include vertex corrections to the hiq̄q vertex. They are part of the nuclear generic

box
topolo-
gies!

generic
box
topolo-
gies!

find a ref,
or solid
argument

find a ref,
or solid
argument

matrix elements and beyond the scope of our study. For the purpose of our investigation, we
assume them to be encoded in the e↵ective coupling factors of the respective nuclear matrix
elements. In the following, we present the calculation of each topology separately.

2The authors of Ref. [35] introduced an e↵ective coupling fN ⇡ 0.3 between the nucleon and the DM particle,
which corresponds to |

P
q=u,d,s fTN

q
+ 2

9
fTN

G

��.

11

And for normalisation the Wilson coefficient in a model with two scalars is 
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found to lead to unphysically large corrections. This did not improve by choosing the gauge-
parameter dependent MS scheme. A renormalisation scheme exploiting the OS conditions of
the scalar fields on the other hand, leads to moderate K-factors, while being manifestly gauge-
parameter dependent. For the proper interpretation of the data, therefore, the choice of the
gauge parameter has to be specified here.

We found that the NLO corrections can either enhance or suppress the cross section. With
K-factors of up to about 2.5, they are important for the correct interpretation of the viability
of the VDM model based on the experimental limits on the direct detection cross section. The
NLO corrections can increase the LO results to values where the Xenon experiment becomes
sensitive to the model, or to values where the model is even excluded due to cross sections above
the Xenon limit. In case of suppression, parameter points that might be rejected at LO may
render the model viable when NLO corrections are included.

The next steps would be to investigate in greater detail the interesting region of degenerate
scalar masses and study its implication on phenomenology in order to further be able to delineate
the viability of this simple SM extension in providing a VDM candidate.
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A Nuclear Form Factors

We here present the numerical values for the nuclear form factors defined in Eq. (4.59). The
values of the form factors for light quarks are taken from micrOmegas [75]

f
p
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= 0.01513 , f

p

Td
= 0.0.0191 , f

p

Ts
= 0.0447 , (A.99a)

f
n

Tu
= 0.0110 , f

n
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= 0.0273 , f

n

Ts
= 0.0447 , (A.99b)

which can be related to the gluon form factors as

f
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, f
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f
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The needed second momenta in Eq. (4.59) are defined at the scale µ = mZ by using the CTEQ

parton distribution functions [76],

u
p(2) = 0.22 , ū

p(2) = 0.034 , (A.101a)

d
p(2) = 0.11 , d̄

p(2) = 0.036 , (A.101b)

s
p(2) = 0.026 , s̄

p(2) = 0.026 , (A.101c)

c
p(2) = 0.019 , c̄

p(2) = 0.019 , (A.101d)

b
p(2) = 0.012 , b̄

p(2) = 0.012 , (A.101e)

where the respective second momenta for the neutron can be obtained by interchanging up- and
down-quark values.
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Nuclear form factors

where M is the proton mass, or alternatively by the o↵-diagonal part of the EMT matrix elements,

hxi
o↵
q,g ⌘

Tr[�e
hP|T

q,g
4i
|Pi]

PiTr[�ehP|Pi]
(9)

T
q

4i
=

Z
d

3
x (x)

1
4
�{4
 !
D i} (x), T

g
4i
=

Z
d

3
x✏i jkE j(x)Bk(x),

where |Pi is the nucleon state with momentum P and Pi is a non-zero component of P. These two
definitions should give the same result in the continuum due to the rotational symmetry. But they can
be di↵erent under the lattice regularization which breaks this symmetry and should be renormalized
separately to get consistent results.

In Ref. [18], we provided the 1-loop renormalization and mixing calculation of T̄44 and T̄4i. The
rotational symmetry breaking e↵ects in the renormalization constant of the quark operator and the
mixing from quark to gluon are small, while that in the gluon to quark mixing case is large. The glue
renormalization constant turns out to be ⇠2 at the 1-loop level and is thus not reliable. The renor-
malization condition provided in Ref. [18] can also be used for the non-perturbative renormalization
calculation, and the preliminary result shows that the renormalization constant of the gluon operator
with 1-step HYP smearing is about 1.3 [19]. That with more steps of the HYP smearing is under in-
vestigation and would be closer to 1, since the corresponding bare gluon matrix elements are slightly
increased compared to the 1-step HYP smearing case.

Figure 1. The contributions of di↵erent quark flavors and glue to the proton momentum fraction. The left panel
shows the lattice results renormalized in the MS scheme at 2 GeV with 1-loop perturbative calculation and proper
normalization of the glue. The experimental values are illustrated in the right panel, as a function of the MS scale.
Our results agree with the experimental values at 2 GeV.

In view of the uncertainty in the glue renormalization, we calculate the renormalized quark mo-
mentum fractions with the 1-loop perturbative calculation including the mixing of the bare glue mo-
mentum fraction and apply the momentum sum rule to determine the renormalized glue momentum
fraction. The resulting renormalized momentum fractions of the u, d, s quarks, and glue in the MS
scheme at 2 GeV are illustrated in the left panel of Fig. 1, while the right panel shows the correspond-
ing experimental values as a function of Q [20]. We note that they agree with each other well within
uncertainties.

Figure 2. The pie chart of the proton mass decomposition, in terms of the quark mass, quark energy, glue field
energy and trace anomaly.

With these momentum fractions, we can apply Eqs. (5) and (6) to obtain the quark and glue
energy contributions in the proton mass, and combine with the quark mass contribution [6] to obtain
the entire picture of the proton mass decomposition, as illustrated in Fig. 2.

4 Summary

In summary, we present a simulation strategy to calculate the proton mass decomposition. The renor-
malization and mixing between the quark and glue energy can be calculated perturbatively or non-
perturbatively, while the quark mass contribution and the trace anomaly are renormalization group
invariant. Based on this strategy, the lattice simulation is processed on four ensembles with three
lattice spacings and volumes, and several pion masses including the physical pion mass, to control the
systematic uncertainties. With 1-loop perturbative calculation and proper normalization on the glue,
we obtained the proton mass decomposition, with the quark mass and trace anomaly contributing
9(2)% and 23(1)% respectively, while the fractional contributions of the quark and glue field energies
are 31(5)% and 37(5)% in the MS scheme at 2 GeV. As a check of validity of the present calculation,

Yang et al., arXiv:1710.09011v1 (2018)
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The SM is extended by an extra real scalar singlet S. The most general Lagrangian we can write is 

ℒ = ℒSM +
1
2

(∂μS )(∂μS ) − aS − bS2 − cS3 − dS4 − κ1SH†H − κ2SH†H − μ2H†H − λ(H†H )2

60

The spin 0 extension - real

And with a  symmetry , the potential reduces toZ2 S → − S

VN = bS2 + dS4 + κ1S2H†H + μ2H†H + λ(H†H )2

S = 0; h2 = − μ2 /(2λ);

Let us consider the solution (for the minimum)

P: Collect the relevant couplings for direct detection.

P: Calculate the amplitude.
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DD measurements

This is what we have to compare to.
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Back to the complex spin zero extension
3 Cancellation in the direct detection amplitude

The tree-level diagrams for scattering of � on matter involve the t-channel exchange
of a single h1 or h2 (Fig. 1). The �-�-h1,2 couplings are given by
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because the momentum transfer in this process is negligibly small, t ' 0. Thus, the
contributions from the h1-exchange and the h2-exchange cancel each other up to tiny
corrections of order t/(100 GeV)2. Note that this does not require any relation between
mh1 and mh2 , and the cancellation occurs for any choice of model parameters.

� �

ff

h1, h2

Figure 1: Tree–level dark matter scattering o↵ SM matter.

It is instructive to examine the cancellation mechanism in the interaction basis,
i.e. in terms of the states h and s, where only h couples to SM fermions. The relevant
�-�-h and �-�-s couplings are

L � �
1

2
�2 (�HSv h + �Svs s) , (14)

while, for vanishing momentum transfer t, the propagator matrix is proportional to
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3

Let us now consider the same process but in the complex extension. The relevant pieces of the Lagrangian 
are 

And 

P: What is now the amplitude in the limit of zero exchanged momentum?
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 The NLO EW SI cross section can be obtained using the one-loop form factor

obtained in Ref. [13] should be applicable to our model as well. Moreover, the box contribution
to the NLO SI direct detection cross section is only minor as we verified explicitly.

The diagram in Fig. 7 (right) yields the following contribution to the Lagrangian
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where C
ij

4 denotes the contribution from the triangle loop built up by hi, hj and the VDM
particle. It has to be extracted from the calculated amplitude of Fig. 7 (right). Using Eq. (4.57b)
the contributions by the box topology to the gluon-DM interaction are given by
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5.4 The SI One-Loop Cross Section

In the last sections we discussed the extraction of the one-loop e↵ective form factors for the
operators in Eq. (4.57). The NLO EW SI cross section can then be obtained by using the
e↵ective one-loop form factor
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with the Wilson coe�cients at one-loop level given by

f
NLO

q = f
vertex

q + f
med

q + f
box

q (5.85a)

g
NLO

q = g
box

q (5.85b)

f
NLO

G = �
↵S

12⇡

X

q=c,b,t

⇣
f
vertex

q + f
med

q

⌘
+ f

top

G
. (5.85c)

Like at LO, the heavy quark contributions of f
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where f
LO
q has been given in Eq. (4.63), we have for the NLO EW SI cross section at leading
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6 Numerical Analysis

In our numerical analysis we use parameter points that are compatible with current theoretical
and experimental constraints. These are obtained by performing a scan in the parameter space
of the model and by checking each data set for compatibility with the constraints. In order to
do so, the VDM model was implemented in the code ScannerS [53, 54] which automatises the

16

obtained in Ref. [13] should be applicable to our model as well. Moreover, the box contribution
to the NLO SI direct detection cross section is only minor as we verified explicitly.

The diagram in Fig. 7 (right) yields the following contribution to the Lagrangian

Le↵ �

⇣
d
e↵

G

⌘

ij

C
ij

4�µ�
µ
�↵S

12⇡
G

a

µ⌫G
aµ⌫

, (5.82)

where C
ij

4 denotes the contribution from the triangle loop built up by hi, hj and the VDM
particle. It has to be extracted from the calculated amplitude of Fig. 7 (right). Using Eq. (4.57b)
the contributions by the box topology to the gluon-DM interaction are given by

f
top

G
=

⇣
d
e↵

G

⌘

ij

C
ij

4
�↵S

12⇡
. (5.83)

5.4 The SI One-Loop Cross Section

In the last sections we discussed the extraction of the one-loop e↵ective form factors for the
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6 Numerical Analysis

In our numerical analysis we use parameter points that are compatible with current theoretical
and experimental constraints. These are obtained by performing a scan in the parameter space
of the model and by checking each data set for compatibility with the constraints. In order to
do so, the VDM model was implemented in the code ScannerS [53, 54] which automatises the
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The LO form factor is given by

And the cross section at one-loop is 

� �

q q

hi

Figure 3: Generic tree-level diagram contribution to the SI cross section. The mediator S corresponds to the two
Higgs bosons h1 and h2. The quark line q corresponds to all quarks q = u, d, s, c, b, t.

corresponding to the e↵ective leading-order VDM-gluon interaction in Eq. (4.56).

For the tree-level contribution to the SI cross section the t-channel diagrams depicted in
Fig. 3 have to be calculated for vanishing momentum transfer. The respective Wilson coe�cient
for the e↵ective operator in Eq. (4.55) is extracted by projecting onto the corresponding tensor
structure, mqqq̄. Accounting for the additional symmetry factor of the amplitude, this yields
finally the following fq factor for the quarks,
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As explained above, the heavy quarks Q = b, c, t have to be integrated out, contributing thereby
to the e↵ective gluon interaction. By using Eq. (4.61), the Wilson coe�cient for the gluon
interaction, fG, can be expressed in terms of fq for q = c, t, b,
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The twist-2 operator does not contribute to it. The obtained result is in agreement with
Ref. [35]2.

5 Dark Matter Direct Detection at One-Loop Order

As a next step, we want to include the NLO EW corrections in the calculation of the SI cross
section. For this, we evaluate the one-loop contributions to the Wilson coe�cients fq and fG in
front of the operators in Eq. (4.56). At this order, also the Wilson coe�cient gq is non-zero, as
opposed to at LO. The additional topologies contributing at NLO EW are depicted in Fig. 4.
Note that we do not include vertex corrections to the hiq̄q vertex. They are part of the nuclear generic
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matrix elements and beyond the scope of our study. For the purpose of our investigation, we
assume them to be encoded in the e↵ective coupling factors of the respective nuclear matrix
elements. In the following, we present the calculation of each topology separately.

2The authors of Ref. [35] introduced an e↵ective coupling fN ⇡ 0.3 between the nucleon and the DM particle,
which corresponds to |
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Figure 7: The full two-loop gluon interaction with the DM candidate (left) and the e↵ective two-loop interaction
after integration out the heavy quarks (right).

and therefore can be dropped. We refer to these one-loop contributions to the corresponding
tree-level Wilson coe�cients as fbox

q and g
box
q .

As discussed in Refs. [12, 13] the box diagrams also induce additional contributions to the
e↵ective gluon interaction with the VDM particle that have to be taken into account in the
Wilson coe�cient fG in Eq. (4.57b). The naive approach of using the same replacement as in
Eq. (4.62) to obtain the gluon interaction induces large errors [12]. To circumvent the over-
estimation of the gluon interaction without performing the full two-loop calculation, we adopt
the ansatz proposed in Ref. [13]. For heavy quarks compared to the mediator mass, it is possible
to derive an e↵ective coupling between two Higgs bosons and the gluon fields. Using the Fock-
Schwinger gauge allows us to express the gluon fields in terms of the field strength tensor Ga

µ⌫ ,
simplifying the extraction of the e↵ective two-loop contribution to fG. Integrating out the
top-quark yields the following e↵ective two-Higgs-two-gluon coupling [13]4

L
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, (5.79)

where the e↵ective coupling d
e↵

G
of Ref. [13] has to be adopted to our model. First of all we

only have scalar-type mediators, given by the Higgs bosons hi, so that the mixing angle �SM of
Ref. [13] which quantifies the CP-odd admixture, is set to

�SM = 0 . (5.80)

Second, the coupling of the Higgs bosons hi to the top quark di↵ers depending on which Higgs
boson is coupled, so that the e↵ective coupling in Eq. (5.79) becomes

d
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d
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1

v2
, (5.81)

with the rotation matrix R↵ defined in Eq. (2.8). The e↵ective coupling allows for the calculation
of the box-type diagram in Fig. 7 (right).

In Ref. [13], the full two-loop calculation was performed. The comparison with the complete
two-loop result showed very good agreement between the approximate and the exact result for
mediator masses below mt. Our model is structurally not di↵erent in the sense that the mediator
coupling to the DM particle (a fermion in Ref. [13]) is also a scalar particle so that the results

4The authors of Ref. [13] found that the bottom and charm quark contributions are small. This may not be
the case if the Higgs couplings to down-type quarks are enhanced. This does not apply for our model, however.
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obtained in Ref. [13] should be applicable to our model as well. Moreover, the box contribution
to the NLO SI direct detection cross section is only minor as we verified explicitly.
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particle. It has to be extracted from the calculated amplitude of Fig. 7 (right). Using Eq. (4.57b)
the contributions by the box topology to the gluon-DM interaction are given by

f
top

G
=

⇣
d
e↵

G

⌘

ij

C
ij

4
�↵S

12⇡
. (5.83)

5.4 The SI One-Loop Cross Section
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6 Numerical Analysis

In our numerical analysis we use parameter points that are compatible with current theoretical
and experimental constraints. These are obtained by performing a scan in the parameter space
of the model and by checking each data set for compatibility with the constraints. In order to
do so, the VDM model was implemented in the code ScannerS [53, 54] which automatises the
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Box diagrams contribute to the two different 
quark operators.
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Figure 2: Higgs bosons hi mediating the coupling of two gluons to two VDM particles through a heavy quark
loop.

coupling constant ↵s [49].

