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Abstract

C4 photosynthesis evolved multiple times independently from ancestral C;
photosynthesis in a broad range of flowering land plant families and in both
monocots and dicots. The evolution of C4 photosynthesis entails the recruit-
ment of enzyme activities that are not involved in photosynthetic carbon fix-
ation in C; plants to photosynthesis. This requires a different regulation of
gene expression as well as a different regulation of enzyme activities in com-
parison to the C; context. Further, C4 photosynthesis relies on a distinct leaf
anatomy that differs from that of Cs, requiring a differential regulation of
leaf development in C4. We summarize recent progress in the understanding
of Cy-specific features in evolution and metabolic regulation in the context
of C4 photosynthesis.
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1. INTRODUCTION

The evolution of oxygenic photosynthesis fundamentally changed the geosphere and biosphere
and also the energy transformations that support life on Earth (60). In oxygenic photosynthesis,
the energy contained in sunlight is harvested and used for the extraction of electrons from
water and for the buildup of a proton gradient, eventually leading to the production of adeno-
sine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH).
These energy and reducing equivalents are then used for the reduction of CO; into carbohydrates
in the Calvin-Benson cycle. The process of CO, fixation is catalyzed by ribulose 1,5 bisphosphate
carboxylase/oxygenase (Rubisco), which can react either with CO,, forming two molecules of
3-phosphoglycerate 3PGA), or with O,, forming one molecule of 3PGA and one molecule of
2-phosphoglycerate (2PG). 3PGA can directly reenter the Calvin-Benson cycle. However, 2PG
inhibits at least three enzymes of the Calvin-Benson cycle: triose phosphate isomerase, sedohep-
tulose 1,7-bisphosphatase (SBP), and phosphofructokinase (62). It therefore must be removed
quickly. At least three different metabolic routes for the removal of 2PG have evolved in cyanobac-
teria, and in all vascular plants 2PG is metabolized by the photorespiratory pathway, which con-
verts two molecules of 2PG into 3PGA, CO,, and NH; (54). During the early stages of evolution
of oxygenic photosynthesis, the atmosphere of Earth contained very little oxygen and large
amounts of CO,. Hence the gas composition of the atmosphere favored the carboxylase reaction
of Rubisco, and the oxygenase reaction played only a very minor metabolic role for photosynthetic
organisms. However, over billions of years of oxygenic photosynthesis, the oxygen levels rose and
the CO; concentration declined. During the Eocene-Oligocene transition, the atmospheric CO,
concentrations decreased to 450 ppm or less (206). Under these atmospheric conditions, many C;
plants frequently experience carbon limitation, excess light energy is unproductively dissipated by
various protection mechanisms, and photorespiration represents a major highway of carbohydrate
metabolism (75). In a typical C; plant, the majority of NHj; released during photorespiration is
refixed at the expense of ATP and reducing power. Also, the CO, that is released by photores-
piration can be refixed by Rubisco, or it gets lost back into the atmosphere. Losses of CO, and
energy by photorespiration are particularly serious when the capacity for O, binding of Rubisco
increases.
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Fossil evidence indicates that during the Oligocene, the first plant lineages evolved a carbon
concentration mechanism that is able to reduce the rate of photorespiration [see Hennacy &
Jonikas (79) for a discussion of algal and cyanobacterial types of carbon concentrating mecha-
nisms]. In these plants, CO; is prefixed as HCO;~ by an enzyme that displays no oxygenase ac-
tivity, phosphoenolpyruvate carboxylase (PEPC), forming the Cy4 acid oxaloacetate (OAA) as the
first detectable reaction product. CO; is released again from C4 metabolites at the site of Rubisco,
thereby forming a high CO, atmosphere around the enzyme. In crassulacean acid metabolism
(CAM), the prefixation of CO; by PEPC is temporally separated from the Rubisco reaction. Pre-
fixation takes place primarily at night when transpiratory water loss is low, and the C4 reaction
products are stored in the vacuole, mainly in the form of malate. During the day malate is de-
carboxylated, creating a high CO; atmosphere around Rubisco while the stomata remain closed.
CAM plants are therefore characterized by remarkably high water-use efficiency. In C4 species,
the PEPC and Rubisco reactions are separated spatially. CO; is prefixed in one leaf compartment
by PEPC and transported to the Rubisco-containing compartment in the form of a C4 metabolite,
thus producing a high CO, atmosphere around Rubisco (Figure 1). This arrangement represses
the oxygenase reaction and allows Rubisco to operate near substrate saturation at high light con-
ditions (110). Implementation of the C4 pathway underpinned the evolution of highly productive
plant species with improved light conversion as well as water- and nitrogen-use efficiency. The Cy4
pathways evolved independently in more than 60 plant species from different phylogenetic groups,
among them crop plants such as maize, sugarcane, sorghum, millet, teff, and amaranth (154).

Before the discovery of their underlying biochemistry, C4 species had already been distin-
guished by high vein density and the typical Kranz anatomy in the cross sections of their leaves
(57, 74). Two different cell types are arranged concentrically around the leaf veins: an internal
ring consisting of large enforced bundle sheath cells (Kranz) and a second external layer of meso-
phyll cells. Later studies established that both cell types represent different compartments of the
C4 carbon concentration mechanism. The first CO; fixation step by the PEPC takes place in the
outer mesophyll cell tissue, while the Rubisco reaction is confined to the bundle sheath. A high
bundle sheath-to-mesophyll cell ratio ensures the efficient exchange of metabolites between the
two cell types. The increased metabolic role of the bundle sheath in the carbon fixation process
in the Cy leaves is reflected by an increase in the number and arrangement of organelles in this
cell type. The enforced cell walls of the bundle sheath cells minimize the leakage of CO; from the
Rubisco-containing cells. Although Kranz anatomy is characteristic for the majority of and most
efficient C4 species, C4 photosynthesis has more recently also been found in succulent plants with
bands of mesophyll and bundle sheath tissue around a water body (64, 163) or even a single cell
that contains dimorphic plastids (186).

The basic biochemical principle of the CO; pump is similar in all C4 species. CO, entering
the mesophyll cells is converted into bicarbonate by carbonic anhydrases (CAs) and then reacts
with PEPC, forming the C4 organic acid OAA. OAA is next converted to malate and/or aspartate.
Malate and/or aspartate then diffuses through plasmodesmata to the bundle sheath cells. There,
decarboxylation of the C, acid generates an elevated CO, atmosphere so that the oxygenase reac-
tion of the Rubisco is strongly reduced. The Cy4 cycle is completed by the regeneration of phos-
phoenolpyruvate (PEP) as a substrate for PEPC by pyruvate orthophosphate dikinase (PPDK), a
recycling step incurring additional energy costs.