For vanishing momentum transfer and on-shell nucleon states, the nucleon matrix elements
are given by
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(4.59a)
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where N denotes a nucleon, N = p, n, and mN is the nucleon mass. Furthermore, qN (2), q̄N (2)
are the second moments of the parton distribution functions of the quark q(x) and the antiquark
q̄(x), respectively. The four-momentum of the nucleon is denoted by p. The numerical values
for the matrix elements fN

Tq
, fN

TG
and the second moments qN (2) and q̄

N (2) are given in App. A.
The SI e↵ective coupling of the VDM particle with the nucleons is obtained from the nucleon
expectation value of the e↵ective Lagrangian, Eq. (4.56), by applying Eqs. (4.59), which yields
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In the contribution from the quark twist-2 operator all quarks below the energy scale ⇠ 1 GeV
have to be included, i.e. all quarks but the top quark. The SI scattering cross section between
the VDM particle and a nucleon, proton or neutron (N = p, n), is given by

�N =
1

⇡

✓
mN

m� +mN

◆2 ��fN
��2 . (4.61)

Note that the sum in the first term of Eq. (4.60) only extends over the light quarks. The
leading-order gluon interaction with two VDM particles is mediated by one of the two Higgs
bosons which couple to the external gluons through a heavy quark triangle diagram, cf. Fig. 2.
The charm, bottom and top quark masses are larger than the energy scale relevant for DM
direct detection and should therefore be integrated out for the description of the interaction at
the level of the nucleon. By calculating the heavy quark triangle diagrams and then integrating
out the heavy quarks we obtain the related operator in the heavy quark limit. This is equivalent
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S2HDM - Now the SM is extended by one doublet and a complex singlet. There is an extra doublet 
compared to the previous model.

Extra particles: 2 CP-even scalars, 2 charged scalars and 1 CP-odd scalar and a DM particle. Free 
parameters .mh1,2,3

, mA, mχ, α1,2,3, tan β, m2
12, vS
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These models can lead to tree-level flavour changing neutral currents. These are very constrained by 
experiment. To solve this problem one usually forces the Yukawa Lagrangian to be invariant under a Z2 
symmetry. This leads to 4 possible Yukawa Lagrangians (the way scalars are combined with fermions). 

Introduction The S2HDM h125-funnel Direct detection

Despite the soft breaking, the U(1) still helps

Actually contributing diagrams

X

diags

M(t ! 0) 6= 0

(diagrams with internal � in 1PI part, UV divergences cancel)
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Diagrams that survive. Same type of 
diagrams as for the CxSM but with 

more particles in the loop.
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Introduction The S2HDM h125-funnel Direct detection

Generic features of loop-corrected scattering XS

17 / 19
Here we just fixed all input parameters except for the VEV of the singlet. The behaviour is similar 

for all values of the singlet VEV but as the VEV gets smaller a larger mass region in the WIMP region 
is excluded. 

We also show Darwin as an example of some future projection. This is the total cross section.

Type dependent blind-spots

J
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Figure 8. Left: Cross sections for the scattering of χ on protons (N = p) and neutrons (N = n)
as a function of mhb in type I (orange) and type II (blue). Right: Wilson coefficients as defined
in eq. (3.2) and eq. (3.3) as a function of mhb . The remaining parameters are fixed to the values
shown on the right.

type II decrease by two orders of magnitude, whereas the cross sections in the type I remains
almost constant. Moreover, it should be noted that in this interval of mhb

the cross sections
in type II are substantially different for the scattering on protons (solid blue line) and
neutrons (dashed blue line). On the other hand, in type I both cross sections are practically
equal, and consequently only one line for both the scattering on protons and on neutrons is
shown. As a phenomenological consequence, one can notice that since different nuclei are
composed out of a different number of neutrons and protons, a hypothetical measurement
of the scattering cross sections on different kinds of nuclei could be utilized to distinguish
between a DM candidate χ as predicted by the types I/LS or the types II,F, respectively.

The suppression of the cross sections in type II can be understood by the fact that
one of the Wilson coefficients CII,F

u or CII,F
d changes the sign at the corresponding mass

interval of hb. In the right plot of figure 8 we show the Wilson coefficients as a function of
mhb

for the same benchmark scenario as was used in the left plot of figure 8. As expected,
one can see that one of the coefficients (CII,F

d , dashed line) becomes negative in the mass
range 50 GeV ! mhb

! 200 GeV, where the mass range coincides with the one in the left
plot in which the cross sections in type II are strongly suppressed. Since in type I there is
only one Wilson coefficient CI,LS

q , which is identical to the coefficient CII,F
u in type II (solid

line), the change of the sign of CII,F
d has no impact on the cross sections in type I. Finally,

we note that the precise location of the blind-spot visible for type II and also the amount
of the suppression of the cross sections depend on the nucleon form factors fN

Tq
, which

are only known approximately as they are determined from lattice simulations and from
experimental data. As a consequence, in the parameter regions in which the scattering cross
sections are suppressed due to the accidental cancellation of contributions from different
quark types with opposite sign, the relative uncertainty of the cross-section predictions
associated to the uncertainty of the form factors should be regarded as larger compared to
other parameter space regions in which no such cancellation takes place.

– 15 –
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Scalar DM but more interesting



Some models have negligible dark matter direct detection (DD) cross section at zero momentum 
transfer (at leading order). Barely affected by direct detection bounds. 

True for models with a pNG dark matter candidate with origin in a potential of the form

𝒱 = ∑
ij

m2
ijϕ

†
i ϕj + ∑

ijkl

λijkl ϕ†
i ϕjϕ†

k ϕl + ∑
ij

κij 𝕊
2

ϕ†
i ϕj − μ2

S 𝕊
2

+ λS 𝕊
4

+μ2(𝕊2 + 𝕊*2)

𝕊 → eiα𝕊

with

𝕊 =
1

2
(vS + S + iA)ϕi =

c±

1

2
(vi + ai + ibi)

The potential is invariant under

𝕊 → 𝕊*

and without the red term it is also invariant under

The soft breaking term gives mass to the pNG dark matter.

Stabilises A

which is a model with N Higgs Doublet Model plus a complex singlet.
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The SM is extended by an extra complex scalar singlet  which has a global U(1) symmetry 𝕊

𝕊 → eiα𝕊

ℒ = ℒSM + (Dμ𝕊)†(Dμ𝕊) + μ2
S 𝕊

2
− λS 𝕊

4
− κ 𝕊

2
H†H+μ2(𝕊2 + 𝕊*2)

Softly break dark U(1) symmetry to the residual Z2 symmetry in one of the singlet components

𝕊 → 𝕊*

(h1

h2) = ( cos α sin α
−sin α cos α) (h

S)
The mass eigenstates fields h1 and h2 are obtained from h and S via

m± = λHv2
H + λSv2

S ± λ2
Hv4

H + λ2
S v4

S + κv2
Hv2

S − 2λHλSv2
Hv2

S

S ¼ 1ffiffiffi
2

p ðvS þ ivA þ ϕS þ iAÞ;

H0 ¼ 1ffiffiffi
2

p ðvþ ϕH þ iσHÞ where H ¼
"
Hþ

H0

#
; ð2:3Þ

where we have temporarily allowed hSi to be complex.
Locations of extrema of the potential (2.1), correspond-

ing values of the potential and corresponding curvatures in
the basis ðϕH;ϕS; AÞ are as follows
v1:

v2 ¼ 4λSμ2H − 2κðμ2S − 2μ2Þ
4λHλS − κ2

;

v2S ¼
4λHðμ2S − 2μ2Þ − 2κμ2H

4λHλS − κ2
; v2A ¼ 0 ð2:4Þ

V1 ¼
−1

4λHλS − κ2
fλHðμ2S − 2μ2Þ2

þ μ2H½λSμ2H − κðμ2S − 2μ2Þ&g ð2:5Þ

M2 ¼

0

B@
2λHv2 κvvS 0

κvvS 2λSv2S 0

0 0 −4μ2

1

CA; ð2:6Þ

v2:

v2 ¼ 4λSμ2H − 2κðμ2S þ 2μ2Þ
4λHλS − κ2

; v2S ¼ 0;

v2A ¼ 4λHðμ2S þ 2μ2Þ − 2κμ2H
4λHλS − κ2

; ð2:7Þ

V2 ¼
−1

4λHλS − κ2
fλHðμ2S þ 2μ2Þ2

þ μ2H½λSμ2H − κðμ2S þ 2μ2Þ&g ð2:8Þ

M2 ¼

0

B@
2λHv2 0 κvvS
0 4μ2 0

κvvS 0 2λSv2S

1

CA; ð2:9Þ

v3:

v2 ¼ μ2H
λH

; v2S ¼ 0; v2A ¼ 0; ð2:10Þ

V3 ¼ −
μ4H
4λH

ð2:11Þ

M2 ¼

0

BB@

2μ2H 0 0

0 2μ2 þ κμ2H
2λH

− μ2S 0

0 0 −2μ2 þ κμ2H
2λH

− μ2S

1

CCA;

ð2:12Þ

v4:

v2 ¼ 0; v2S ¼
μ2S − 2μ2

λS
; v2A ¼ 0; ð2:13Þ

V4 ¼ −
ðμ2S − 2μ2Þ2

4λS
ð2:14Þ

v5:

v2 ¼ 0; v2S ¼ 0; v2A ¼ μ2S þ 2μ2

λS
; ð2:15Þ

V5 ¼ −
ðμ2S þ 2μ2Þ2

4λS
ð2:16Þ

Note that vS ≠ 0 and vA ≠ 0 may happen only if μ2 ¼ 0.
Since nonzero μ2 is essential to avoid the appearance of a
Goldstone boson, we do not consider those points any
more.
Forcing the vacuum v1 to be the global minimum implies

that we have to assume λH > 0, 4λHλS − κ2 > 0 and
μ2 < 0. Then for consistency we enforce the conditions

2λSμ2H > κðμ2S − 2μ2Þ and 2λHðμ2S − 2μ2Þ > κμ2H

ð2:17Þ

It turns out that V1 < V4 for any choice of parameters,
while V4 < V5 for μ2 < 0. From (2.17) one can find that
the vacuum v3 is never a minimum. Obviously, v2 is not a
minimum either for μ2 < 0. Therefore we conclude that for
μ2 < 0 the vacuum v1 is the global minimum. Note that in
this case A is indeed a pseudo-Goldstone boson and its
mass vanishes in the limit of exact global Uð1Þ as it was
discussed and anticipated below (2.1). The presence of the
Uð1Þ breaking term μ2ðS2 þ S'2Þ implies a trivial shift of
the μ2S → μ2S − 2μ2 and an addition of the Goldstone boson
mass −4μ2. In fact, an equivalent Uð1Þ breaking would be
to add just the Goldstone boson mass without the trivial
shift by replacing μ2ðS2 þ S'2Þ by μ2ðS − S'Þ2.
Similar models have been considered in a more general

context including a possibility of fast first order phase
transition in [7,20,30]. In the VDM that we consider here,
A becomes a longitudinal component of the massive DM
vector X, but it remains an independent degree of freedom.
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[14,27], these models not only provide a DM candidate but
they also improve the stability of the SM and present a
possibility to solve the baryon asymmetry problem.
In this article we explore possibilities of distinguishing

the scalar and the vector DM (VDM) models. The minimal
VDM requires an extra Uð1Þ gauge symmetry that is
spontaneously broken by a vacuum expectation value
(vev) of a complex scalar neutral field under the SM
symmetries but charged under the extra Uð1Þ. This model
bears many similarities with a model of scalar DM (SDM)
which is a component of an extra complex scalar field (that
develops a vev) which is added to the SM. In both cases
there are two scalar physical Higgs bosons h1;2 that mix in
the scalar mass matrix with a mixing angle α. So the goal of
this paper is to investigate if those two models could be
distinguished. This is a very pragmatic task, both models
are attractive candidates for simple DM theories, therefore
it is worth knowing if there are observables which can
distinguish them.
Using the SCANNERS program [28] we impose the most

relevant bounds: theoretical, collider experiment bounds,
precision electroweak physics, DM direct and indirect
detection experiments, and DM relic density. The param-
eter space of each model is scanned with all the above
constraints providing the regions of the parameter space
where the models can indeed be distinguished. Whenever
possible these results are presented in terms of physical
observables that can be measured at the LHC. Finally we
present a direct way to distinguishing the models by
looking at the energy distribution in Higgs associated
production, with the Higgs decaying to DM, at a future
electron-positron collider.
The paper is organized as follows. In Sec. II we present

the complex singlet extension of the SM, reviewing its
main properties and setting notation. In Secs. II A and II B
we discuss the scattering of scalar DM off nuclei and
invisible SM-like Higgs boson decays, respectively. In
Sec. III we set the review of most relevant aspects of the
vector DM model. In Secs. III A and III B constraints from
DM direct detection and invisible decays of SM-like Higgs
boson are formulated, respectively. In Sec. IV we present a
discussion of the possibility to distinguish the models at a
future electron-positron collider. The results of the scan
showing the allowed parameter space for each model are
presented in Sec. VI. In the conclusions, Sec. VII, we
summarize our findings. Technical details concerning
Goldstone Boson couplings to Higgs bosons are left to
the Appendices.

II. SCALAR DARK MATTER

Gauge singlet scalars as candidates for DM were first
proposed in [3,4] and then discussed by many authors.
Even though the minimal model of scalar DM assumes
merely an addition of a real scalar field odd under a Z2

symmetry, here we are going to consider a model that

requires an extension by a complex scalar filed S. The
motivation is to compare the VDM with a SDM that are in
some sense similar. In order to stabilize a component of S
we require an invariance under DM charge conjugation
C∶ S → S#, which guarantees stability of the imaginary
part of S, A≡ ImS=

ffiffiffi
2

p
. The real part, ϕS ≡ ReS=

ffiffiffi
2

p
, is

going to develop a real vacuum expectation value
hϕSi ¼ hSi ¼ vS=

ffiffiffi
2

p
.1 Therefore ϕS will mix with the

neutral component of the SM Higgs doublet H, in exactly
the same manner as it happens for the VDM. In order to
simplify the potential we impose in addition aZ2 symmetry
S → −S, which eliminates odd powers of S. Eventually the
scalar potential reads:

V ¼ −μ2HjHj2 þ λHjHj4 − μ2SjSj2 þ λSjSj4 þ κjSj2jHj2

þ μ2ðS2 þ S#2Þ ð2:1Þ

with μ2 real, as implied by the C symmetry. Note that the μ2

term breaks the Uð1Þ explicitly, so the pseudo-Goldstone
boson, A is massive. In the limit of exact symmetry, A
would be just a genuine, massless Goldstone boson. Since
the symmetry-breaking operator μ2ðS2 þ S#2Þ is of dimen-
sion less that 4, its presence does not jeopardize renorma-
lizability even if noninvariant higher dimension operators
were not introduced, see for instance [29]. Note that
dimension 3 terms are disallowed by the Z2’s and gauge
symmetries. In other words, we can limit ourself to
dimension 2 Uð1Þ breaking terms preserving the renorma-
lizability of the model. The freedom to introduce solely the
soft breaking operators offers a very efficient and eco-
nomical way to generate mass for the pseudoscalar A
without the necessity to introduce dimension 4 terms like
S4 or jSj2S2 and keeping the renormalizability of the model.
It is also worth noticing that the Z2 symmetry S → −S is
broken spontaneously by vS and therefore ϕS, the real part
of S, is not stable, making A the only DM candidate.
The requirement of asymptotic positivity of the potential

implies the following constraints that we impose in all
further discussions:

λH > 0; λS > 0; κ > −2
ffiffiffiffiffiffiffiffiffiffi
λHλS

p
: ð2:2Þ

Hereafter the above conditions will be referred to as the
positivity or stability conditions.
The scalar fields can be expanded around the corre-

sponding generic vev’s as follows

1This is a choice that fixes the freedom (phase rotation of the
complex scalar) of choosing a weak basis that could be adopted to
formulate the model. The model is defined by symmetries
imposed in this particular basis in which the scalar vacuum
expectation value is real.
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The conditions for the potential to be bounded from below are the same for the two models

The scalar mass matrix is
mDM = − 4μ2

SM + dark matter candidate A + a new scalar that mixes with the CP-even field in the doublet such that
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ℒ = ℒSM + (Dμ𝕊)†(Dμ𝕊) + μ2
S 𝕊

2
− λS 𝕊

4
− κ 𝕊

2
H†H+μ2(𝕊2 + 𝕊*2) 𝕊 → 𝕊*

𝕊 =
vS + S

2
e i A

vS ⇒ Vsoft = − μ2(vS + S )2cos ( 2A
vS ) = − μ2(vS + S )2(1 −

2A2

v2
S ) + . . .