Beside this common basic Cy4 setup, the various Cy lineages evolved distinct solutions for many
C4 functions and adjustment steps (133). This is particularly apparent for the decarboxylation step
in bundle sheath cells that can be realized by three different enzymatic functions: the plastidial
NADP-malic enzyme (NADP-ME) (Figure 14), the mitochondrial NAD malic enzyme (NAD-
ME) (Figure 15), the cytosolic PEP carboxykinase (PEPCK), or a combination of these enzymes
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Figure 1 (Figure appears on preceding page)

Model of the C4 metabolism in (#) a NADP-ME species (Zea mays) and (b) a NAD-ME species (Gynandropsis gynandra). () Model
represents NADP-ME as the main decarboxylating enzymes and malate/pyruvate as the main acid exchange, but it is supplemented by
the activity of PEPCK in the bundle sheath and additional exchange of aspartate and alanine between mesophyll and the bundle sheath.
The reduction steps of the Calvin-Benson cycle take place in the mesophyll and require additional transport of 3PGA and trioseP
between the two cell types. The GLYK step of photorespiration also takes place in the mesophyll cell. () Model represents Cy4
photosynthesis in G. gynandra with NAD-ME as the main decarboxylating enzyme and aspartate/alanine as the main acid exchange. In
contrast to other NAD-ME species, both cell types show high abundance of mitochondrial AspAT. Enzymes are shown in gray text.
Abbreviations: 3PGA, 3-phosphoglycerate; ALA, alanine; AlaAT, alanine aminotransferase; ASP, aspartate; AspAT, aspartate
aminotransferase; CA, carbonic anhydrase; GLYK, glycerate kinase; MDH, malate dehydrogenase; NAD-ME, nicotinamide adenine
dinucleotide malic enzyme; NADP-ME, nicotinamide adenine dinucleotide phosphate malic enzyme; OAA, oxalacetate; PEP,
phosphoenolpyruvate; PEPC, phosphoenolpyruvate carboxylase; PEPCK, PEP carboxykinase; PPDK, pyruvate orthophosphate
dikinase; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase; RuBP, ribulose 1,5 bisphosphate.

(25, 66, 141). Besides the cell-specific upregulation of the C4 core enzymes, the integration of
the C4 cycle into the biochemistry of the leaf also requires changes in the abundance of specific
transporters and the regulation and kinetics of connected pathways. In NADP-ME species, malate
transports not only carbon but also reductive power from the mesophyll to the bundle sheath cells,
and this has consequences for the differential setup of the energy-providing photosystems in these
cells. Rubisco as the starting point for the Calvin-Benson cycle and photorespiratory cycle is active
only in the bundle sheath, and all other enzymes of these pathways must adjust to the two-cell sit-
uation in the Cy leaf (Figure 1). Further down, sucrose and starch metabolism as well as nitrogen
assimilation would also be affected (24). In many C4 species, the mesophyll bears the larger part
of the light reaction and the production of ATP and reducing equivalents. This has consequences
for the redox balances between the two different cell types and the distribution of reactions
between the two cell types, especially the ones needing a low reduction potential (178). The
differences between the light-related activities of the mesophyll and bundle sheath cells are partic-
ularly apparent in NADP-ME species, where chloroplasts of the mesophyll and bundle sheath cells
show distinct ratios of the photosystems and chloroplast ultrastructure (chloroplast dimorphism).

The requirements for the regulation of the members of the pathways listed above and the cur-
rently known mechanisms are described in the following paragraphs in more detail. The regulation
of cell specificity and abundance of the main players of the C4 core have been investigated quite ex-
tensively and have revealed control operating on epigenetic, transcriptional, posttranscriptional,
translational, posttranslational, and protein-activity levels (Table 1) (147). Many Cy4 regulatory
mechanisms are shared between members of different pathways and revert to regulatory mecha-
nisms also operating in C; plants (28). Genes encoding Cy4 core enzymes have, for instance, gained
light- and plastid-regulated elements, allowing coordination of the Cy4 cycle with the connected
pathways, such as the Calvin-Benson cycle. Under fluctuating environmental conditions, the effi-
ciency of C4 photosynthesis will also depend on the coordination of energy balance between the
mesophyll and bundle sheath localized reactions (16).

2. EVOLUTION OF C; PHOTOSYNTHESIS

All currently known elements required for the C, pathway have also been found in their ancestral
C; relatives, and this might be one of the reasons why the C4 cycle could evolve so many times and
in such distant plant groups as, for instance, the grasses, the Asteraceae, and the Cleomaceae (155).
However, the multiple cases of parallel but independent evolution are also surprising since the
evolution of C4 entails complex changes to the whole leaf biochemistry and architecture. In some
branches of the plant kingdom, such as the Brassicaceae and the monocot clade containing the
Bambusoideae, Ehrhartoideae, and Pooideae (BEP), Cy4 species are absent (155). The evolution
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Table 1 Regulatory mechanism involved in different aspects of Cy4

Process Target of regulation Species Type Description Reference(s)
Anatomy BS cell activation/ Zea mays Trans TF (e.g., SCR/SHR, 168,176,
Vein spacing DOT5, G2/GLK) 192,193
Echinochloa Trans TF 40
glabrescens
Flaveria Trans TF (e.g., ATHBS-like, 71,101
SCR-like, ARF3, TAA7)
Gynandropsis Trans TF 12,99
gynandra
Cell cycle/division/size Flaveria Trans TF (e.g., DWARF4) 101
G. gynandra Trans TF 99
Panicum virgatum | Trans TF (MYB59) 144
Plastid development Z. mays Trans TF (e.g., G2, GLK) 104, 176,
192
Flaveria Trans TF 101
Setaria viridis Trans TF (e.g., GLK, IDDS, 86
SMAD/FHA, SIG2/3,
pTAC12)
BS wall formation P virgatum Trans TF (e.g., MYB4) 144
Z. mays Trans TF 190
Photosystem formation Z. mays Trans TF 190
Z. mays Posttranscriptional HFC136 39
Cy4 shuttdle | CA Multiple grasses Histone Histone modification (e.g., | 78, 140
mesophyll- and
BS-specific code)
G. gynandra Cis Cell specificity (e.g., MEM | 87,197
element in UTR)
Flaveria Cis Cell specificity (e.g., 175
promoter element)
Neurachne munroi | Cis Loss of targeting signal 38
PEPC Z. mays Histone Histone modification (e.g., | 43,105
mesophyll- and
BS-specific methylation)
Z. mays Cis Promoter elements 90, 174, 190
Flaveria Cis Cell specificity (e.g., 72
mesophyll-enhancing
module MEM1)
Z. mays, Flaveria Trans Interaction with promoter 89, 196, 200
elements (e.g., DOF1,
DOEF2)
Z. mays Trans Antagonistical binding of 69
bHLH TFs to promoter
Z. mays Posttranslational, BS-specific protein 3
Kinetic turnover
Flaveria Kinetic Phosphorylation 4
(Continued)
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Table 1 (Continued)