Including the kinetic term leads to the following Lagrangian interaction

Writing

ℒSA2 = =
1

2vS
(∂2S )A2 −

1
vS

SA(∂2 + m2
A)A

First term proportional to p2 of S and the second term vanishes when the DM particle is on-shell. 
Amplitude is proportional to p2 with A on-shell.

The amplitude for the DM direct detection cross section

iℳ ∼ sin α cos α (
im2

h2

t − m2
h2

−
im2

h1

t − m2
h1

) (
−imf

v ) ūf (k2)uf (p2) ∼ 0 (t → 0)

And it vanishes for zero momentum transfer. Why? Going back to the Lagrangian,
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the cancellation is lost except for fine-tuned values of the couplings

V′ soft = − κ3
1 (𝕊 + 𝕊*) − κ2 |𝕊 |2 (𝕊 + 𝕊*) − κ3 (𝕊3 + 𝕊*3)

iℳ ∼ ( −it
vS ) i

t − m2
S

(−i2λSHvvS)
i

t − m2
h (

−imf

v ) ūf (k2)uf (p2)

Which vanishes when t = 0

Note however if other soft breaking terms are added

κ3
1 =

1
2

(κ2 + 9κ3)v2
S
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mDM; sin α; m2; vS
INDEPENDENT 
PARAMETERS Singlet VEV

Mass of the 
second scalar

Mixing angle between 
doublet and singlet (real)

Mass of the DM 
particle

There is obviously a 125 GeV Higgs (other scalar can be lighter or heavier). 
Experimental and theoretical constraints included.

Note that the cancellation does not happen in scattering
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DM - scalar vs. vector



mDM; sin α; m2; vS

VDM: SM + vector dark matter + new scalar 

SDM: SM + scalar dark matter + new scalar
PARTICLE CONTENT

INDEPENDENT 
PARAMETERS Singlet VEV

Mass of the 
second scalar

Mixing angle between 
doublet and singlet (real)

Mass of the DM 
particle

There is obviously a 125 GeV Higgs (other 
scalar can be lighter and heavier). 

Experimental and theoretical constraints to 
be discussed next

extremely hard to disentangle the two scenarios for
the adopted parameters at this collider. On the other
hand, for

ffiffiffi
s

p
¼ 240 GeV expected for the CEPC and the

same parameters, for the minimal bin size ∼3% ×
EZjEZ¼E1ð240 GeVÞ ¼ 3.1 GeV the separation between the
two cross sections is at the level of 12σ. Therefore it is fair
to conclude that there exist regions of parameters, where the
two scenarios might be disentangled at future eþe− colliders
in resonance regions. However, without a detailed error and
background analysis that takes into account all experimental
details it is impossible to draw any solid final conclusions.

V. NUMERICAL SIMULATION

The two models described in the previous sections were
implemented in the SCANNERS [28,63] code as model
classes. The code takes as input any scalar potential that
is a polynomial in the fields of order up to four and by
considering the VEVs, mixing angle and physical masses as
independent parameters, turns the problem of deriving the
original potential parameters into a set of linear equations,
with a very significant increase in speed of the scanning
process (see [28] for details). In the most general cases, the
drawback of this method is that a given point is only verified
to be a global minimum at the end of the procedure.
However, because it is easy to obtain closed conditions
for the global minimum for the particular models under
study, this problem is avoided. The code is equipped with
a set of tools which allow to automatize the parameter
scans and also with generic modules that allow to test local
vacuum stability and library interfaces to the constraints
implemented for each model. SCANNERS is also interfaced
with other high energy tools that simplify the implementa-
tion of the constraints that will be described shortly.

The ranges for the independent parameters are listed
in Table III. The ranges are the same for both models
under study.
The points generated using SCANNERS have to be in

agreement with the most relevant experimental and theo-
retical constraints. The discovered Higgs boson mass is
taken to be mh ¼ 125.09 GeV from the ATLAS/CMS
combination [64]. In these models the Higgs couplings
to remaining SM particles are all modified by the same
factor. Therefore, the bound on the signal strength [64] is
used to constrain this parameter. The vacuum expectation
value of the Higgs doublet is fixed by the W-mass. The
points generated have to comply with the following
theoretical constraints: (i) the potential has to be bounded
from below; (ii) the vacuum is chosen so that the minimum
is the global one and (iii) perturbative unitarity holds. The
first two constraints are implemented in the code while
perturbative unitarity is imposed trough an internal numeri-
cal procedure that includes all possible two to two
processes and that is available in SCANNERS for a generic
model. In these models new contributions to the radiative
corrections of the massive gauge-boson self-energies,
ΠWWðq2Þ and ΠZZðq2Þ appear via the mixing between
the neutral components of the doublet and the singlet.
We use the variables S, T, U [65] (expressions available
in [66]) to guaranty that the models are in agreement with
the electroweak precision measurements at the 2σ level.
The phenomenological constraints are imposed either via

libraries in the code or with interfaces with other high
energy codes. The collider bounds from LEP, Tevatron,
and the LHC are all encoded in HIGGSBOUNDS [67]. The
program can be used to ensure agreement at 95% confi-
dence level exclusion limits for all available searches for
non-standard Higgs bosons. The Higgs decay widths,
including the state-of-the art higher order QCD corrections
were calculated with SHDECAY [63].2 sHDECAY is based
on the implementation of the models in HDECAY [68,69].
In our calculations all electroweak radiative corrections
are turned off for consistency. A detailed description of the
program can be found in Appendix A of [63].

FIG. 6. Exemplary diagrams of the standard model background processes. Neutrinos contribute to missing energy and can therefore
mimic dark particles. The background cross section could be reduced by polarizing the initial eþ and e− beams.

TABLE III. Independent parameters’ range for both models.

Parameter Range

SM-Higgs—m1 125.09 GeV
Second Higgs—m2 [1,1000] GeV
DM—mDM [1,1000] GeV
Singlet VEV—vs [1,107] GeV
Mixing angle—α [− π

4,
π
4]

2The program SHDECAY can be downloaded from the url:
http://www.itp.kit.edu/maggie/sHDECAY.
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Theoretical and collider constraints:

Points generated with ScannerS requiring 

- absolute minimum 
- boundedness from below 
- that perturbative unitarity holds 
- S,T and U

Signal strength: gives a constraint on cos𝛂

Searches:  for extra scalars imposed via HiggsBounds which gives a 
 bound that is a function of the new scalar mass and cos𝛂

Searches:  BR of Higgs to invisible below 24%
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Cosmological constraints:

DM abundance: we require 

(Ωh2)DM < 0.1186

or to be in the 5𝜎 allowed interval from the Planck collaboration measurement

(Ωh2)obs
DM = 0.1186 ± 0.0020

Direct detection: we apply the latest XENON1T bounds

σeff
DM,N = fDM σDM,N with fDM =

(Ωh2)DM

(Ωh2)obs
DM

Indirect detection:  for the DM range of interest, the Fermi-LAT upper bound 
on the dark matter annihilation from dwarfs is the most stringent. We use the 
Fermi-LAT bound on bb. 

[Calculated with MicroOmegas]

[Fraction contributing to the scattering]
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Back to colliders  
- the Higgs invisible width



If the dark matter particle has a mass that is below half of 
Higgs mass, the Higgs can decay to a dark matter pair. h

χ

Back to colliders - Higgs invisible width
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BR(h → χχ) =
Γ(h → χχ)

ΓT(h)

χ

1

1 Introduction

A particle compatible with the standard model (SM) Higgs boson (H) [1–6] was discovered at
the CERN LHC in 2012 [7–9]. Since then, extensive studies of this particle have been performed
with data taken at

p
s = 7, 8, and 13 TeV, in particular to understand how it couples to other

SM particles.

In the SM, the branching fraction to invisible final states, B(H ! inv), is only about 0.1% [10],
from the decay of the Higgs boson via ZZ⇤ ! 4n. Several theories beyond the SM (BSM),
however, predict much higher values of B(H ! inv) (see Ref. [11] and references therein). In
particular, in Higgs portal models, the Higgs boson acts as the mediator between SM particles
and dark matter (DM) [12–15], strongly enhancing B(H ! inv).

Direct searches for H ! inv decays have already been performed by the ATLAS [16, 17] and
CMS [18–20] Collaborations using data collected at

p
s = 7, 8, and 13 TeV, and combining the

three main Higgs boson production modes, namely gluon-gluon fusion (ggH), production of
a Higgs boson in association with vector bosons (VH, with V = W± or Z), and vector boson
fusion (VBF). Assuming SM production of the Higgs boson, the best observed (expected) 95%
confidence level (CL) upper limits on B(H ! inv) are set at 0.19 (0.15) by CMS, using data
collected at

p
s = 7, 8, and 13 TeV, and at 0.26 (0.17) by ATLAS using data collected at 13 TeV. In

both cases, the data at 13 TeV were collected in 2016. Combining the latest CMS constraints on
both visible and invisible decays within the k framework [21], the upper bound on B(H ! inv)
is 0.22 at the 95% CL, using only the data set collected at 13 TeV in 2016.

Thanks to its large production cross section [22] and distinctive event topology, the VBF pro-
duction mechanism drives the overall sensitivity in the direct search for invisible decays of the
Higgs boson. This paper focuses exclusively on the search for H ! inv in the VBF production
mode using the LHC proton-proton (pp) collision data set collected during 2017–2018, corre-
sponding to an integrated luminosity of up to 101 fb�1, and on the combination of this search
with analyses performed on previous data sets [18, 23].

Employing a strategy similar to the one used in the previously published analysis [18], the
invariant mass of the jet pair produced by VBF, mjj, is used as a discriminating variable to
separate the signal and the dominant backgrounds arising from vector boson production in
association with two jets (V+jets). Representative Feynman diagrams for the signal and main
background processes are shown in Fig. 1.

q
q

q'
q'

H

˜

˜

χ

-χ

Figure 1: Leading-order Feynman diagrams for the production of the Higgs boson in associa-
tion with two jets from VBF (left), and representative leading-order Feynman diagrams for the
production of a Z boson in association with two jets either through VBF production (middle)
or strong production (right). Diagrams for the production of a W boson in association with two
jets are similar.

Control regions enriched in V+jets processes are used to constrain the associated background
contributions in the signal region. Additional sensitivity is obtained by using g+jets events to
further constrain the Z(nn) background. In the previous CMS publication, the trigger strategy

One of the many on-going searches is

The result gives us a bound on the BR of the Higgs to invisible

ΓT(h) ≈ 4.6 MeV
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The width is calculated using
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256 49. Kinematics

with Ep =


p2 + m2.

49.4 Particle decays
The partial decay rate of a particle of mass M into n bodies in its

rest frame is given in terms of the Lorentz-invariant matrix element M
by

d≈ =
(2fi)4

2M
|M |2 d�n (P ; p1, . . . , pn), (49.11)

where d�n is an element of n-body phase space given by

d�n(P ; p1, . . . , pn) = ”4 (P ≠
nÿ

i=1

pi)
nŸ

i=1

d3pi

(2fi)32Ei
. (49.12)

This phase space is reduced by combinatoric factors whenever there are
identical particles in the final state. The phase space can be generated
recursively, viz.

d�n(P ; p1, . . . , pn) = d�j(q; p1, . . . , pj)

◊ d�n≠j+1 (P ; q, pj+1, . . . , pn)(2fi)3dq2 , (49.13)

where q2 = (
qj

i=1 Ei)2 ≠
--qj

i=1 pi

--2
. This form is particularly

useful in the case where a particle decays into another particle that sub-
sequently decays.

49.4.1 Survival probability
If a particle of mass M has mean proper lifetime · (= 1/≈ ) and

has momentum (E, p), then the probability that it lives for a time t0 or
greater before decaying is given by

P (t0) = e≠t0 ≈/“ = e≠Mt0 ≈/E , (49.14)

and the probability that it travels a distance x0 or greater is
P (x0) = e≠Mx0 ≈/|p| . (49.15)

49.4.2 Two-body decays

p1, m1

p2, m2

P, M

Figure 49.1: Definitions of variables for two-body decays.

In the rest frame of a particle of mass M , decaying into 2 particles
labeled 1 and 2,

E1 =
M2 ≠ m2

2 + m2
1

2M
, (49.16)

|p1| = |p2| =
1

2M


⁄(M2, m2

1, m2
2) , (49.17)

and
d≈ =

1
32fi2 |M |2

|p1|
M2 d� , (49.18)

where ⁄(–, —, “) = –2 +—2 +“2 ≠2–— ≠2–“ ≠2—“ is the Källén function
and d� = d„1d(cos ◊1) is the solid angle of particle 1. The invariant mass
M can be determined from the energies and momenta using Eq. (49.2)
with M = Ecm.
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Now calculate the invisible BR for the three models

Back to colliders - Higgs invisible width
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Scalar - The SM is extended by an extra real scalar singlet S, with a  symmetry Z2 S → − S

ℒ = ℒSM +
1
2

(∂μS )(∂μS ) − VN + VSM VN = bS2 + dS4 + κ1S2H†H + μ2H†H + λ(H†H )2

S = 0; h2 = − μ2 /(2λ);

Let us consider the solution (for the minimum)

H =
G±

1

2
(vH + h + iG0)

ℒ = ℒSM −
1
4

XμνXμν + (Dμ𝕊)†(Dμ𝕊) + μ2
S 𝕊

2
− λS 𝕊

4
− κ 𝕊

2
H†H

Vector - Dark U(1)X gauge symmetry: all SM particles are U(1)X  neutral.

with
𝕊 =

1

2
(vS + S + iA)

Dμ = ∂μ + igX Xμ

(h1

h2) = ( cos α sin α
−sin α cos α) (h

S)
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7.4 Combination of results 25
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Figure 11: Observed and expected 95% CL upper limits on (sH/sSM
H )B(H ! inv) for all data-

taking years considered, as well as their combination, assuming an SM Higgs boson with a
mass of 125.38 GeV.

Table 6: The 95% CL upper limits on (sH/sSM
H )B(H ! inv), assuming an SM Higgs boson

with a mass of 125.38 GeV. The observed and median expected results are shown, along with
the 68% and 95% interquartile ranges for each category and for the combinations.

Category Observed Median expected 65% expected 95% expected
2012–2016 0.33 0.21 [0.15, 0.29] [0.11, 0.39]

VTR 2017 0.57 0.45 [0.32, 0.66] [0.24, 0.94]
VTR 2018 0.44 0.34 [0.24, 0.49] [0.18, 0.69]
VTR 2017+2018 0.40 0.28 [0.20, 0.40] [0.15, 0.56]

MTR 2017 0.25 0.19 [0.14, 0.28] [0.10, 0.40]
MTR 2018 0.24 0.15 [0.11, 0.22] [0.08, 0.31]
MTR 2017+2018 0.17 0.13 [0.09, 0.18] [0.07, 0.25]

all 2017 0.24 0.18 [0.13, 0.26] [0.09, 0.37]
all 2018 0.25 0.15 [0.10, 0.21] [0.08, 0.29]
all 2017+2018 0.18 0.12 [0.08, 0.17] [0.06, 0.23]

2012–2018 0.18 0.10 [0.07, 0.14] [0.05, 0.20]

uncertainties. The systematic uncertainties with the largest impact in the B(H ! inv) mea-
surement are the theoretical uncertainties affecting the f

W/Z,proc
i

ratio, the trigger uncertainties,
the statistical uncertainties in the simulated samples, as well as the uncertainties in the QCD
multijet modelling, in the lepton and photon reconstruction and identification efficiencies, and
the JES.

The upper limit on B(H ! inv), obtained from the combination of 2012–2018 data, is inter-
preted in the context of Higgs-portal models of DM interactions, in which a stable DM particle
couples to the SM Higgs boson. The interaction between a DM particle and an atomic nucleus
may be mediated by the exchange of a Higgs boson, producing nuclear recoil signatures, such
as those investigated by direct detection experiments. The sensitivity of these experiments de-

BR(h → χχ) =
Γ(h → χχ)

ΓT(h)
ΓT(h) ≈ 4.6 MeV

Now choose a DM mass of 40 GeV and calculate the bound on the portal coupling
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Temperature fluctuations in the CMB

CMB are photons that decoupled from the thermal bath. The surface of last scattering is the one 
defined by the photons that could come freely to reach us today. 

T0 = (2.72548 ± 0.00057)

The value of the variations is of the order  in the sphere of last scattering. If we study 
these variations in detail we can understand better the temperature fluctuations at that time. 
Temperature fluctuations on the sphere can be described via spherical harmonics, with the usual polar 
and azimuthal angles

δT/T ≤ 10−5

δT(θ, ϕ)
T0

=
T(θ, ϕ) − T0

T0
=

∞

∑
l=0

l

∑
m=−l

almYml(θ, ϕ)

In order to analyse temperature fluctuations, the relevant measure is the variance of the temperature 
distribution

1
4π ∫ dΩ ( δT(θ, ϕ)

T0 )
2

=
1

4π ∑
m,l

|alm |2
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Temperature fluctuations in the CMB

The index m describes the angular momentum in a particular direction, but because there is no special 
direction in the sphere of last scattering the  coefficients do not depend on m. Thus, the sum over m 
yields 2l+1 identical terms. The average of  over m will be defined as the observed power spectrum

alm
|alm |2

Cl =
1

2l + 1 ∑
m=−l

|alm |2

The values of the coefficients  can be determined usingCl

1
4π ∫ dΩ ( δT(θ, ϕ)

T0 )
2

=
1

4π

∞

∑
l=0

2l + 1
4π

Cl

The peaks are generated by acoustic oscillations which occur in the baryon-photon fluid at the time of 
photon decoupling.  

Regions with a large accumulation of DM form gravitational wells, which pull the baryon-photon fluid inside 
it resulting in a compression of the fluid.  

At the same time the relativistic photons exert a pressure that counteracts the gravitational pull, which 
results in a rarefaction of the fluid.  
These counteracting forces create oscillations in the baryon-photon fluid and lead to temperature 
fluctuations in the photon spectrum during decoupling.

Temperature fluctuations measured by PLANCK 
allows to calculate .Cl
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2. Theoretical Background

Figure 2.3.: Power spectrum of the CMB as measured by PLANCK [33].

The �rst peak corresponds to the time of last scattering where the �uid compressed
once. Determining its position gives information about the curvature of the universe.
The second peak corresponds to one compression and one rarefaction of the �uid. A
large relative baryon content in the baryon-photon �uid would lead to an increase in
amplitude of the compression peaks and at the same time to a decrease of the rarefaction
peaks. Therefore, by measuring the ratio between the �rst and the second peak the baryon
content of the universe can be obtained. The height of the third peak (2 compressions, 1
rarefaction) determines the amount of DM in the universe. Since, DM does not interact
with photons, it only contributes to the strength of the compression peaks. Therefore, a
large third peak is a sign of a sizeable DM component in the universe.

To �t the data points given in Fig. (2.3), a model with 6 independent cosmological parame-
ters is used under the assumption of a �at universe. This model is referred to as the "base
⇤CDM", where the parameters are the Hubble constant �0, the baryon ⌦1⌘2 and DM ⌦2⌘2

densities, the matter �uctuation amplitude f8, the spectral index =B and the optical depth
g [7]. Choosing the best �t parameters results in the observed relic density given in Eq.
(1.2).

2.4. Detection of DM

Depending on the type of DM, di�erent mass regions need to probed via direct or indirect
detection experiments. In particle physics the possible DM candidates can be subdivided
into two main categories - thermally and non-thermally produced DM. In this thesis the

12

Temperature fluctuations in the CMB

The first peak corresponds to the time of last 
scattering where the fluid compressed once. 
Determining its position gives information about 
the curvature of the universe. 

The second peak corresponds to one compression 
and one rarefaction of the fluid. A large relative 
baryon content in the baryon-photon fluid would 
lead to an increase in amplitude of the 
compression peaks and at the same time to a 
decrease of the rarefaction peaks. Therefore, by 
measuring the ratio between the first and the 
second peak, the baryon content of the universe 
can be obtained.  

The height of the third peak determines the 
amount of DM in the universe. Since, DM does not 
interact with photons, it only contributes to the 
strength of the compression peaks. Therefore, a 
large third peak is a sign of a sizeable DM 
component in the universe. 

To fit the data points given in a model with 6 
independent cosmological parameters is used under 
the assumption of a flat universe. This model is 
referred to as the “base ΛCDM", which includes the 
Hubble constant 𝐻 , and the baryon and DM fraction

The odd numbered peaks correspond to the decoupling 
of photons during a compression phase, while even 

numbered peaks correspond to a decoupling during a 
rarefaction phase. 

22 1 HISTORY OF THE UNIVERSE

– ⌦bh
2 essentially only affects the height of the peaks. The baryons provide most of the mass of the

baryon–photon fluid, which until now we assume to be infinitely strongly coupled. Effects of a changed
⌦bh

2 on the CMB power spectrum arise when we go beyond this infinitely strong coupling. Moreover, an
increased amount of baryonic matter increases the height of the odd peaks and reduces the height of the even
peaks.

Separating these four effects from each other and from other astrophysical and cosmological parameters obviously
becomes easier when we can include more and higher peaks. Historically, the WMAP experiment lost sensitivity
around the third peak. This means that its results were typically combined with other experiments. The PLANCK
satellite clearly identified seven peaks and measures in a slight modification to our basis in Eq.(1.73) [2]

⌦�h
2 = 0.1198 ± 0.0015

⌦bh
2 = 0.02225 ± 0.00016

⌦⇤ = 0.6844 ± 0.0091

H0 = 67.27 ± 0.66
km

Mpc s
. (1.75)

The dark matter relic density is defined in Eq.(1.7). This is the best measurement of ⌦� we currently have.

1.5 Structure formation

A powerful tool to analyze the evolution of the Universe is the distribution of structures at different length scales,
from galaxies to the largest structures. These structures are due to small primordial inhomogeneities, tiny
gravitational wells disrupting the homogeneous and isotropic universe we have considered so far. They have then
been amplified to produce the galaxies, galaxy groups and super-clusters we observe today. The leading theory for
the origin of these perturbations is based on quantum fluctuations of in the inflaton field, which is responsible for
the epoch of exponential expansion of the universe. We leave the details of this idea to a cosmology lecture, but
note that quantum fluctuations behave random or Gaussian. The evolution of these primordial seeds of
over-densities with the expansion of the universe will give us information on the dark matter density and on dark
matter properties.
We start with the evolution of a general matter density in the Universe in the presence of a gravitational field. As
long as the cosmic structures are small compared to the curvature of the universe and we are not interested in the
(potentially) relativistic motion of particles we can compute the evolution of density perturbations using Newtonian
physics. The matter density ⇢, the matter velocity ~u, and its gravitational potential � satisfy the equations

@⇢m

@t
= �r · (⇢m~u) continuity equation (1.76)

✓
@

@t
+ ~u · r

◆
~u = �

rp

⇢m

� r� Euler equation (1.77)

r
2
� = 4⇡G⇢m Poisson equation , (1.78)

where p denotes an additional pressure and G = 1/(8⇡M
2
Pl) is the gravitational coupling defined in Eq.(1.4). This

set of equations can be solved by a homogeneously expanding fluid

⇢ = ⇢(t0)
⇣

a0

a

⌘3
~u =

ȧ

a
~r = H~r � =

1

12M
2
Pl

⇢r
2

rp = 0 . (1.79)

It is the Newtonian version of the matter-dominated Friedmann model. The Euler equation turns into the second
Friedmann equation, Eq.(1.22), for a flat universe,

Ḣ~r + H~r · r(H~r) = �r� = �
1

6M
2
Pl

⇢m~r

, Ḣ + H
2 = �

⇢m

6M
2
Pl

. (1.80)
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0 =
d
dt

[n(t) a(t)3] = ·n(t)a(t)3 + 3n(t)a(t)2 ·a(t) ⇒ ·n(t) + 3H(t) n(t) = 0

The relic density is calculated using the Boltzmann equation which describes the change of a 
number density  with time. If  is the linear dimension of the universe, n(t) a(t)

87

Mechanisms of thermal DM generation - freeze-out

Where  is the Hubble constant. This would be the equation that would hold if the density of all 
particles would be constant with time. The evolution of the density of DM is also related to the 
production or annihilation of DM

H

·n(t) = − 3H(t)n(t) − < σ v >χχ (n2(t) − n2
eq)

where is the thermal averaged cross section (luminosity), and  is the equilibrium density. 
Note that 

< σ v >χχ neq

[σ vn] = m2 m
s

1
m3

=
1
s

The thermal averaged cross section is given by

< σ v >χχ =
∫ d3pχ,1 ∫ d3pχ,2 e−(Eχ,1+Eχ,2)/T σχχv

∫ d3pχ,1 ∫ d3pχ,2 e−(Eχ,1+Eχ,2)/T v =
(pχ,1 pχ,2) − m4

χ

Eχ,1 Eχ,2
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The equation is usually simplified with a change of variables , leading toY = ns

88

Mechanisms of thermal DM generation - freeze-out

Where ,  is the gravitational constant and   are the relativistic degrees of freedom (that 
evolve over time).  We have assumed that the total entropy on the universe remains constant with time.

x = mχ /T G g*

3. Mechanisms of Thermal DM Generation

feature describing the �nal relic abundance. To get rid of it, a change of variables into the
yield . is performed

. =
=

B0
, (3.19)

with the entropy density B0. Assuming constant entropy (0 = 03B0 (here 0 is the scale factor)
the relation below is obtained

§. =
§=
B0

+ 3B0
§0
0

=

B02
=

§=
B0

+ 3�
=

B0
, (3.20)

where � = §0
0 is the Hubble expansion and

3(

3C
= 302 §0B0 + 03 §B0 = 0 , (3.21)

was used. Plugging Eq. (3.20) into Eq.(3.3) gives

§. = �B0hfEij j (. 2 � . 2
eq) . (3.22)

De�ning G =<j/) in order to switch to a temperature dependence the l.h.s. of Eq. (3.22)
becomes

3.

3G

3G

3C
=
3.

3G

⇣
�G
)
§)
⌘
=
3.

3G

✓
�G
)

3B0

3C

3)

3B0

◆
=
3.

3G

✓
3�B0

G

)

3)

3B0

◆
. (3.23)

Using the Friedmann equation in the early radiation dominated universe, which reads

� 2 =
8c⌧d
3

, (3.24)

together with the entropy density and energy density d dependent on the e�ective degrees
of freedom ⌘e� with respect to the entropy and on the e�ective degrees of freedom 6e�
with respect to energy as [46]

B0 = ⌘e� () )
2c2

45
) 3 , d = 6e� () )

c2

30
) 4 , (3.25)

Eq. (3.23) can be rewritten as

3.

3G
= �

r
c

45⌧
61/2⇤ <j

G2
hfEij j (. 2 � . 2

eq) . (3.26)

Here ⌧ is the gravitational constant and 61/2⇤ is de�ned as

61/2⇤ =
⌘e�p
6e�

✓
1 + )

3⌘e�
3⌘e�
3)

◆
. (3.27)

The equilibrium yield .eq in the non-relativistic limit is then given by

.eq =
=4@
B0

=
1
B0

6

(2c)3
π

33? 4�⇢/) =
1
B0

6

2c2

π
3⇢⇢

q
⇢2 �<2

j4
�⇢/)

=
1
B0

6

2c2<
2
j) 2

⇣<j

)

⌘
=

45G2

4c4⌘e� (<j/G)
6 2(G) . (3.28)
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49 3. Thermal History

1

6
mt ⇠ 30 GeV,11 the e↵ective number of relativistic species is reduced to g? = 106.75� 7

8
⇥12 =

96.25. The Higgs boson and the gauge bosons W±, Z0 annihilate next. This happens roughly at

the same time. At T ⇠ 10 GeV, we have g? = 96.26�(1+3·3) = 86.25. Next, the bottom quarks

annihilate (g? = 86.25 � 7

8
⇥ 12 = 75.75), followed by the charm quarks and the tau leptons

(g? = 75.75� 7

8
⇥ (12+4) = 61.75). Before the strange quarks had time to annihilate, something

else happens: matter undergoes the QCD phase transition. At T ⇠ 150 MeV, the quarks

combine into baryons (protons, neutrons, ...) and mesons (pions, ...). There are many di↵erent

species of baryons and mesons, but all except the pions (⇡±
,⇡

0) are non-relativistic below the

temperature of the QCD phase transition. Thus, the only particle species left in large numbers

are pions, electrons, muons, neutrinos, and photons. The three pions (spin-0) correspond to

g = 3 · 1 = 3 internal degrees of freedom. We therefore get g? = 2+ 3+ 7

8
⇥ (4 + 4+ 6) = 17.25.

Next, electrons and positrons annihilate. However, to understand this process we first need to

talk about entropy.

Figure 3.4: Evolution of relativistic degrees of freedom g?(T ) assuming the Standard Model particle content.
The dotted line stands for the number of e↵ective degrees of freedom in entropy g?S(T ).

3.2.3 Conservation of Entropy

To describe the evolution of the universe it is useful to track a conserved quantity. As we will

see, in cosmology entropy is more informative than energy. According to the second law of

thermodynamics, the total entropy of the universe only increases or stays constant. It is easy to

show that the entropy is conserved in equilibrium (see below). Since there are far more photons

than baryons in the universe, the entropy of the universe is dominated by the entropy of the

photon bath (at least as long as the universe is su�ciently uniform). Any entropy production

from non-equilibrium processes is therefore total insignificant relative to the total entropy. To

a good approximation we can therefore treat the expansion of the universe as adiabatic, so that

11The transition from relativistic to non-relativistic behaviour isn’t instantaneous. About 80% of the particle-

antiparticle annihilations takes place in the interval T = m ! 1

6
m.
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Table 3.2: Particle content of the Standard Model.

type mass spin g

quarks t, t̄ 173 GeV 1

2
2 · 2 · 3 = 12

b, b̄ 4 GeV

c, c̄ 1 GeV

s, s̄ 100 MeV

d, s̄ 5 MeV

u, ū 2 MeV

gluons gi 0 1 8 · 2 = 16

leptons ⌧
± 1777 MeV 1

2
2 · 2 = 4

µ
± 106 MeV

e
± 511 keV

⌫⌧ , ⌫̄⌧ < 0.6 eV 1

2
2 · 1 = 2

⌫µ, ⌫̄µ < 0.6 eV

⌫e, ⌫̄e < 0.6 eV

gauge bosons W
+ 80 GeV 1 3

W
� 80 GeV

Z
0 91 GeV

� 0 2

Higgs boson H
0 125 GeV 0 1

Figure 3.4 shows the evolution of g?(T ) assuming the Standard Model particle content (see

Table 3.2). At T & 100 GeV, all particles of the Standard Model are relativistic. Adding up

their internal degrees of freedom we get:10

gb = 28 photons (2), W± and Z
0 (3 · 3), gluons (8 · 2), and Higgs (1)

gf = 90 quarks (6 · 12), charged leptons (3 · 4), and neutrinos (3 · 2)

and hence

g? = gb +
7

8
gf = 106.75 . (3.2.57)

As the temperature drops, various particle species become non-relativistic and annihilate. To

estimate g? at a temperature T we simply add up the contributions from all relativistic degrees

of freedom (with m ⌧ T ) and discard the rest.

Being the heaviest particles of the Standard Model, the top quarks annihilates first. At T ⇠
10Here, we have used that massless spin-1 particles (photons and gluons) have two polarizations, massive spin-1

particles (W±, Z) have three polarizations and massive spin- 1
2
particles (e±, µ±, ⌧± and quarks) have two spin

states. We assumed that the neutrinos are purely left-handed (i.e. we only counted one helicity state). Also,

remember that fermions have anti-particles.
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Going back to the Boltzmann equation in the form

89
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3. Mechanisms of Thermal DM Generation

feature describing the �nal relic abundance. To get rid of it, a change of variables into the
yield . is performed

. =
=

B0
, (3.19)

with the entropy density B0. Assuming constant entropy (0 = 03B0 (here 0 is the scale factor)
the relation below is obtained

§. =
§=
B0

+ 3B0
§0
0

=

B02
=

§=
B0

+ 3�
=

B0
, (3.20)

where � = §0
0 is the Hubble expansion and

3(

3C
= 302 §0B0 + 03 §B0 = 0 , (3.21)

was used. Plugging Eq. (3.20) into Eq.(3.3) gives

§. = �B0hfEij j (. 2 � . 2
eq) . (3.22)

De�ning G =<j/) in order to switch to a temperature dependence the l.h.s. of Eq. (3.22)
becomes

3.

3G

3G

3C
=
3.

3G

⇣
�G
)
§)
⌘
=
3.