Process Target of regulation Species Type Description Reference(s)
NADP-ME Z. mays Cis Transcript abundance 134
(e.g., UTR elements)
Flaveria Cis Cell specificity (e.g., BS 5,102,116
elements in UTRs,
promoter)
Z. mays Cis Catalytic efficiency, pH 7
regulation,
oligomerization
Z. mays Trans Synergistical binding of 21
bHLH TFs to promoter
NAD-ME G. gynandra Cis Cell specificity (e.g., in 26
coding sequence)
PPDK Z. mays Histone Histone modification 46
Z. mays Cis Cell specificity, light 119,135,
regulation 190
Flaveria Cis Cell specificity (e.g., 150
promoter element)
G. gynandra Cis Cell specificity (e.g., UTR | 87,197
elements)
Z. mays Posttranslational Cell specificity (e.g., 65
regulatory protein)
G. gynandra Posttranscriptional mRNA accumulation 58
Z. mays Kinetic Phosphorylation 31,32
PCK Multiple species Kinetic Phosphorylation 107,167
Multiple targets G. gynandra Cis Cell-specific elements 148
(duons) in UTR and
exon
G. gynandra Trans Recruitment plastid and 28
light regulatory network
Multiple grasses Histone Histone modification (e.g., | 80, 140
mesophyll- and
BS-specific code)
CBC RbcLSU Z. mays Posttranscriptional BS-specific binding of 22,203
RLSB protein
Z. mays Trans Cell specificity, light 120
regulation
Z. mays Posttranslational Cell specificity (e.g., cell- 27
specific degradation,
stabilization)
S. viridis Posttranscriptional RINA stabilization 86
(Continued)
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Table 1 (Continued)

Process Target of regulation Species Type Description Reference(s)
RbcSSU Z. mays Cis Cell specificity (e.g., cell 201
and light regulatory
elements)
Z. mays Trans Cell specificity (e.g., 14,143,158,
"TRM1 repressor in 183,201
mesophyll), light
regulation
Amaranthus Cis UTR elements 137,138
edulis, Flaveria
Multiple targets G. gynandra Posttranscriptional mRNA accumulation 58
P, virgatum, Trans Regulation by CP12 86, 144
S. viridis
PR GDCP Flaveria Cis Cell specificity (BS 162
element in promoter)
Flaveria Posttranscriptional RNA decay 199

Abbreviations: ARF, ADP-ribosylation factor; bHLH, basic helix-loop-helix; BS, bundle sheath; CA, carbonic anhydrase; CBC, Calvin-Benson cycle; DOF,
DNA binding with One Finger; GDCP, glycine decarboxylase system P-protein; IAA, indole-3-acetic acid; IDD, INDETERMINATE DOMAIN; MEM,
mesophyll-enhancing molecule; mRNA, messenger RNA; NAD-ME, nicotinamide adenine dinucleotide malic enzyme; NADP-ME, nicotinamide
adenine dinucleotide phosphate malic enzyme; PEPC, phosphoenolpyruvate carboxylase; PPDK, pyruvate orthophosphate dikinase; PR, photorespiratory
pathway; pTAC, tac-promoter; RbeSSU, Rubisco small subunit; SCR-like, SCARECROW-like; SCR/SHR, SCARECROW/SHORT ROOT; TFE,
transcription factor; TRM, tissue resident memory T; UTR, untranslated region.

190

of the C4 cycle is therefore dependent on the co-occurrence of external factors such as favorable
climate conditions as well as internal factors such as genetic, architectural, and biochemical
preconditions.

The repression of the photorespiratory oxygenase reaction in Cy plants is particularly advan-
tageous under high light and temperature but low CO, conditions (16). The drop in atmospheric
CO,; pressure starting around 30 Mya is therefore thought to represent an important ecological
driver for the evolution of C4 photosynthesis (53). More recent modeling approaches showed,
however, that even under higher CO, concentration, arid conditions causing the closure of stom-
ata could have promoted C4 evolution (207). Under these conditions, nitrogen availability and
allocation within the plant could have contributed to the evolution and expansion of C4 plants
(19, 207). After the establishment of the C,4 pathway, C, grasses were also able to adapt to colder
climate zones and new ecological niches (194).

The absence of Cy4 species from wide parts of the plant kingdom, however, indicates that
internal preconditions are also essential for the evolution of C4 photosynthesis. So far, primarily
architectural limitations concerning the site and metabolic potential of the bundle sheath cells
have been identified as limiting factors (34). For species with advantageous anatomical precondi-
tions, the implementation of a basic C4 cycle could possibly be achieved by a few changes in the
abundance and cell specificity of the core C4 enzymes (113). The species Alloteropsis semialata,
for instance, includes very closely related congeners with C;, C;-C4 intermediates, and Cy
photosynthesis (112). However, for an efficient C4 shuttle in a highly productive leaf, numerous
small adjustments of whole leaf metabolism are necessary (77, 133, 153, 198).

The complex trait of C4 photosynthesis evolved not in a single step but via intermediate stages
(77,112, 153, 198). Beyond anatomical changes, such as the amplification of organelle numbers
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and their positioning in bundle sheath cells, a key initial step involves a pronounced change in
the distribution pattern of the glycine decarboxylating reaction in the photorespiratory pathway,
from ubiquitous toward exclusive localization in the bundle sheath (125, 145, 146). The absence
of a functional glycine decarboxylase system in the mesophyll would lead to an accumulation of
photorespiratory glycine and the formation of a concentration gradient from mesophyll to bundle
sheath, which drives transport of glycine to the bundle sheath. There, the enhanced activity of the
decarboxylation step would generate an increased CO; concentration around the bundle sheath
Rubisco (125). Plant species displaying such a glycine pump have been found in close phyloge-
netic proximity to Cy4 species in the genera Flaveria (121), Heliotropium (128, 184), Neurachne (37),
Alloteropsis (112), Homolepis (92), Anticharis (91), Blepharis (61), and Salsoleae (163, 187), but also in
groups without any C, relatives (e.g., Moricandia, Diplotaxis) (155). Species with an active glycine
pump are often termed as C;-Cy4 intermediates or C, photosynthesis species. Gas exchange mea-
surements showed that the limited CO, concentrating effect generated by glycine decarboxylation
in the bundle sheath results in a decreased CO, compensation point, which is below typical values
for C; but above that of C4 species in these intermediates (160, 184). Furthermore, these inter-
mediates were also characterized by increased organelle numbers and changes in the organization
of the bundle sheath organelles.

A complete relocation of the glycine decarboxylase reaction to the bundle sheath cells requires
additional adjustments within the metabolic network of the leaf. In the glycine decarboxylase
reaction, two molecules of glycine are converted into one molecule each of serine, CO,, NHj,
and NADH. Transport of photorespiratory glycine from the mesophyll to the bundle sheath will
therefore transport not only net carbon, but also nitrogen and reducing equivalents. Balancing
of the nitrogen metabolism between the two cell types will require back transport of nitrogen-
containing metabolites. Computational modeling of C;-C, intermediate metabolism identified
shuttles of glutamate/OAA, alanine/pyruvate, and aspartate/malate, as well as the associated en-
zyme activities as the most likely candidates for the mediation of nitrogen balance between the
mesophyll and bundle sheath in these intermediate species (115). The predicted increases in the
transport of these metabolites would therefore put pressure on reactions that are also involved in
the C4 pathways. Hence, the evolution of a glycine pump would push the metabolism between the
mesophyll and bundle sheath toward a Cs-like metabolite exchange. Any increase in the decar-
boxylation reaction in the bundle sheath and of PEPC activity in the mesophyll would enhance
the metabolite exchange, and in the end the increase and optimization of the flux through this
cycle would result in a C4 pump (115). Thus, the evolution of the glycine pump opens the path
toward the evolution of a bona fide Cy4 cycle (50, 115). The existence of species with an active
glycine pump but without any C, relatives (e.g., Moricandia, Mollugo), however, indicates that the
intermediate stages can be stable evolutionary end points in their own right (35).

The evolution of a complete C, shuttle, even at a basic level, requires changes in the abundance
and cell specificity of multiple genes. Most of the core C4 enzymes are encoded by multigene
families (11), but the expression patterns of the gene copies available in the different C; ancestral
species could vary greatly, thus facilitating or constraining C4 evolution (127). In monocot species,
preferences for specific gene lineages of several C4 enzymes could be observed, indicating their
particular suitability for C4 photosynthesis (33). Gene lineages co-opted into Cy4 usually show al-
ready high expression levels in the C; ancestors (127). Gene duplication could have enabled the
Cs-favorable changes in some enzymes (7, 21, 55). The absence of a particular gene lineage in the
C; background could, however, demand additional adjustments or alternative solutions for
the fulfilment of a specific C4 function (159). A recent analysis of the grass family showed that genes
with new attributes could also be acquired by lateral gene transfer. In 4. semialata, a C4-optimized
PEPCK was acquired by a horizontal gene transfer from a distantly related C, grass (49).
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After the installation of the core C, shuttle, efficient C4 photosynthesis also depends on mul-
tiple adjustment steps in the C4 leaf metabolism (77). The importance of numerous optimizations
within the C4 pathway is supported by the identification of multiple regulatory mechanisms on
many different levels of the C4 core shuttle and related pathways in advanced C, species (133) (see
Section 3). A large-scale genome-wide scan for positive selection identified 88 sites connected to
the evolution of C4 photosynthesis in Zea mays, Sorghum bicolor, and Setaria italica. Besides C4 shut-
tle enzymes and transporters, positive selection sites were also found in genes of the Calvin-Benson
cycle and photorespiratory pathway (82)—two pathways that are split between the mesophyll and
bundle sheath cells in Cy4 species. Additionally, new C4 candidate genes connected, for instance,
to architectural features could be identified (82). Changes in the expression patterns of C,; genes
could also often be connected to the recruitment of cis elements that are already present in the C;
background (28, 149). The timing in evolution of these C4 development and optimization steps
can thereby vary between the different lineages (198). Further support for the smooth transition
from C; to C4 comes from computational modeling (77), which described a Mount Fuji landscape
consisting of numerous adjustments that could be fixed due to their contribution to plant fitness.
Accumulation of Cy4-favorable mutations in a population could also allow for larger fitness gains
via hybridization.

3. CHANGES TO THE REGULATION OF METABOLIC PATHWAYS
DURING C4 EVOLUTIONS

3.1. Photorespiration in Intermediates and C4

Relocation of the photorespiratory glycine decarboxylase activity exclusively to bundle sheath cells
establishes the glycine-based CO, pump in C;-C4 intermediates and represents a key step in the
evolutionary path from C; to C4 photosynthesis. Bundle sheath-specific localization of the P pro-
tein of the glycine decarboxylase system has been found in all C;-Cy4 intermediates investigated
so far, including Moricandia arvensis, Moricandia nitens, Moricandia sinaica, Moricandia suffruticosa,
Panicum milioides, Flaveria floridana, Flaveria linearis, Mollugo verticillata (84), Diplotaxis tenuifolia
(180), Brassica gravinae (179), Euphorbia acuta (157), Portulaca cryptopetaln (188), Heliotropium con-
volvulaceum, Heliotropium greggii (128), Homolepis aturensis, Steinchisma bians, and Neurachne minor
(92). The mechanisms underpinning this decisive change in the expression pattern of a metabolic
enzyme are therefore particularly interesting and have been studied in more detail in the genera
Moricandia (2) and Flaveria (162).

In Flaveria, the C; ancestors possess two copies of the glycine decarboxylase P (GLDP) protein-
encoding gene; one is ubiquitously expressed in the leaf tissue (GLDPB) and the other one exclu-
sively in the bundle sheath (GLDPA) (162). A gradual decrease in expression and finally pseudo-
genization of the ubiquitously expressed GLDPB copy during Cy4 evolution eventually restricted
glycine decarboxylase activity to bundle sheath-specific expression.