3G

✓
�G
)

3B0

3C

3)

3B0

◆
=
3.

3G

✓
3�B0

G

)

3)

3B0

◆
. (3.23)

Using the Friedmann equation in the early radiation dominated universe, which reads

� 2 =
8c⌧d
3

, (3.24)

together with the entropy density and energy density d dependent on the e�ective degrees
of freedom ⌘e� with respect to the entropy and on the e�ective degrees of freedom 6e�
with respect to energy as [46]

B0 = ⌘e� () )
2c2

45
) 3 , d = 6e� () )

c2

30
) 4 , (3.25)

Eq. (3.23) can be rewritten as

3.

3G
= �

r
c

45⌧
61/2⇤ <j

G2
hfEij j (. 2 � . 2

eq) . (3.26)

Here ⌧ is the gravitational constant and 61/2⇤ is de�ned as

61/2⇤ =
⌘e�p
6e�

✓
1 + )

3⌘e�
3⌘e�
3)

◆
. (3.27)

The equilibrium yield .eq in the non-relativistic limit is then given by

.eq =
=4@
B0

=
1
B0

6

(2c)3
π

33? 4�⇢/) =
1
B0

6

2c2

π
3⇢⇢

q
⇢2 �<2

j4
�⇢/)

=
1
B0

6

2c2<
2
j) 2

⇣<j

)

⌘
=

45G2

4c4⌘e� (<j/G)
6 2(G) . (3.28)
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We can now integrate the equation to get the value of the Yield today.

The relic density can be calculated via

3.1. Freeze-out

By integrating Eq. (3.26) from the beginning of the universe G = 0with the initial condition
. (0) = .eq(0) to the current temperature )0 of the CMB with G0 =<j/)0 to obtain .0 of
today, the relic density can be calculated via

⌦j =
dj,0
dc

=
<j=0
dc

=
<jB0.0

dc
. (3.29)

Here, B0 is the entropy density of today and dc = 3� 2/8c⌧ the critical density which
separates an expanding from a collapsing universe. To match the de�nition in Eq. (1.2) for
the observed relic density, Eq. (3.29) is multiplied by the dimensionless constant

⌘2 =

 
�

100 km
sMpc

!2
. (3.30)

Inserting the corresponding numerical values gives

⌦j⌘
2 =<jB0.0

8c⌧
3� 2 ⌘

2 ⇡ 2.742 · 108
<j

GeV
.0 . (3.31)

3.1.2. Freeze-out in a Singlet Extension of the SM

To illustrate how Eq. (3.26) behaves for di�erent TACs, consider the extension of the SM
by a real singlet �eld �( , which is the DM candidate. Requiring that the Lagrangian is
invariant under the Z2 symmetry

� ! � , �( ! ��( , (3.32)

the most general renormalizable scalar potential reads

+ = `2�†� + _
⇣
�†�

⌘2
+ `2(�

2
( + _(�

4
( + _3�

†��2
( . (3.33)

Here, � is the SM scalar doublet with the corresponding parameters ` and _ which give
the VEV in Eq. (2.3) and `( , _( as well as _3 are the free, real parameters of this model.
Assuming that �( has a VEV that is zero, the relevant interactions for freeze-out and the
mass term for �( after SSB are

+ � 1
2
(2`2( � _3E)�2

( + _3E ⌘�
2
( +

_3
2
⌘2�2

B , (3.34)

where ⌘ is the Higgs �eld. The mass of the DM candidate is therefore given by

<( =
q
2`2( � _3E . (3.35)

The interaction terms given by the second and third terms in Eq. (3.34) allow for annihila-
tions of �( into the SM particle pairs via the channels shown in Fig. (3.1). Such models are
called Higgs portal models due to their connection to the SM via a Higgs mediator. This
results in the annihilation cross section being proportional to _23, independent of the �nal
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3.1.2. Freeze-out in a Singlet Extension of the SM

To illustrate how Eq. (3.26) behaves for di�erent TACs, consider the extension of the SM
by a real singlet �eld �( , which is the DM candidate. Requiring that the Lagrangian is
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Here, � is the SM scalar doublet with the corresponding parameters ` and _ which give
the VEV in Eq. (2.3) and `( , _( as well as _3 are the free, real parameters of this model.
Assuming that �( has a VEV that is zero, the relevant interactions for freeze-out and the
mass term for �( after SSB are
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where ⌘ is the Higgs �eld. The mass of the DM candidate is therefore given by
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The interaction terms given by the second and third terms in Eq. (3.34) allow for annihila-
tions of �( into the SM particle pairs via the channels shown in Fig. (3.1). Such models are
called Higgs portal models due to their connection to the SM via a Higgs mediator. This
results in the annihilation cross section being proportional to _23, independent of the �nal
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where  is the entropy density today and  is the critical density that separates a 
expanding from a collapsing universe. To match the definition of the observed relic density we need to 
multiply the above equation by

s0 ρc = 3H2 /(8πG)

3. Mechanisms of Thermal DM Generation

feature describing the �nal relic abundance. To get rid of it, a change of variables into the
yield . is performed

. =
=

B0
, (3.19)

with the entropy density B0. Assuming constant entropy (0 = 03B0 (here 0 is the scale factor)
the relation below is obtained
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, (3.20)

where � = §0
0 is the Hubble expansion and

3(

3C
= 302 §0B0 + 03 §B0 = 0 , (3.21)

was used. Plugging Eq. (3.20) into Eq.(3.3) gives

§. = �B0hfEij j (. 2 � . 2
eq) . (3.22)

De�ning G =<j/) in order to switch to a temperature dependence the l.h.s. of Eq. (3.22)
becomes
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Using the Friedmann equation in the early radiation dominated universe, which reads

� 2 =
8c⌧d
3

, (3.24)

together with the entropy density and energy density d dependent on the e�ective degrees
of freedom ⌘e� with respect to the entropy and on the e�ective degrees of freedom 6e�
with respect to energy as [46]

B0 = ⌘e� () )
2c2

45
) 3 , d = 6e� () )

c2

30
) 4 , (3.25)

Eq. (3.23) can be rewritten as

3.
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r
c
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Here ⌧ is the gravitational constant and 61/2⇤ is de�ned as
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The equilibrium yield .eq in the non-relativistic limit is then given by
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Introducing numerical values we get the following expression

Now we just need to calculate .  And we start with our favourite modelY0

3.1. Freeze-out

By integrating Eq. (3.26) from the beginning of the universe G = 0with the initial condition
. (0) = .eq(0) to the current temperature )0 of the CMB with G0 =<j/)0 to obtain .0 of
today, the relic density can be calculated via

⌦j =
dj,0
dc

=
<j=0
dc

=
<jB0.0

dc
. (3.29)

Here, B0 is the entropy density of today and dc = 3� 2/8c⌧ the critical density which
separates an expanding from a collapsing universe. To match the de�nition in Eq. (1.2) for
the observed relic density, Eq. (3.29) is multiplied by the dimensionless constant

⌘2 =

 
�

100 km
sMpc

!2
. (3.30)

Inserting the corresponding numerical values gives
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2 =<jB0.0

8c⌧
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2 ⇡ 2.742 · 108
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GeV
.0 . (3.31)

3.1.2. Freeze-out in a Singlet Extension of the SM

To illustrate how Eq. (3.26) behaves for di�erent TACs, consider the extension of the SM
by a real singlet �eld �( , which is the DM candidate. Requiring that the Lagrangian is
invariant under the Z2 symmetry

� ! � , �( ! ��( , (3.32)

the most general renormalizable scalar potential reads
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Here, � is the SM scalar doublet with the corresponding parameters ` and _ which give
the VEV in Eq. (2.3) and `( , _( as well as _3 are the free, real parameters of this model.
Assuming that �( has a VEV that is zero, the relevant interactions for freeze-out and the
mass term for �( after SSB are
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where ⌘ is the Higgs �eld. The mass of the DM candidate is therefore given by

<( =
q
2`2( � _3E . (3.35)

The interaction terms given by the second and third terms in Eq. (3.34) allow for annihila-
tions of �( into the SM particle pairs via the channels shown in Fig. (3.1). Such models are
called Higgs portal models due to their connection to the SM via a Higgs mediator. This
results in the annihilation cross section being proportional to _23, independent of the �nal
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3. Mechanisms of Thermal DM Generation

Figure 3.1.: Feynman diagrams of possible annihilation channels between �( and the SM.

Figure 3.2.: Freeze-out via the �(�( ! 11 channel for<( = 100GeV. The colored curves
show the evolution of the yield for di�erent portal couplings _3. The black
curve shows the equilibrium yield .eq.

states.

It is clear from Eq. (3.18), that the TAC is proportional to the cross section (denoted
by fjj in Eq. (3.18)) and therefore also to _23. Figure (3.2) shows how . (G) evolves for
di�erent values of _3 and as result di�erent TACs. Here, only the annihilation channel
�(�( ! 11 is considered. It shows that for larger values of _3 the yield reaches a smaller
constant value .0 and therefore via Eq. (3.31) a smaller relic density. This can be explained
by the fact, that the TAC is a measure of how strongly the SM and DM bath are coupled to
each other through the process (3.1). A large coupling allows for a better interaction rate.
As a result of that, the condition (3.2) is ful�lled at a smaller temperature which translates
into a larger G .
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Note that the notation keeps changing! 

We need to calculate the cross section for all 
possible processes, multiply by the relative 
velocity and find the thermal average.

Mechanisms of thermal DM generation - freeze-out

But before that, the WIMP miracle.

Ωχh2 = mχs0Yo
8πG
3H2

≈ 2.742 × 108
mχ

GeV
Y0

22 1 HISTORY OF THE UNIVERSE

– ⌦bh
2 essentially only affects the height of the peaks. The baryons provide most of the mass of the

baryon–photon fluid, which until now we assume to be infinitely strongly coupled. Effects of a changed
⌦bh

2 on the CMB power spectrum arise when we go beyond this infinitely strong coupling. Moreover, an
increased amount of baryonic matter increases the height of the odd peaks and reduces the height of the even
peaks.

Separating these four effects from each other and from other astrophysical and cosmological parameters obviously
becomes easier when we can include more and higher peaks. Historically, the WMAP experiment lost sensitivity
around the third peak. This means that its results were typically combined with other experiments. The PLANCK
satellite clearly identified seven peaks and measures in a slight modification to our basis in Eq.(1.73) [2]

⌦�h
2 = 0.1198 ± 0.0015

⌦bh
2 = 0.02225 ± 0.00016

⌦⇤ = 0.6844 ± 0.0091

H0 = 67.27 ± 0.66
km

Mpc s
. (1.75)

The dark matter relic density is defined in Eq.(1.7). This is the best measurement of ⌦� we currently have.

1.5 Structure formation

A powerful tool to analyze the evolution of the Universe is the distribution of structures at different length scales,
from galaxies to the largest structures. These structures are due to small primordial inhomogeneities, tiny
gravitational wells disrupting the homogeneous and isotropic universe we have considered so far. They have then
been amplified to produce the galaxies, galaxy groups and super-clusters we observe today. The leading theory for
the origin of these perturbations is based on quantum fluctuations of in the inflaton field, which is responsible for
the epoch of exponential expansion of the universe. We leave the details of this idea to a cosmology lecture, but
note that quantum fluctuations behave random or Gaussian. The evolution of these primordial seeds of
over-densities with the expansion of the universe will give us information on the dark matter density and on dark
matter properties.
We start with the evolution of a general matter density in the Universe in the presence of a gravitational field. As
long as the cosmic structures are small compared to the curvature of the universe and we are not interested in the
(potentially) relativistic motion of particles we can compute the evolution of density perturbations using Newtonian
physics. The matter density ⇢, the matter velocity ~u, and its gravitational potential � satisfy the equations

@⇢m

@t
= �r · (⇢m~u) continuity equation (1.76)

✓
@

@t
+ ~u · r

◆
~u = �

rp

⇢m

� r� Euler equation (1.77)

r
2
� = 4⇡G⇢m Poisson equation , (1.78)

where p denotes an additional pressure and G = 1/(8⇡M
2
Pl) is the gravitational coupling defined in Eq.(1.4). This

set of equations can be solved by a homogeneously expanding fluid

⇢ = ⇢(t0)
⇣

a0

a

⌘3
~u =

ȧ

a
~r = H~r � =

1

12M
2
Pl

⇢r
2

rp = 0 . (1.79)

It is the Newtonian version of the matter-dominated Friedmann model. The Euler equation turns into the second
Friedmann equation, Eq.(1.22), for a flat universe,

Ḣ~r + H~r · r(H~r) = �r� = �
1

6M
2
Pl

⇢m~r

, Ḣ + H
2 = �

⇢m

6M
2
Pl

. (1.80)

Experimental value
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3.1 WIMP miracle 43

our detailed assumptions. Following Eq.(1.40) and Eq.(3.6) the temperature at the point of decoupling gives us the
non-relativistic number density at the point of decoupling,

n�(Tdec) = g

✓
m�Tdec

2⇡

◆3/2

e
�xdec =

⇡

3
p

20 MPl

r
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4
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4
Z

⇡↵2m2
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⇡ 103 m
4
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✓
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m�
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⇡
103

x
3/2
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m
4
Z

MPl
. (3.9)

From the time of non-relativistic decoupling we have to evolve the energy density to the current time or
temperature T0. We start with the fact that once a particle has decoupled, its number density drops like 1/a

3, as we
can read off Eq.(1.27) in the non-relativistic case,

⇢�(T0) = m� n�(T0) = m� n�(Tdec)

✓
a(Tdec)

a(T0)

◆3

. (3.10)

To translate this dependence on the scale factor a into a temperature dependence we need to quote the same, single
thermodynamic result as in Section 2.2, namely that according to Eq.(1.33) the combination a(T ) T is almost
constant. When we take into account the active degrees of freedom and their individual temperature dependence
the relation is more precisely

✓
a(Tdec)Tdec

a(T0)T0

◆3

=
geff(T0)

geff(Tdec)
⇡

3.6

100
=

1

28
, (3.11)

again for Tdec > 5 GeV and depending slightly on the number of neutrinos we take into account. We can use this
result to compute the non-relativistic energy density now

⇢�(T0) = m�
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T
3
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Using this result we can compute the dimensionless dark matter density in close analogy to the neutrino case of
Eq.(2.11),

⌦�h
2 =

⇢�(T0)h2

3M
2
PlH

2
0

⇡ 3 · 103 m
4
Z

m2
�
MPl
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⇡ 3 · 103 7 · 107

2 · 1018

GeV3

m2
�

1
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GeV
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m2
�

, ⌦�h
2

⇡ 0.12

✓
13 GeV

m�

◆2

.

This outcome is usually referred to as the WIMP miracle: if we assume an dark matter agent with an
electroweak-scale mass and an annihilation process mediated by the weak interaction, the predicted relic density
comes out exactly as measured.

Let us recapitulate where the WIMP mass dependence of Eq.(3.13) comes from: first, the annihilation cross
section in Eq.(3.3) is assumed to be mediated by electroweak interactions and includes a dependence on m�. Our
original assumption m� ⌧ mW is not perfectly fulfilled, but also not completely wrong. Second, the WIMP mass
enters the relation between the number and energy density, but some of this dependence is absorbed into the value
xdec = 23, which means that the decoupling of the non-relativistic WIMPs is supposed to happen at a very low
temperature of Tdec ⇡ m�/23. Making things worse, some of the assumption we made in this non-relativistic and
hence multi-scale calculation are not as convincing as they were for the simpler relativistic neutrino counterpart, so
let us check Eq.(3.13) with an alternative estimate. One of the key questions we will try to answer in our
alternative approach is how the m�-dependence of Eq.(3.13) occurs.

91

The WIMP miracle

We assume that DM is in thermal equilibrium with the SM particles, and is able to annihilate. At the 
point of thermal decoupling DM freezes-out with a density that is approximate the one that we measure 
today. The process of annihilation is

χχ → SM SM

The interaction rate corresponding to the scattering process just compensates the increasing scale 
factor at the point of decoupling

Γ(Tdec) = H(Tdec)

If we assume that the interaction rate is set by the electroweak interactions and use the Z-boson 
coupling and mass, the cross section of the above process is of the order

σχχ =
πα2m2

χ

c2
wm4

Z

And after assuming a lot of other stuff (that could change the order of magnitude but not by much) we 
reach the conclusion

known as the WIMP miracle.
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And now let us calculate a specific process of DM annihilation to a b-quark pair

First we calculate the cross section. After that 
we make an approximation of averaging over a 
constant. Then we calculate Y today by 
approximating whatever we can to constants.