The genus Moricandia is closely related to Arabidopsis, which possesses two copies of the GLDP
gene. The promoter region of the AtGLDPI gene contains cis-regulatory elements that govern
expression in the mesophyll (M-box) and in the vasculature (V-box), respectively (1). Loss of the
mesophyll element leads to a vein and bundle sheath-specific expression pattern of the AtGLDPI.
The promoter of the second AtGLDP2 gene contains an M-box but no V-box. Loss of the M-box
in A*GLDPI would still be compensated by the function of A#GLDP2 in Arabidopsis (1). However,
in the subgroup of the Brassicaceae containing multiple C;-C4 evolutionary lineages in the genera
Moricandia, Diplotaxis, and Brassica, the GLDP2 gene copy was apparently lost (160). The promoter
of the C; species in this Brassicaceae branch, e.g., Moricandia moricandioides, still contains both
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regulatory elements (i.e., the V- and M-box), but the M-box element was lost from the GLDPI
promoter of the C;-Cy intermediate species M. nitens and M. arvensis, resulting in bundle sheath-
specific localization of the corresponding protein (1, 2).

These two examples show that in two phylogenetically distant plant families, C; relatives al-
ready contained a bundle sheath-specific cis-regulatory element in the promoter of the GLDP
gene, thus facilitating the establishment of a glycine pump between mesophyll and bundle sheath
cells in these lineages.

In the basic C;-Cy4 intermediate M. arvensis, strong bundle sheath specificity is apparently lim-
ited to the glycine decarboxylase P-protein (145). Other enzymes, such as the other subunits of
the glycine decarboxylase system and serine hydroxymethyl transferase, are still present in the
mesophyll. Serine, as the end product of the glycine decarboxylase reaction, could therefore be
transported back to the mesophyll for further metabolization. In fully optimized Cy species, all
of the Rubisco resides in the bundle sheath, and the glycine shuttle is completely replaced by the
more efficient C4 pump.

Photorespiratory 2PG generation in C, plants is relatively low and also limited to the bundle
sheath. In fully developed Cy species, transcripts and proteins of the photorespiratory pathway
are predominantly or exclusively found in the bundle sheath fraction. The only exception to this
pattern is the last enzyme of the pathway, glycerate kinase, which is confined to the mesophyll
cells in Cy species of all decarboxylation types (Figure 2) (47, 182). Glycerate kinase catalyzes
the conversion of glycerate to 3PGA and interconnects the photorespiratory pathway with the
mesophyll part of the Calvin-Benson cycle. Due to the higher reductive power in the mesophyll
cells, the reduction steps of the Calvin-Benson cycle are localized to the mesophyll cells connected
to the bundle sheath part of the cycle by a 3PGA/trioseP shuttle (94, 129).

In contrast to C; and most other C, species, the glycerate kinase protein of maize carries a small
C-terminal extension that is only present in Andropogonae Cy species. It includes two cysteine
residues that must be reduced for the activation of the enzyme in a light-dependent manner (15).
Besides maize, thiol-mediated regulation of glycerate kinase was also found in the NADP-ME
species sorghum but not in the NADP-ME dicot Flaveria bidentis (15). In the mesophyll cells
of Andropogonae NADP-ME monocots, glycerate might therefore also serve as a carbon pool
in the darkened leaf. At dawn, the activation of glycerate kinase would lead to the conversion of
glycerate to 3PGA and thereby contribute to the buildup of the concentration gradients that drive
the Calvin-Benson cycle intercellular shuttle (15).

Although the photorespiratory pathway runs at much lower rates in C4 compared to C; species,
the enzymes of the photorespiratory pathway are stll essential (108, 205), and they need to be
controlled in coordination with other pathways such as the Calvin-Benson cycle and nitrogen
metabolism and need to adjust to the division of labor between the two cell types.

3.2. C4 Fixation in Mesophyll Cells

Phosphoenolpyruvate carboxylase (PEPC) catalyzes the irreversible reaction between bicarbonate
and PEP, forming OAA and inorganic Pi. Once a photorespiratory glycine pump has evolved, any
increases in the activity of PEPC in the mesophyll cells would enforce the production of the typical
Cs4 metabolites and intensify the exchange of metabolites between the cells (77, 115). This was con-
vincingly demonstrated by increases in PEPC transcripts in leaves from different Flaveria species
ranging from Cs over different intermediate stages to the full C4 pathway (56). C4 leaves are gen-
erally characterized by very high activities of PEPC, and this activity is localized to the mesophyll
cell cytosol. The abundance and cell specificity of the PEPC are particularly well-studied and have
been found to happen on the epigenetic, transcriptional, and enzyme kinetic levels. Furthermore,
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PEPC and many other C4 enzymes have co-opted regulatory mechanisms for the integration of
their transcription into existing light- and plastid-regulated networks (28). Plant PEPCs are en-
coded by a small gene family, and certain gene copies have been preferred for integration into
the Cy4 pathway in the C4 monocots (36). In the eudicots, two paralogous PEPC clades exist, and
genes from both clades have been recruited to C, photosynthesis (151). Detailed sequence analy-
ses showed that common sites of positive selection could be found in many of the C4 PEPC genes,
but that not all observed amino acid substitutions are essential for the C; pathway (151).

On the epigenetic level, PEPC expression is regulated by histone modifications and DNA
methylation. High trimethylation of histone H3K4 confers increased transcription activity and
has been associated specifically with regions in the C4-Pepc promoter in the mesophyll cells of
the C, species Z. mays, S. bicolor, and S. italica (78). Similar cell-specific histone codes could also
be found in other C,4 cycle genes, a mesophyll-specific modification of CA (C4-Ca) and PPDK
(C4-Ppdk), and a bundle sheath-specific modification of NADP-ME (C4-Me) and PEPCK (C4-
Pepck) (78). Additionally, mesophyll-specific accumulation of PEPC-encoding transcripts could be
correlated to methylation sites in the promoter in maize (105). Gene transcription is further reg-
ulated by cis elements in the promoter that can be controlled by specific transcription factors. In
the promoter region of the PEPC-encoding gene from Flaveria trinervia, two regions mediating
mesophyll-specific expression could be identified, and one of these regions could be narrowed to
a mesophyll-enhancing module (MEM]I), with the tetranucleotide CACT as the key element (72).
In Flaveria bidentis, interacting zinc finger-homeodomain (ZF-HD) homeobox proteins binding to
the PEPC promoter region were identified (200). In maize, the transcription factor DOF1 seems
to promote PEPC transcription throughout the leaf, while DOF2 specifically represses PEPC
transcription in the bundle sheath (202). Also in maize, a 600-bp-long promoter region is suffi-
cient to drive strong and light-activated expression in the mesophyll cells (117). Two transcription
factors with antagonistic effects interact with this promoter region in maize. ZmbHLH90 activates
while ZmbHLHB8O0 represses expression of the PEPC-encoding gene, and the differential expres-
sion of these truns-factors contributes to the cell specificity of PEPC accumulation in maize (69).

On the metabolic level, PEPC activity is controlled by the availability of its substrates, bi-
carbonate and PEP. PEP availability is controlled by PPDK activity but also the interconversion
between PEP and 3PGA (10, 45). Compared with C; PEPCs, enzymes from Cy species require
higher concentrations of the PEP substrate, and they are much less sensitive to inhibition by
malate and aspartate (85), thus being adapted to the conditions in the C4 mesophyll that contains
high concentrations of PEP and malate or aspartate (56). The relaxation of the inhibitory effect
of malate could be narrowed down to the exchange of a single amino acid. Close to the inhibitor
binding site, C; species possess a bulky, positively charged arginine residue that is replaced by an
uncharged and small glycine residue in C4 species from very different plant groups, such as the
dicot Flaveria and the grasses maize, sugarcane, and sorghum (139). In Flaveria the Cy-specific
changes in PEP saturation kinetics also could be associated with a specific, single amino acid ex-
change in the carboxyl terminal part of the enzyme (18). In C4 Flaveria species, PEPC shows a
clear diurnal activity pattern in close coordination with the pattern for the PEPC kinase (4). The
PEPC kinase itself is regulated on the transcriptional level and by protein synthesis/turnover (4).

CAs catalyze the conversion of CO, to bicarbonate and thus provide the substrate for the PEPC
reaction. Members of the B-CA family therefore also show high activity in the cytosol of meso-
phyll cells of C4 species. In C; plants, B-CAs are usually active in the plastids. Integration into the
C, pathways is therefore dependent on increases in the activity as well as changes in localization
toward the cytosol. In Flaveria, this is realized by the loss of the plastid targeting signal so that the
C4-specific CA becomes expressed in the cytoplasm (111). In Gynandropsis gynandra, C4-related CA
activity was realized by a membrane-bound CA, indicating that a different ancestral CA isoform
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was recruited to Cy in Flaveria (24, 111). In C4 monocot species such as maize, Cy-related cytoso-
lic CA activity was suggested to have evolved from ancestral plastidial forms by gene duplication,
gene fusion, and changes in the chloroplast targeting signal (111). In addition, recruitment of CA
into the C4 pump was also accompanied by changes in the histone codes and integration into the
light- and plastid-controlled signaling network. In Flaveria, mesophyll cell-specific expression was
apparently realized by a structurally similar motif (MEMI) upstream of the transcription start site
for CA and PEPC, indicating that high coordination for the presence of both initial C4 enzymes is
achieved in Flaveria (73). While a reduction of CA activity strongly reduced photosystem activity
in C4 Flaveria (185), even a 97% reduction of CA activity in maize resulted in a rather mild pheno-
type under ambient CO, conditions (172). Only under low CO, conditions that probably existed
during C4 evolution did the CA antisense maize display an appreciable growth phenotype (172).

PPDK provides the PEP for the PEPC reaction in the mesophyll cells of C4 plants. The reac-
tion is dependent on the provision of ATP and represents a rate-limiting step in the C4 pathway
(51). The ATP supply for the PPDK reaction is provided by enhanced cyclic electron flow in Cy4
leaves (24, 71). During the PPDK reaction, ATP is cleaved into AMP and PPi. The regenera-
tion into ADP and Pi is realized by AMP kinase and pyrophosphorylase, respectively. In C; as
well as C4 species the PPDK gene produces a cytosolic and plastidial form by using two differ-
ent promoters; the promoter for the shorter cytosolic is situated in the first intron of the longer
plastidial transcript (166). In C4 plants, the plastidial PPDK is upregulated in the mesophyll cells.
In maize and Flaveria, cis-acting promoter elements promote mesophyll-specific expression of the
PPDK (118, 150). The sensitivity of PPDK to low temperatures was suggested as one explana-
tion for the restriction of the majority of C4 species to warmer climates. The chilling-tolerant Cy4
species Miscanthus x giganteus displays significantly increased PPDK content and activity under
low temperatures, thus stabilizing the C4 pathway under these conditions (189). PPDK activity
is controlled in a light-dependent manner by the PPDK regulatory protein (31). In maize, two
copies of the PPDK regulatory protein with distinct function and cellular distribution exist. The
bundle sheath-specific copy lacks PPDK-activating phosphotransferase activity, thus contributing
to cell-specific PPDK activity (30).

For the transport of pyruvate into the mesophyll plastid, different mechanisms have been
recruited into the Cy4 cycle in different Cy4 lineages. The majority of C4 species use a BASS2/
NHD/PPT transport system, which combines the exchange of pyruvate with sodium, sodium
against protons, and phosphate against PEP (67). The Andropogonae, such as maize and sorghum,
have been reported to exchange pyruvate for protons directly, without the involvement of a sodium
gradient (8).