Mechanisms of thermal DM generation - freeze-out

Scalar - The SM is extended by an extra real scalar singlet S, with a  symmetry Z2 S → − S

ℒ = ℒSM +
1
2

(∂μS )(∂μS ) − VN + VSM

Let us consider the solution (for the minimum) S = 0; h2 = − μ2 /(2λ);

4.1 Higgs portal 59

A possible linear term in the new, real field is removed by a shift in the fields. In the above form the new scalar S

can couple to two SM Higgs bosons, which induces a decay either on-shell S ! HH or off-shell
S ! H

⇤
H

⇤
! 4b. To forbid this, we apply the usual trick, which is behind essentially all WIMP dark matter

models; we require the Lagrangian to obey a global Z2 symmetry

S ! �S, H ! +H, · · · (4.4)

This defines an ad-hoc Z2 parity +1 for all SM particles and �1 for the dark matter candidate. The combined
potential now reads
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The mass of the dark matter scalar and its phenomenologically relevant SSH and SSHH couplings read

mS =
q

2µ
2
S

� �3v
2
H

gSSH = �2�3vH gSSHH = �2�3 . (4.6)

The sign of �3 is a free parameter. Unlike for singlet models with a second VEV, the dark singlet does not affect
the SM Higgs relations in Eq.(4.2). However, the SSH coupling mediates SS interactions with pairs of SM
particles through the light Higgs pole, as well as Higgs decays H ! SS, provided the new scalar is light enough.
The SSHH coupling can mediate heavy dark matter annihilation into Higgs pairs. We will discuss more details
on invisible Higgs decays in Section 7.

For dark matter annihilation, the SSff̄ transition matrix element based on the Higgs portal is described by the
Feynman diagram

H

S

S

b̄(k1)

b(k2)

All momenta are defined incoming, giving us for an outgoing fermion and an outgoing anti-fermion

M = ū(k2)
�imf
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�i
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2
H

+ imH�H

(�2i�3vH) . (4.7)

In this expression we see that vH cancels, but the fermion mass mf will appear in the expression for the
annihilation rate. We have to square this matrix element, paying attention to the spinors v and u, and then sum
over the spins of the external fermions,
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What do we need?

v = 2
s

4m2
χ

− 1 Ωχh2 = mχs0Yo
8πG
3H2

≈ 2.742 × 108
mχ

GeV
Y0 mP =

hc
2πG

= 1.22 × 1019 GeV
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Mechanisms of thermal DM generation - freeze-out

Now we integrate from  (at freeze-out)  to infinityxf

dY
dx

= − λ
Y 2

x2

Ωχh2 = mχs0Yo
8πG
3H2

≈ 2.742 × 108
mχ

GeV
Y0

x =
mχ

T λ =
π

45G
g1/2

* mχ < σ v >χχ

The result is 

Y0 = Y∞ ≈
xf

λ

Considering  = 10 calculate the coupling for a DM of 100 GeV. xf
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3. Mechanisms of Thermal DM Generation

Figure 3.1.: Feynman diagrams of possible annihilation channels between �( and the SM.

Figure 3.2.: Freeze-out via the �(�( ! 11 channel for<( = 100GeV. The colored curves
show the evolution of the yield for di�erent portal couplings _3. The black
curve shows the equilibrium yield .eq.

states.

It is clear from Eq. (3.18), that the TAC is proportional to the cross section (denoted
by fjj in Eq. (3.18)) and therefore also to _23. Figure (3.2) shows how . (G) evolves for
di�erent values of _3 and as result di�erent TACs. Here, only the annihilation channel
�(�( ! 11 is considered. It shows that for larger values of _3 the yield reaches a smaller
constant value .0 and therefore via Eq. (3.31) a smaller relic density. This can be explained
by the fact, that the TAC is a measure of how strongly the SM and DM bath are coupled to
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Back to the complex singlet and considering only the final state with b quarks

3.1. Freeze-out

By integrating Eq. (3.26) from the beginning of the universe G = 0with the initial condition
. (0) = .eq(0) to the current temperature )0 of the CMB with G0 =<j/)0 to obtain .0 of
today, the relic density can be calculated via

⌦j =
dj,0
dc

=
<j=0
dc

=
<jB0.0

dc
. (3.29)

Here, B0 is the entropy density of today and dc = 3� 2/8c⌧ the critical density which
separates an expanding from a collapsing universe. To match the de�nition in Eq. (1.2) for
the observed relic density, Eq. (3.29) is multiplied by the dimensionless constant

⌘2 =

 
�

100 km
sMpc

!2
. (3.30)

Inserting the corresponding numerical values gives

⌦j⌘
2 =<jB0.0

8c⌧
3� 2 ⌘

2 ⇡ 2.742 · 108
<j

GeV
.0 . (3.31)

3.1.2. Freeze-out in a Singlet Extension of the SM

To illustrate how Eq. (3.26) behaves for di�erent TACs, consider the extension of the SM
by a real singlet �eld �( , which is the DM candidate. Requiring that the Lagrangian is
invariant under the Z2 symmetry

� ! � , �( ! ��( , (3.32)

the most general renormalizable scalar potential reads

+ = `2�†� + _
⇣
�†�

⌘2
+ `2(�

2
( + _(�

4
( + _3�

†��2
( . (3.33)

Here, � is the SM scalar doublet with the corresponding parameters ` and _ which give
the VEV in Eq. (2.3) and `( , _( as well as _3 are the free, real parameters of this model.
Assuming that �( has a VEV that is zero, the relevant interactions for freeze-out and the
mass term for �( after SSB are

+ � 1
2
(2`2( � _3E)�2

( + _3E ⌘�
2
( +

_3
2
⌘2�2

B , (3.34)

where ⌘ is the Higgs �eld. The mass of the DM candidate is therefore given by

<( =
q
2`2( � _3E . (3.35)

The interaction terms given by the second and third terms in Eq. (3.34) allow for annihila-
tions of �( into the SM particle pairs via the channels shown in Fig. (3.1). Such models are
called Higgs portal models due to their connection to the SM via a Higgs mediator. This
results in the annihilation cross section being proportional to _23, independent of the �nal
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The figure shows the evolution of  as a function of x for different cross sections, that is, for 
different portal couplings.  The larger the coupling the smaller the yield. The reason is that the thermal 
averaged cross section is a measure of how strongly the SM and the DM bath are coupled. A larger 
coupling means a more efficient interaction rate. This in turn means a smaller temperature and a larger x.

Y(x)
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Freeze-out may not happen if the portal coupling is too small. In that case the DM annihilation channels 
are not efficient enough to produce the current relic density.  

In this regime of very weakly interacting massive particles, also called Feebly Interacting Massive 
Particles (FIMPs) the mechanism of freeze-in may come to the rescue.  

In contrast to freeze- out, the DM particles do not start in thermal equilibrium with the SM and have a 
low initial abundance. Processes favour the direction of DM production from SM particles instead of 
annihilation of DM particles into SM particles. 3.2. Freeze-in
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happens until the condition in Eq. (3.2) applies and the SM coupling to the DM is too small
to accommodate for the expansion of the universe.

The calculation of the relic density via freeze-in is in general more involved than for
freeze-out. Due to the fact that during freeze-in the DM particles are not in thermal
equilibrium with the SM particles, the newly produced heavy DM particles have in general
less kinetic energy than at equilibrium and Eq. (3.8) does not necessarily apply [49, 50].
One has to make sure that newly produced DM particles are in kinetic equilibrium with
the thermal bath. Processes like (3.38) with 8 = 9 need to have interaction rates large
enough to keep the DM candidate in kinetic equilibrium. Because freeze-in begins at the
reheating temperature of the universe and ends at G ⇡ 2 � 5 [51], the DM particles are
relativistic throughout most of the process so that the approximation in Eq. (3.42) can not
be applied. This means that Eq. (3.41) has to be used to calculate the freeze-in for multiple
DS particles. In terms of . and G the Boltzmann equation becomes

3.

3G
=

r
c

45⌧
61/2⇤ <j

G2

#’
8, 9=1

hfEi8 9 (.8,4@.9,4@ � .8.9 ) . (3.53)

It is important to note that the equation only works if the DS particles are in kinetic
equilibrium with the SM. Figure (3.3) shows the relation between the coupling _3 from the
potential (3.33) and the evolution of . . As for to freeze-out a higher value of _3 results in
a larger TAC. In contrast to freeze-out though, a larger TAC results in a larger yield (and
therefore relic density), because the annihilation of SM particles into DM is more e�cient.

27

This production happens until the SM coupling to 
DM is too small to accommodate for the expansion 
of the universe.
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In terms of 𝑌 and 𝑥 the Boltzmann equation now is 

The figure shows the relation between the coupling 𝜆3 

from the potential and the evolution of 𝑌 . As for to 
freeze-out a higher value of 𝜆3 results in a larger TAC. In 

contrast to freeze-out though, a larger TAC results in a 
larger yield (and therefore relic density), because the 
annihilation of SM particles into DM is more efficient.  

At temperatures lower than the dark matter mass, the 
bath no longer has enough energy to produce dark matter. 
At this point, the amount of dark matter has “frozen-in,” 

there are no other ways to produce more dark matter.
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Mechanisms of DM generation - pandemic

This is a mechanism that complements freeze-in and freeze-out production in a generic way, opening 
new parameter space to explain the observed DM abundance. 
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Motivation
With DM being one of the biggest hints towards new physics there is a need to study and understand the processes which lead to the currently observed DM relic
density in the universe. In our work we investigate the so-called pandemic model[3] (a novel DM production mechanism) with respect to freeze-in and freeze-out for
DM creation. This mechanism complements freeze-in and freeze-out production in a generic way, opening new parameter space to explain the observed DM
abundance.

Pandemic process requirements

(atleast) 2 dark sector particles  and �
 is already in thermal equilibrium with SM heat bath in early universe
� starts with a small initial abundance created by the freeze-in process
Interaction between  and � leads to an exponential growth growth of �,
which shuts off at some point.
The DM number density can then be evaluated by the Boltzmann
equation[1, 3]
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Figure: Feynman diagram of (a) the exponential growth process and (b) of the freeze-in
process

Toy model

Standard model extended with two real singlet scalars �2 and �3 (TRSM)
connected to the SM via Higgs portal
Also implemented is a Z2-symmetry which forbids DM particle to decay into
DM particles

Z2 : �1 ! �1,�i ! ��i i = 2, 3
The most general renormalizable interaction Lscalar,int, which is invariant
under all symmetries, is then given by
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here A is given as the initial abundance.
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Figure: Phase diagram for �t r and �f i . Here the couplings are chosen so that the correct dark
matter relic density is produced. In (a) the mass ratio is chosen to be 0.8, while in (b) the
mass ratio is chosen to be 2.

Conclusion

The pandemic process allows a wider range of parameters for specific
model not attainable through purely freeze in/out. A possible non toy model
which could benefit from this new consideration is the CP in the dark
model[2], which we are currently investigating.
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With DM being one of the biggest hints towards new physics there is a need to study and understand the processes which lead to the currently observed DM relic
density in the universe. In our work we investigate the so-called pandemic model[3] (a novel DM production mechanism) with respect to freeze-in and freeze-out for
DM creation. This mechanism complements freeze-in and freeze-out production in a generic way, opening new parameter space to explain the observed DM
abundance.

Pandemic process requirements

(atleast) 2 dark sector particles  and �
 is already in thermal equilibrium with SM heat bath in early universe
� starts with a small initial abundance created by the freeze-in process
Interaction between  and � leads to an exponential growth growth of �,
which shuts off at some point.
The DM number density can then be evaluated by the Boltzmann
equation[1, 3]
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Figure: Feynman diagram of (a) the exponential growth process and (b) of the freeze-in
process

Toy model

Standard model extended with two real singlet scalars �2 and �3 (TRSM)
connected to the SM via Higgs portal
Also implemented is a Z2-symmetry which forbids DM particle to decay into
DM particles

Z2 : �1 ! �1,�i ! ��i i = 2, 3
The most general renormalizable interaction Lscalar,int, which is invariant
under all symmetries, is then given by
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Here the terms which leads to freeze-in and exponential growth are
highlighted.

Results

Figure: Evolution of the yield. Parameters are adjusted to give the correct relic density. Also
here A is given as the initial abundance.

Results

Figure: Evolution of the yield. Parameters are adjusted to give the correct relic density.

a b
Figure: Phase diagram for �t r and �f i . Here the couplings are chosen so that the correct dark
matter relic density is produced. In (a) the mass ratio is chosen to be 0.8, while in (b) the
mass ratio is chosen to be 2.

Conclusion

The pandemic process allows a wider range of parameters for specific
model not attainable through purely freeze in/out. A possible non toy model
which could benefit from this new consideration is the CP in the dark
model[2], which we are currently investigating.
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Figure: Evolution of the yield. Parameters are adjusted to give the correct relic density.
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Figure: Phase diagram for �t r and �f i . Here the couplings are chosen so that the correct dark
matter relic density is produced. In (a) the mass ratio is chosen to be 0.8, while in (b) the
mass ratio is chosen to be 2.
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Mechanisms of DM generation - freeze-out

4.1 Higgs portal 59

A possible linear term in the new, real field is removed by a shift in the fields. In the above form the new scalar S

can couple to two SM Higgs bosons, which induces a decay either on-shell S ! HH or off-shell
S ! H

⇤
H

⇤
! 4b. To forbid this, we apply the usual trick, which is behind essentially all WIMP dark matter

models; we require the Lagrangian to obey a global Z2 symmetry

S ! �S, H ! +H, · · · (4.4)

This defines an ad-hoc Z2 parity +1 for all SM particles and �1 for the dark matter candidate. The combined
potential now reads
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The mass of the dark matter scalar and its phenomenologically relevant SSH and SSHH couplings read

mS =
q

2µ
2
S

� �3v
2
H

gSSH = �2�3vH gSSHH = �2�3 . (4.6)

The sign of �3 is a free parameter. Unlike for singlet models with a second VEV, the dark singlet does not affect
the SM Higgs relations in Eq.(4.2). However, the SSH coupling mediates SS interactions with pairs of SM
particles through the light Higgs pole, as well as Higgs decays H ! SS, provided the new scalar is light enough.
The SSHH coupling can mediate heavy dark matter annihilation into Higgs pairs. We will discuss more details
on invisible Higgs decays in Section 7.

For dark matter annihilation, the SSff̄ transition matrix element based on the Higgs portal is described by the
Feynman diagram

H
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b̄(k1)

b(k2)

All momenta are defined incoming, giving us for an outgoing fermion and an outgoing anti-fermion
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In this expression we see that vH cancels, but the fermion mass mf will appear in the expression for the
annihilation rate. We have to square this matrix element, paying attention to the spinors v and u, and then sum
over the spins of the external fermions,
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60 4 WIMP MODELS

In the sum over spin and color of the external fermions the averaging is not yet included, because we need to
specify which of the external particles are incoming or outgoing. As an example, we compute the cross section for
the dark matter annihilation process to a pair of bottom quarks

SS ! H
⇤

! bb̄ . (4.9)

This s-channel annihilation corresponds to the leading on-shell Higgs decay H ! bb̄ with a branching ratio
around 60%. In terms of the Mandelstam variable s = (k1 + k2)2 it gives us
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To compute the relic density we need the velocity-averaged cross section. For the contribution of the bb̄ final state
to the dark matter annihilation rate we find the leading term in the non-relativistic limit, s = 4m
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This expression holds for all scalar masses mS . In our estimate we identify the v-independent expression with the
thermal average. Obviously, this will become more complicated once we include the next term in the expansion
around v ⇡ 0. The Breit–Wigner propagator guarantees that the rate never diverges, even in the case when the
annihilating dark matter hits the Higgs pole in the s-channel.

The simplest parameter point to evaluate this annihilation cross section is on the Higgs pole. This gives us
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with �H ⇡ 4 · 10�5
mH . While it is correct that the self coupling required on the Higgs pole is very small, the full

calculation leads to a slightly larger value �3 ⇡ 10�3, as shown in Figure 9.