3.3. C4 Shuttle Between Mesophyll and Bundle Sheath Cells

All C;4 lineages use CA, PEPC, and PPDX for the prefixation of atmospheric CO;. The following
reactions in the Cy4 cycle, however, can vary and are mainly connected to the preferential decar-
boxylation type in the bundle sheath. In NADP-ME species, the OAA produced in the PEPC re-
action is converted to malate by the plastidial NADP-MDH; malate diffuses to the bundle sheath
chloroplast where it is decarboxylated by the NADP-ME-producing pyruvate, which needs to
diffuse back to the mesophyll cell for regeneration of PEP. In NAD-ME species, OAA is transam-
inated into aspartate by the aspartate aminotransferase (AspAT). The reaction usually takes place
in the cytosol of the mesophyll cell, but transcript data from G. gynandra indicate a mitochon-
drial localization of the enzyme (Figure 1b) (159, 169). Aspartate diffuses to the bundle sheath
where it enters the mitochondria and is transaminated back to OAA by the mitochondrial AspAT,
followed by conversion into malate by the mitochondrial NAD-MDH. Malate is decarboxylated
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in the mitochondria by NAD-ME; the pyruvate generated in the reaction is transaminated to
pyruvate by the alanine aminotransferase (AlaAT) into alanine. The transport of alanine back to
the mesophyll cell rebalances the nitrogen metabolism between the cells and can be reconverted
back by the AlaAT to pyruvate for the regeneration of PEP. In the PEPCK subtype, the transport
metabolites malate and aspartate are generated in the mesophyll cell as described above. After
diffusion into the bundle sheath, the aspartate is transaminated by the cytosolic AspAT into OAA,
followed by decarboxylation by the cytosolic PEPCK into PEP. The reaction is accompanied by
the conversion of ATP to ADP and Pi. PEP can be transported back directly to the mesophyll
cell where it can be used directly by PEPC. In order to balance the nitrogen metabolism be-
tween the mesophyll and bundle sheath cells, a second cycle is usually active in PEPCK species.
Parallel to the aspartate, malate diffuses from the mesophyll to the bundle sheath cell where it
is transported into the mitochondria for decarboxylation by NAD-ME. The produced pyruvate
is transaminated by the AlaAT into alanine, which diffuses back into the mesophyll cell. Besides
this combined PEPCK/NAD-ME system, considerable PEPCK activity has also been found in
species with dominating NAD-ME or NADP-ME activity (141, 169). In the NADP-ME species
maize, the PEPCK-related shuttle caries 10-14% of the carbon into the bundle sheath (10), and
for the dicot NADP-ME Flaveria species, aspartate labeling of 30-40% has been estimated (122).
The transport of the shuttle metabolites between the mesophyll and bundle sheath cell depends
on high metabolite concentrations to drive the diffusion. Estimations of the cell-specific metabo-
lite pools in maize leaves yielded gradients in the expected directions with higher concentrations
for malate, aspartate, and trioseP in the mesophyll cells and higher pools for alanine and 3PGA
in the bundle sheath cells. Only for pyruvate did the estimated gradient not show the expected
pattern. Itis, however, possible that the buildup of the pyruvate gradient relies on subcellular com-
partmentation that was not accounted for in the analysis (10). The presence of multiple shuttles,
such as the parallel malate and aspartate shuttles in maize, possibly increases the robustness of the
Cj4 shuttle because it permits the maintenance of photosynthesis at lower concentrations of each
individual metabolite, especially under fluctuating environmental conditions (10, 141).

3.4. C4 Decarboxylation in Bundle Sheath

The C4 bundle sheath metabolism is largely influenced by the type and localization of the decar-
boxylating enzyme. The reasons for the recruitment of a particular decarboxylating enzyme into
the C4 metabolism of different lineages are not yet clear. It is possible that transcript abundance or
enzyme kinetics played a role in the recruitment into C4 (23). Comparisons of the physiology in
grasses of the three different carboxylation types showed that NAD-ME species are more sensitive
to low light conditions than NADP-ME and PEPCK species (170). NADP-ME species also seem
to have higher nitrogen-use efficiencies than the other two subtypes (142). Modeling approaches
indicated that light availability and distribution within the leaf could play important roles in the
evolutionary choice of the decarboxylation type (19).

Individual Cy4 lineages have acquired diverse control mechanisms for their decarboxylating en-
zymes. Sequence analysis of the NADP-ME encoding genes in two Cy Flaveria species (F. bidentis,
E trinervia) revealed different regulatory mechanisms for the closely related but independently
evolved Cy lineages (102). In maize and sorghum, the C4 NADP-ME encoding genes seem to
have acquired increased binding capacity for a specific bHLH transcription factor by ¢is element
duplication (21). In maize, duplication of these C4-related bBHLH transcription factors possibly
contributed to the refined regulation of the enzyme (21). Additionally, NADP-ME was optimized
for the C4 environment by amino acid sequence modifications conferring changes in the catalytic
activity, tetrameric structure, and pH-dependent inhibition by its substrate malate (7).
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In the NAD-ME and PEPCK subtypes, aspartate and alanine are shuttled between the mes-
ophyll and bundle sheath cells, and depending on the contribution of PEPCK, this type of shut-
tle is also active in the NADP-ME species. Recruitment of the AspAT to C,; metabolism was
thereby connected to the biochemical subtype. A plastidial AspAT was enhanced in the NADP-
ME species, while mitochondrial and cytosolic isoforms were increased in NAD-ME lines. Pre-
dominant PEPCK decarboxylation was accompanied only by high cytosolic AspAT abundance
(159). For the AlaAT, a cytosolic copy was upregulated in the monocot species. Since the branch
encoding cytosolic AlaAT in monocots is missing in eudicots, C4 photosynthesis recruited a gene
copy from a mitochondrial branch (159).

The organellar localization of many C,; enzymes requires cell- and metabolite-specific trans-
port activities for completion of the Cy4 cycle, but not all of the transport steps of the responsible
proteins have been identified (161). In maize, the DiT1 chloroplast transporter facilitating malate
export showed higher abundance in the mesophyll cells, while the malate-importing DiT?2 trans-
porter was enhanced in the bundle sheath fraction (114).

3.5. Calvin-Benson Cycle in C4 Species

CO; enrichment in the bundle sheath of C4 species allows a high carboxylation efficiency of
Rubisco, and C4 leaves contain significantly lower amounts of Rubisco, as compared to C; species.
C4 Rubisco has a higher catalytic turnover, and due to the high CO; environment it can work with
lower CO, binding affinity (165). The changes in the expression pattern of Rubisco in C4 species
require coordination of the transcription of the nucleus-encoded genes for small subunits and the
chloroplast-encoded large subunit genes. In C; plants Rubisco expression is already strongly in-
fluenced by developmental and environmental factors, especially light (17, 80). During very early
stages of leaf development, genes for the Rubisco subunits are usually still expressed in both cell
types. The subsequent restriction of Rubisco activity to the bundle sheath in C4 species is then
controlled on multiple, mainly posttranscriptional levels (17). In maize, cell-type-specific expres-
sion of the 76¢S-m3 gene seems to be dependent on light signaling (143). A zinc finger protein
(TRML1) is then involved in the mesophyll-specific repression of the ZmRbcSm3 protein (201). In
C4 dicots, such as Amaranthus hypochondriacus and F. bidentis, sequences in the untranslated regions
of the genes (4hRbcS1 and FbRbcST) seem to be important for the stability of the correspond-
ing mRNA in the mesophyll cells (137, 138). The half-life of the plastid-encoded rbcL. mRNA
is generally connected to the presence of nucleus-encoded S1 domain RNA binding protein
(RLSB), and during transition from C; to Cy4 in Flaveria species, they were strongly coregulated
(203).