Lighter dark matter scalars also probe the Higgs mediator on-shell. In the Breit-Wigner propagator of the
annihilation cross section, Eq.(4.11), we have to compare to the two terms
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This expression holds for all scalar masses mS . In our estimate we identify the v-independent expression with the
thermal average. Obviously, this will become more complicated once we include the next term in the expansion
around v ⇡ 0. The Breit–Wigner propagator guarantees that the rate never diverges, even in the case when the
annihilating dark matter hits the Higgs pole in the s-channel.

The simplest parameter point to evaluate this annihilation cross section is on the Higgs pole. This gives us
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with �H ⇡ 4 · 10�5
mH . While it is correct that the self coupling required on the Higgs pole is very small, the full

calculation leads to a slightly larger value �3 ⇡ 10�3, as shown in Figure 9.

Lighter dark matter scalars also probe the Higgs mediator on-shell. In the Breit-Wigner propagator of the
annihilation cross section, Eq.(4.11), we have to compare to the two terms
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There are many on-going experiments with the goal of detecting the products of DM annihilation in our 
Galaxy, or beyond.  

We assume that DM annihilation is strongly suppressed after thermal freeze-out. However, it can still 
occur today and the chances of discovery can be maximised by searching in regions of very high DM 
density.  

For most extensions of the SM, DM can annihilate to most of the SM particles. 

We will just focus on photon final states. Depending on the model, DM can annihilate directly into a pair 
of photons, or into other SM states that then produce photons. The gamma-rays propagate essentially 
unperturbed, and can be detected by a satellite or ground-based telescope on Earth. 

4.1 Photon Flux from Annihilations

We assume that the DM can have multiple annihilation channels, each with velocity-averaged cross

section h�ivi. Then, the annihilation rate per particle is

X

i

⇢ [r(`, )]

m�
⇥ h�ivi , (4.1)

where r is the radial distance between the annihilation event and the Galactic Center—it is a

function of the line-of-sight (l.o.s.) distance, `, which is oriented an angle  away from the Galactic

plane. The total annihilation rate in the volume dV = `
2
d` d⌦ is obtained by multiplying (4.1) by

the total number of particles in the volume:
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Note that the factor of two in the denominator comes from the fact that there are two particles

involved in every annihilation interaction. To get the photon flux, we must multiply the annihilation

rate of (4.2) by dNi/dE� , which describes the number of photons at a given energy E� produced in

the i
th annihilation channel. It follows that the di↵erential photon flux d�/dE� in the observational

volume oriented in the direction  is

d�

dE�
(E� , ) =

1
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Importantly, (4.3) must be multiplied by an additional factor of 1/2 if the DM is not its own

antiparticle.

Exercise: How would (4.3) change for the case of DM decay rather than annihilation?

All the astrophysical uncertainties in the determination of the flux are absorbed by the J-factor,

J =
1

�⌦

Z
d⌦

Z

l.o.s.
d` ⇢ [r(`, )]2 .

The larger the J-factor, the more interesting the astrophysical target is for DM annihilation. The

J-factors for dwarf galaxies are roughly J ⇠ 1019�20 GeV2/cm5. For our nearest neighbor, the

Andromeda galaxy, J ⇠ 1020 GeV2/cm5. For our own Galactic Center, J ⇠ 1022�25 GeV2/cm5

(1022�24) within 0.1�(1�) [94].13 Choosing an ideal target involves carefully balancing the size of

the J-factor with the potential backgrounds. For example, dwarf galaxies are DM-dominated and

therefore some of the cleanest systems to search for DM because they contain very few stars and

13It is important to keep in mind that there are potentially large uncertainties on these estimates!

29

Let us consider that there are multiple DM annihilation channels, each with velocity-averaged cross 
section ⟨σiv⟩. The annihilation rate per particle is

where r is the radial distance between the annihilation event and the Galactic Center—it is a function of 
the line-of-sight (l.o.s.) distance, l, which is oriented an angle ψ away from the Galactic plane. 
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The total annihilation rate in the volume dV = l2 dl dΩ is obtained by multiplying the previous equation by 
the total number of particles in the volume

The photon flux is the annihilation rate multiplied by dNi/dEγ, that is, the number of photons at a given 
energy Eγ produced in the ith annihilation channel. The differential photon flux dΦ/dEγ in the observational 
volume oriented in the direction ψ is 
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All the astrophysical uncertainties in the determination of the flux are absorbed by the J-factor 

The larger the J-factor, the more interesting the astrophysical target is for DM annihilation. The J-
factors for dwarf galaxies are roughly J ∼ 1019−20 GeV2/cm5. For our nearest neighbour, the Andromeda 
galaxy, J ∼ 1020 GeV2/cm5. For our own Galactic Center, J ∼ 1022−25 GeV2/cm5 (1022−24) within 0.1◦(1◦). 
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74 5 INDIRECT SEARCHES

5 Indirect searches

There exist several ways of searching for dark matter in earth-bound or satellite experiments. All of them rely on
the interaction of the dark matter particle with matter, which means they only work if the dark matter particles
interacts more than only gravitationally. This is the main assumption of these lecture notes, and it is motivated by
the fact that the weak gauge coupling and the weak mass scale happen to predict roughly the correct relic density,
as described in Section 3.1.

The idea behind indirect searches for WIMPS is that the generally small current dark matter density is significantly
enhanced wherever there is a clump of gravitational matter, as for example in the sun or in the center of the galaxy.
In these regions dark matter should efficiently annihilate even today, giving us either photons or pairs of particles
and anti-particles coming from there. Particles like electrons or protons are not rare, but anti-particles in the
appropriate energy range should be detectable. The key ingredient to the calculation of these spectra is the fact that
dark matter particles move only very slowly relative to galactic objects. This means we need to compute all
processes with incoming dark matter particles essentially at rest. This approximation is even better than at the time
of the dark matter freeze-out discussed in Section 3.2.

Indirect detection experiments search for many different particles which are produced in dark matter annihilation.
First, this might be the particles that dark matter directly annihilated into, for example in a 2 ! 2 scattering
process. This includes protons and anti-protons if dark matter annihilates into quarks. Second, we might see decay
products of these particles. An example for such signatures are neutrinos. Examples for dark matter annihilation
processes are

�̃
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, pp̄ + X ... (5.1)

The final state particles are stable leptons or protons propagating large distances in the Universe. While the leptons
or protons can come from many sources, the anti-particles appear much less frequently. One key experimental task
in many indirect dark matter searches is therefore the ability to measure the charge of a lepton, typically with the
help of a magnetic field. For example, we can study the energy dependence of the antiproton–proton ratio or the
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Dark Matter Halo Profiles

Figure 14: Dark matter galactic halo profiles, including standard Einasto and NFW profiles along with a Burkert
profile with a 3 kpc core. J factors are obtained assuming a spherical dark matter distribution and integrating over
the radius from the galactic center from r ' 0.05 to 0.15 kpc. J factors are normalized so that J(⇢NFW) = 1. Figure
from Ref.[12]
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However, when we choose a good target, there is a balance between the size of the J-factor and the 
potential backgrounds that has to be taken into account.  

As an example, dwarf galaxies are DM-dominated and therefore some of the cleanest systems to search 
for DM because they contain very few stars and little gas. In contrast, a signal from the center of the 
Galaxy, while enhanced due to the DM density and proximity, has to contend with large systematic 
uncertainties on the astrophysical backgrounds. 

The particle physics input to the flux is the factor (in most cases the velocity-averaged cross section can 
be pulled out of the integral)

< σv >χχ

m2
χ

dN
dEγ

The kinematics of the annihilation event determine the basic properties of the photon energy spectrum. 
Consider, first, the case where the DM annihilates directly into one or two photons: χχ → γX, where X = 
γ, Z, H or some other neutral state. In the non-relativistic limit, energy conservation gives 

little gas. In contrast, a signal from the center of the Galaxy, while enhanced due to the DM density

and proximity, has to contend with large systematic uncertainties on the astrophysical backgrounds.

The particle physics input to the flux is absorbed by the factor of h�vi
m2

�

dN
dE�

. In many instances,

the velocity-averaged cross section can be pulled out of the integral. However, this cannot be

done if the cross section depends strongly on velocity, as is the case for p-wave annihilation or

Sommerfeld enhancements (which we will come back to later). The kinematics of the annihilation

event determine the basic properties of the photon energy spectrum. Consider, first, the case where

the DM annihilates directly into one or two photons: �� ! �X, where X = �, Z, H or some other

neutral state. In the non-relativistic limit, energy conservation gives

2 m� = E� +
q

E2
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X �! E� ⇡ m�

✓
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m
2
X

4m2
�

◆
,

where E� is the energy of the outgoing photon in the center-of-mass frame and mX is the mass

of the X state. To get the expression on the right-hand side, we assume that the energy of the

outgoing photon is k = m� + � and expand in the mass di↵erence �. The �� final state results

in a monochromatic energy line at the DM mass. For a �Z final state, the gamma line is still

monochromatic, but is shifted to lower energies.

The blue lines in Figure 10 show the energy spectrum for a �� final state where the measured

energy resolution is �E/E = 0.15 (solid) or 0.02 (dotted). The observation of such a gamma-ray

‘line’ would be spectacular evidence for DM annihilation. However, the production of a pair of

gamma-rays is typically loop-suppressed (and therefore sub-dominant) in many theories. The red

lines in Fig. 10 illustrate how the spectrum changes if photons are radiated o↵ of virtual charged

particles in the loop. Such ‘virtual internal bremsstrahlung’ results in a broadening of the line

towards lower masses, though the spectrum still cuts o↵ at the DM mass. The green lines in

Fig. 10 illustrate the box spectrum, which arises when the DM annihilates to a new state � (e.g.,

�� ! ��) that then decays to a photon pair (� ! ��) [95].

Another possibility is that the DM annihilates to leptons, gauge bosons, or quarks, which may

produce secondary photons either through final-state radiation or in the shower of their decay

products. The photon energy spectrum dN/dE� depends on the exact details of the final-state

radiation, and must be determined with Monte Carlo tools like Pythia8 [97].14 In the case of

secondary photon production, the energy spectrum does not have a very distinctive shape, and

one must search for a continuum excess over the background. The gray band in Fig. 10 shows an

example of the spectrum for annihilation to quarks or gauge bosons.

The details of the annihilation mechanism are buried in the velocity-averaged cross section

h�vi. This cross section is the same in many simple models as what appears in the relic density

14For recipes on calculating DM annihilation signals, see the Poor Particle Physicist Cookbook for Dark Matter
Indirect Detection [98].

30

The γγ final state results in a monochromatic energy line at the DM mass. For a γZ final state, the gamma 
line is still monochromatic, but is shifted to lower energies. 

Eγ is the energy of the outgoing photon in the 
CM frame and mX is the mass of the X state. 
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Blue lines - energy spectrum for a γγ final state where the measured energy resolution is ∆E/E = 0.15 
(solid) or 0.02 (dotted). The observation of such a gamma-ray ‘line’ would be spectacular evidence for DM 
annihilation. However, the production of a pair of gamma-rays is typically loop-suppressed (and therefore 
sub-dominant) in many theories.  

Red lines - how the spectrum changes if photons are radiated off of virtual charged particles in the loop. 

Green lines - illustrate the box spectrum, which arises when the DM annihilates to a new state φ (e.g., χχ 
→ φφ) that then decays to a photon pair (φ → γγ).
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Figure 1: Various gamma-ray spectra expected from DM annihilation, all normalized to N(x > 0.1) =
1. Spectra from secondary particles (gray band) are hardly distinguishable. Pronounced peaks near the
kinematical endpoint can have di�erent origins, but detectors with very good energy resolutions �E/E may
be needed to discriminate amongst them in the (typical) situation of limited statistics. See text for more
details about these spectra.

2.1. Lines
The direct annihilation of DM pairs into �X – where X = �, Z,H or some new neu-

tral state – leads to monochromatic gamma rays with E� = m�
�
1 � m2X/4m2�

�
, providing

a striking signature which is essentially impossible to mimic by astrophysical contri-
butions [51]. Unfortunately, these processes are loop-suppressed with O(�2em) and thus
usually subdominant, i.e. not actually visible against the continuous (both astrophysical
and DM induced) background when taking into account realistic detector resolutions;
however, examples of particularly strong line signals exist [32, 33, 52–56]. A space-
based detector with resolution �E/E = 0.1 (0.01) could, e.g., start to discriminate be-
tween �� and �Z lines for DM masses of roughly m� . 150GeV (m� . 400GeV) if at
least one of the lines has a statistical significance of& 5� [57]. This would, in principle,
open the fascinating possibility of doing ‘DM spectroscopy’ (see also Section 5).

2.2. Internal bremsstrahlung (IB)
Whenever DM annihilates into charged particles, additional final state photons ap-

pear at O(�em) that generically dominate the spectrum at high energies. One may dis-
tinguish between final state radiation (FSR) and virtual internal bremsstrahlung (VIB)
in a gauge-invariant way [58], where the latter can very loosely be associated to pho-
tons radiated from charged virtual particles. FSR is dominated by collinear photons,
thus most pronounced for light final state particles, mf � m�, and produces a model-
independent spectrum with a sharp cut-o� at E� = m� [59, 60]; a typical example for a

5

Figure 10: Illustration of the photon energy spectrum for the �� final state without (blue) and
with (red) virtual internal bremsstrahlung. The box spectrum (green) can be produced if the DM
annihilates to a new state, that then decays to photons, as described in the text. The dotted versus
solid lines compare two separate energy resolutions: �E/E = 0.02 and 0.15, respectively. The
spectrum for photons resulting from the annihilation into gauge bosons and quarks is shown by the
gray band. Figure from [96].

calculation. As a result, one can argue that indirect detection is the best probe of the thermal DM

hypothesis. In addition, we automatically have an interesting target scale for the cross section:

3 ⇥ 10�26 cm3 s�1. This regime is currently being probed by the best gamma-ray observatories

today. For example, the Fermi Large Area Telescope has searched for signals of DM annihilation

in the Milky Way’s dwarf galaxies [99]. Figure 11 shows the limits from their most recent analysis,

assuming annihilation to bb̄ (left) and ⌧ ⌧̄ (right). (Remember, the assumption of the final decay

products a↵ects dN/dE� .) Such limits are typically presented in terms of the velocity-averaged

cross section and the DM mass. The dashed black line shows the median expected limit with 68%

and 95% confidence bands in green and yellow, respectively. The observed limit with six years of

data is shown by the solid black line. The horizontal dotted black line shows the thermal relic cross

section, to guide the eye. Notice that the observed bounds are starting to push into the parameter

regime that is highly motivated for WIMP dark matter.

4.2 Sommerfeld Enhancement

As an example of how this story can change if h�vi is no longer constant in velocity, let us con-

sider scenarios where DM self-interactions are allowed. In such cases, some very interesting non-

relativistic e↵ects can arise that drastically alter the energy spectrum for the annihilation process.

In certain instances, this can make the di↵erence between discovering the DM or not [100,101]. The

general idea is illustrated in Fig. 12. Assume that the annihilation of the DM into Standard Model
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details about these spectra.

2.1. Lines
The direct annihilation of DM pairs into �X – where X = �, Z,H or some new neu-

tral state – leads to monochromatic gamma rays with E� = m�
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, providing

a striking signature which is essentially impossible to mimic by astrophysical contri-
butions [51]. Unfortunately, these processes are loop-suppressed with O(�2em) and thus
usually subdominant, i.e. not actually visible against the continuous (both astrophysical
and DM induced) background when taking into account realistic detector resolutions;
however, examples of particularly strong line signals exist [32, 33, 52–56]. A space-
based detector with resolution �E/E = 0.1 (0.01) could, e.g., start to discriminate be-
tween �� and �Z lines for DM masses of roughly m� . 150GeV (m� . 400GeV) if at
least one of the lines has a statistical significance of& 5� [57]. This would, in principle,
open the fascinating possibility of doing ‘DM spectroscopy’ (see also Section 5).

2.2. Internal bremsstrahlung (IB)
Whenever DM annihilates into charged particles, additional final state photons ap-

pear at O(�em) that generically dominate the spectrum at high energies. One may dis-
tinguish between final state radiation (FSR) and virtual internal bremsstrahlung (VIB)
in a gauge-invariant way [58], where the latter can very loosely be associated to pho-
tons radiated from charged virtual particles. FSR is dominated by collinear photons,
thus most pronounced for light final state particles, mf � m�, and produces a model-
independent spectrum with a sharp cut-o� at E� = m� [59, 60]; a typical example for a

5

Figure 10: Illustration of the photon energy spectrum for the �� final state without (blue) and
with (red) virtual internal bremsstrahlung. The box spectrum (green) can be produced if the DM
annihilates to a new state, that then decays to photons, as described in the text. The dotted versus
solid lines compare two separate energy resolutions: �E/E = 0.02 and 0.15, respectively. The
spectrum for photons resulting from the annihilation into gauge bosons and quarks is shown by the
gray band. Figure from [96].

calculation. As a result, one can argue that indirect detection is the best probe of the thermal DM

hypothesis. In addition, we automatically have an interesting target scale for the cross section:

3 ⇥ 10�26 cm3 s�1. This regime is currently being probed by the best gamma-ray observatories

today. For example, the Fermi Large Area Telescope has searched for signals of DM annihilation

in the Milky Way’s dwarf galaxies [99]. Figure 11 shows the limits from their most recent analysis,

assuming annihilation to bb̄ (left) and ⌧ ⌧̄ (right). (Remember, the assumption of the final decay

products a↵ects dN/dE� .) Such limits are typically presented in terms of the velocity-averaged

cross section and the DM mass. The dashed black line shows the median expected limit with 68%

and 95% confidence bands in green and yellow, respectively. The observed limit with six years of

data is shown by the solid black line. The horizontal dotted black line shows the thermal relic cross

section, to guide the eye. Notice that the observed bounds are starting to push into the parameter

regime that is highly motivated for WIMP dark matter.

4.2 Sommerfeld Enhancement

As an example of how this story can change if h�vi is no longer constant in velocity, let us con-

sider scenarios where DM self-interactions are allowed. In such cases, some very interesting non-

relativistic e↵ects can arise that drastically alter the energy spectrum for the annihilation process.

In certain instances, this can make the di↵erence between discovering the DM or not [100,101]. The

general idea is illustrated in Fig. 12. Assume that the annihilation of the DM into Standard Model
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Another possibility is that the DM annihilates to leptons, gauge bosons, or quarks, which may produce 
secondary photons either through final-state radiation or in the shower of their decay products. The 
photon energy spectrum dN/dEγ depends on the exact details of the final-state radiation, and must be 
determined with Monte Carlo tools like Pythia. 

In the case of secondary photon production, the energy spectrum does not have a very distinctive shape, 
and one must search for a continuum excess over the background. The grey band in shows an example of 
the spectrum for annihilation to quarks or gauge bosons. 
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The details of the annihilation mechanism are in the velocity-averaged cross section ⟨σv⟩. This cross 
section is the same in many simple models as what appears in the relic density calculation. 

In addition, we automatically have an interesting target scale for the cross section:  3 × 10−26 cm3 s−1. 
This regime was probed by the best gamma-ray observatories. For example, the Fermi Large Area 
Telescope has searched for signals of DM annihilation in the Milky Way’s dwarf galaxies. 

Figure show the results for DM annihilation (from FermiLAT) to bb (left) and tau tau (right) 7
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FIG. 1. Constraints on the DM annihilation cross section at 95% CL for the bb̄ (left) and �+�� (right) channels derived from
a combined analysis of 15 dSphs. Bands for the expected sensitivity are calculated by repeating the same analysis on 300
randomly selected sets of high-Galactic-latitude blank fields in the LAT data. The dashed line shows the median expected
sensitivity while the bands represent the 68% and 95% quantiles. For each set of random locations, nominal J-factors are
randomized in accord with their measurement uncertainties. The solid blue curve shows the limits derived from a previous
analysis of four years of Pass 7 Reprocessed data and the same sample of 15 dSphs [13]. The dashed gray curve in this and
subsequent figures corresponds to the thermal relic cross section from Steigman et al. [5].

FIG. 2. Comparison of constraints on the DM annihilation cross section for the bb̄ (left) and �+�� (right) channels from this
work with previously published constraints from LAT analysis of the Milky Way halo (3� limit) [34], 112 hours of observations
of the Galactic Center with H.E.S.S. [35], and 157.9 hours of observations of Segue 1 with MAGIC [36]. Pure annihilation
channel limits for the Galactic Center H.E.S.S. observations are taken from Abazajian and Harding [37] and assume an Einasto
Milky Way density profile with �� = 0.389 GeV cm�3. Closed contours and the marker with error bars show the best-fit cross
section and mass from several interpretations of the Galactic center excess [16–19].
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Figure 11: Fermi LAT limits on DM annihilation into bb̄ (left) and ⌧+
⌧

� (right) final states. The
dashed black line is the expected bound with 68% and 95% contours shown in green and yellow,
respectively. The solid black line is the observation with six-year Pass 8 data. Figure from [99].

final states is a localized interaction—say, at the origin. If there are no self-interactions between

the DM particles, then the annihilation process looks like the left panel of Fig. 12. In this case,

the probability of finding the DM particles at the origin is just | 0(0)|2, where  0 is the incoming

wave function and a solution to the non-relativistic Schrödinger equation.

If self-interactions are allowed by the theory, then one possibility is that the DM particle can

interact with itself via a long-range force before annihilating. For example, if we introduce a new

scalar � that couples to the DM via �̄��, then the two � legs of the diagram can exchange multiple

� states before the hard annihilation occurs at the origin. The exchange of multiple mediators

alters the wave function of the incoming DM particles so that the probability of finding them at

the annihilation site is now | (0)|2, where  is the modified wave function in the presence of the

interaction potential. This is known as the Sommerfeld enhancement.

The Sommerfeld enhancement is defined as the ratio of probabilities of finding the DM at the

origin in the presence of the potential, relative to no potential:

S =
| (0)|2

| 0(0)|2
.

To calculate  (r), one must evaluate the ladder diagram in the right panel of Fig. 12. This

diagram is non-perturbative and determining  (0) would be a much more challenging problem if

we could not treat the DM system non-relativistically. Fortunately, we can and  (r) is obtained

by solving the Schrödinger equation for the non-relativistic e↵ective potential that describes the

interaction [102–105].

Let us jump into the details now and explore the interesting phenomenology of such processes.

The wave function,  , for two-particle scattering is described by the time-independent Schrödinger
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Ultralight DM

Dark matter can be ultra-light. If DM is in the mass range of  eV, it can produce compact 
objects that in turn may produce Gravitational Waves (GW) that can be probed by current and future  
experiments. These objects are known as boson stars.

10−20 − 10−10

The production mechanisms in this case are: 
the misalignment mechanism, decay of thermal 
relics,  freeze-out and decay of topological 
defects (Domain Walls and Cosmic Strings).  

An ultralight DM thermally produced is hard, 
because it behaves as hot dark matter and it can 
jeopardise the period of structure formation.  

However, if the pNGB has an extremely small 
coupling with the SM particles, it ensures it will 
not be thermally produced. 

We can use the same extension of the SM that we have used for the scalar DM. This DM candidate has 
can be ultralight dark matter.
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Dark matter can be ultra-light. If DM is in the mass range of  eV, it can produce compact 
objects that in turn may produce Gravitational Waves (GW) that can be probed by current and future  
experiments. These objects are known as boson stars.

10−20 − 10−10

Resulting in a very small self-interaction

A comprehensive study of simple Standard Model (SM) extensions relevant for SG appli-
cations was carried out in [49]. In this article we focus on what was denoted as Model 1 in
Tab. 1 of [49], where, in addition to the SM particle content, it also contains a new CP-even
Higgs boson, h2, and an ultralight real pNGB denoted as ✓. In the SG context the latter
were studied e.g. in [39–43] and can lead to the formation of astrophysical objects such as
oscillatons [50–52]. These are slightly time-dependent and decay, but can be very long lived,
at least for the case of spherical stars [53]. With recent LIGO and Virgo data, searches for
evidence of superradiance instabilities in the form of a SGWB [54, 55] have excluded the mass
of real pNGB in the range [1.3, 17]⇥ 10�13 eV. While this type of DM candidate has already
been studied in other contexts [56–58], in this article we make the first study directly targeted
at the mass range relevant for SG, i.e. O(10�20 � 10�10) eV. The presence of a Z2 discrete
symmetry forbids direct couplings to photons of the form ✓F

µ⌫
Fµ⌫ thus avoiding leading order

cosmological bounds [59] related to ALPs.
This article is organized as follows. In Section 2 we revisit the key aspects of the model;

in Section 3 we discuss the production mechanisms viable in both pre and post-inflationary
regimes; in Section 4 we study the implications for the SGWB produced through the decay of
topological defects; lastly, we draw our conclusions in Section 5.

2 The model

In this section, we revisit the basic details of Model 1 in [49] where it was presented in greater
detail. This consists of an extension of the SM with an additional complex singlet � charged
under a global U(1)G symmetry such that the scalar potential
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and Vsoft is a term that softly breaks the U(1)G global symmetry
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The NGB field is described as a phase, ✓, of the field �,

� =
1p
2
(� + ⌫�) e

i✓/⌫� , (2.5)

where � represents radial quantum fluctuations about the vacuum expectation value (VEV)
⌫�. The soft breaking term, Eq. (2.4), is responsible for generating a mass to the NGB,
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A comprehensive study of simple Standard Model (SM) extensions relevant for SG appli-
cations was carried out in [49]. In this article we focus on what was denoted as Model 1 in
Tab. 1 of [49], where, in addition to the SM particle content, it also contains a new CP-even
Higgs boson, h2, and an ultralight real pNGB denoted as ✓. In the SG context the latter
were studied e.g. in [39–43] and can lead to the formation of astrophysical objects such as
oscillatons [50–52]. These are slightly time-dependent and decay, but can be very long lived,
at least for the case of spherical stars [53]. With recent LIGO and Virgo data, searches for
evidence of superradiance instabilities in the form of a SGWB [54, 55] have excluded the mass
of real pNGB in the range [1.3, 17]⇥ 10�13 eV. While this type of DM candidate has already
been studied in other contexts [56–58], in this article we make the first study directly targeted
at the mass range relevant for SG, i.e. O(10�20 � 10�10) eV. The presence of a Z2 discrete
symmetry forbids direct couplings to photons of the form ✓F

µ⌫
Fµ⌫ thus avoiding leading order

cosmological bounds [59] related to ALPs.
This article is organized as follows. In Section 2 we revisit the key aspects of the model;

in Section 3 we discuss the production mechanisms viable in both pre and post-inflationary
regimes; in Section 4 we study the implications for the SGWB produced through the decay of
topological defects; lastly, we draw our conclusions in Section 5.
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proportional to µs. As will be clear later, we are interested in the scenario where ⌫� � ⌫h,
where ⌫h = 246 GeV is the usual SM Higgs doublet VEV in the SM. The mass matrix for the
physical states (h, �, ✓) reads as

M
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0
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v
2
h
�H vhv��H� 0

vhv� v
2
��� 0

0 0 �2µ2
s

1

CA , (2.6)

where M
2 can be diagonalized by the orthogonal transformation
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The eigenvalues of the mass matrix are
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m
2
✓
= �2µ2

s , (2.10)

and the scalar mixing angle ↵ satisfies

tan (2↵) =

✓
2�H� ⌫h⌫�

�H⌫
2
h
� ��⌫

2
�

◆
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In what follows, we fix h1 to be the SM Higgs boson with a mass of 125 GeV. The couplings
between h1, h2 and ✓ with the remaining SM particles are shown in Ref. [49]. The mass of the
second scalar (h2) is a free parameter of the model. However, as discussed below, the hierarchy
⌫� � ⌫h is necessary in order to produce ✓ as DM, which results in mh2 � mh1 . This further
results in an extremely suppressed coupling of h2 and ✓ to the SM particles, preventing them
from reaching thermal equilibrium in the early Universe. The physical quartic couplings read
as

�✓✓✓✓ = �
m

2
✓

6⌫2
�

, (2.12)

where �✓✓✓✓ < 0 indicates an attractive ultralight DM scenario, instead of a repulsive one, as
discussed in [60].

The current LHC constraints coming from precise Higgs couplings measurements impose
an upper bound on the scalar mixing angle ↵ of Eq. (2.8), which can be translated into
| sin↵| . O(0.1) [61, 62]. Furthermore, due to the mass hierarchy mh2 � mh1 , the only
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Using the exact same potential for a complex scalar field invariant under U(1) with a soft breaking term 
we can describe such a light particle.
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Ultralight DM
Ultralight non-thermal DM produced via the misalignment mechanism.
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Figure 1: Abundance of ultralight DM for the case where the SSB occurs before the end
of inflation, for m✓ = 10�10 eV, 10�15 eV and 10�20 eV for blue, green and red curves,
respectively. Here, we fixed ⌫� = 1017 GeV.

In Fig. 1 we show the solution of Eq. (3.15) for three representative values of the DM mass,
for instance, m✓ = 10�10 eV (blue curve), 10�15 eV (green curve) and 10�20 eV (red curve).
As can be observed, for the mass range of interest in our discussion, it is always possible to
saturate the DM relic abundance with the ✓ field by fixing the initial value of the misalignment
angle ⇥i = 4.7⇥ 10�4

, 8.4⇥ 10�3 and 1.5⇥ 10�1 for m✓ = 10�10 eV, 10�15 eV and 10�20 eV,
respectively.

3.2 Post-inflationary scenario

Let us now consider the scenario where the global symmetry breaking occurs after the end
of inflation, i.e. TI > ⌫�. As previously discussed, in this case DM is produced through the
decay of topological defects (cosmic strings and DWs) [91] besides the misalignment mechanism
that is also present. Cosmic strings emerge when the U(1)G gauge symmetry is spontaneously
broken at T ⇠ ⌫�. After that, a potential with degenerate minima and a Z2 discrete symmetry
arises. This symmetry, when spontaneously broken at Tosc, produces DWs.

The approach to obtain the contribution from misalignment is in many aspects identical
to what is described above for scenario I. However, a few differences regarding the value
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When the global U(1)G symmetry is spontaneously broken ✓ can acquire any random
initial value in the range (0, 2⇡]. If SSB occurs before the end of inflation (scenario I) the initial
values belong to different and causally disconnected patches of the Universe. Rapid expansion
during inflation dilutes away the phase transition relics, and contributions from topological
defects are washed out [4, 14, 63, 83]. In scenario I the observable Universe originates from
a single causally connected region at the time of SSB featuring a single initial field value for
the pNGB, whose relic abundance is dominated by the misalignment mechanism.

On the other hand, if SSB happens after the end of inflation (scenario II), the pNGB
field will acquire different randomly chosen values in different causally disconnected regions
of the Universe. In this case the formation of cosmic strings is expected [71, 84], that can
later decay and produce DM. Additionally, if the potential has N distinct degenerate minima
in ✓, the formation of Domain Walls (DWs) [14, 71] will occur. When N > 1 stable DW are
produced, as is our case with N = 2. The energy density of stable DWs evolves slower than
radiation and matter, and it can dominate the energy density of the Universe. This is the
so-called DW problem [85] which will be further discussed below. There is a large controversy
about the appropriate approach to determine the production of ultralight particles (and, in
particular, ALPs) from topological defects [86]. In our analysis, we simply provide an estimate
of such a contribution. For the case of scenario II, the relic abundance of ✓ is produced via
the misalignment mechanism and through the decay of topological defects.

The soft-breaking term in the broken phase of � can be cast as

Vsoft =
µ
2
s

2
(� + ⌫�)

2 cos

✓
2

✓

⌫�

◆
. (3.3)

It is clear that the potential has N = 2 degenerate minima given by ✓ ! ✓+2⇡⌫�k/N , where
k = 0, 1, which makes the theory invariant under a remnant discrete Z2 symmetry. The latter
emerges upon SSB of U(1)G, with the pNGB transforming as ✓ ! �✓. We now define the
so-called misalignment angle [14] as

⇥(x) ⌘ ✓(x)

⌫�/2
. (3.4)

We can expand the soft-breaking term (Eq. (3.3)) near to the minimum and for simplicity
consider only the first term in the angle

Vsoft '
1

8
m

2
✓
⌫
2
�⇥

2
. (3.5)

This means that as a first approximation we disregard the anharmonic terms, which become
important only for large value of ⇥ [72, 87–89], which is not our case as |⇥| ⌧ 1 in order to
represent the total DM density.

The equation of motion for ⇥ can be obtained by varying the action, S =
R

d
4
xR

3
L ,

where R is the scale factor, and for the Friedmann–Robertson–Walker (FRW) metric we obtain

⇥̈+ 3H⇥̇+ m
2
✓
⇥ = 0 , (3.6)
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