The enzymatic complement of the Calvin-Benson cycle is the same in C; and C4 species, but
in Cy species the Calvin-Benson cycle is split between the mesophyll and bundle sheath cells. En-
zymes of the fixation and ribulose 1,5-bisphosphate regeneration phase are preferentially found
in the bundle sheath. Only the reduction of 3PGA to trioseP that is catalyzed by the glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) and the triose phosphate isomerase is preferentially
localized to the mesophyll in all C4 subtypes (114) (Figure 2). C4-specific modifications have also
been detected in the Calvin-Benson cycle enzymes fructose 1,6-bisphosphate aldolase (FBA) and
fructose 1,6-bisphosphate phosphatase (FBP) (82). In the maize leaf, two copies of GAPDH exist,
and while GAPDH-A was equally distributed between both cell types, GAPDH-B preferentially
accumulated in the mesophyll cells (114). The differential accumulation of Calvin-Benson cy-
cle enzymes has been shown at the protein levels by separation of mesophyll and bundle sheath
chloroplasts (65) as well as on the transcript level by differential analysis of mesophyll and bundle
sheath transcriptomes in leaves of the NADP-ME species maize (29, 44, 109, 176), S. bicolor (47),
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and S. italica (86), and in the NAD-ME species Panicum virgatum (144) and G. gynandra (12). Divi-
sion of the Calvin-Benson cycle between the two cell types also requires the enhanced operation of
the trioseP transporter (TPT) across the chloroplast membrane. Its transcripts are upregulated in
both cell types, and compared to C; species, the transporters show modifications in their kinetics
(114, 136).

Recently, an unbiased comparison of the Calvin-Benson cycle metabolite abundances in dif-
ferent C; and Cy species clearly distinguished specific Calvin-Benson cycle metabolite patterns in
the different photosynthesis types (9). The C4 species had lower amounts of most Calvin-Benson
cycle intermediates, especially ribulose 1,5-bisphosphate. However, 3PGA and trioseP were en-
hanced in the C4 leaves, especially in the monocot species, and this could be connected to the high
demand of these metabolites for the buildup of the metabolite gradient between the mesophyll
and bundle sheath cells that are driving the metabolite exchange by diffusion (9).

3.6. Division of Photosystems in Cy4

The flux trough the trioseP/3PGA shuttle is connected to the specific ATP/NADPH demand
in the mesophyll and bundle sheath cells and could be subtype and lineage specific (129). In the
NADP-ME species maize, NADPH in the mesophyll chloroplasts is needed for the reduction
of OAA to malate. In the bundle sheath chloroplast, NADPH is released during oxidative decar-
boxylation of malate by NADP-ME. Demand for NADPH production is therefore low in bundle
sheath cells of pure NADP-ME species (88). In the NADP-ME species Flaveria, the larger con-
tribution of aspartate to the Cy4 shuttle likely also requires some NADPH production by linear
electron flow in the bundle sheath cells. In NAD-ME species, the C, shuttle is realized completely
by aspartate, and the C4 shuttle therefore does not contribute to the exchange of reducing power
between the two cell types (122, 129). In PEPCK-type C4 metabolism, the ATP/NADPH demand
does not increase considerably (129).

Energy and reducing equivalents are provided in the leaf by light-driven electron transport
through the photosystems. The linear electron flow through photosystem I and photosystem II
provides ATP and NADPH, and the cyclic electron flow around photosystem I and the NADH
dehydrogenase-like complex (NDH) or the proton regulation pathway (PRG5-PRGL1) con-
tributes to ATP production without accumulation of NADPH. The demand for different ratios
of ATP/NADPH can be adjusted by control of electron transport through the two photosystems.

In NADP-ME species, high abundance of photosystem I and photosystem II in the mesophyll
cells provides ATP and NADPH by linear electron transport. The bundle sheath chloroplasts,
however, are specialized for cyclic electron transport around photosystem I, producing only ATP.
Maize bundle sheath chloroplasts show high accumulation of photosystem I and the NDH com-
plex, but low accumulation of photosystem II and a very low degree of thylakoid membrane ap-
pression (granal stacking) (65, 98, 173). The distribution of photosystem-related transcripts shows
clear preference for photosystem II in the mesophyll cells. The electron flow from photosystem I
to either the ferredoxin:NADP(H) oxidoreductase (FNR) in the linear electron transport chain or
the flow back to the membrane complexes in the cyclic electron flow is mediated by ferredoxins
(Fds) (70). In maize leaves, different forms of Fds are present in the different cell types, and FdI
could be associated with linear electron flow in the mesophyll cells, while FdII seems to almost
exclusively transfer electrons in cyclic flow (70).

In NAD-ME species, NADH produced by the decarboxylation of malate in the bundle sheath
mitochondria is regenerated to NAD™ by the reduction of OAA to malate in the same compart-
ment. That is, no net transfer of redox power from mesophyll to bundle sheath cell occurs in this
C4 type. The chloroplasts in the mesophyll and bundle sheath cells contain both photosystems,
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indicating that both linear and cyclic electron transport are active. Thylakoid membrane appres-
sion is equally distributed between both cell types or even lower in the mesophyll cells (52). The
photosystem-related transcripts are much more evenly distributed between mesophyll and bundle
sheath cells in the examined NAD-ME species (Figure 15).

3.7. Redox Regulation in C4 Carbon Metabolism

Coordination of leaf development and metabolism, especially under fluctuating environmental
conditions, is mediated via signaling networks depending on reactive oxygen species (ROS) pro-
duction and protein redox status. In Cy4 leaves, the ROS and redox status can differ considerably in
the mesophyll and bundle sheath cells, and cell-specific adjustments of these regulatory systems
are needed (178). In the NADP-ME species maize, the mesophyll-specific localization of photo-
system II complexes and the linear electron transport chain correlated with the accumulation of
ROS detoxification systems in the mesophyll cells, including tocopherol biosynthesis, glutathione
reductase, ascorbate peroxidase, dehydroascorbate reductase, and thiol peroxidases (65). Lower
ROS production could also be responsible for the comparatively reduced DNA damage found in
the DNA of bundle sheath cell organelles (100).

The ROS status is related to the redox status of thioredoxins (TRXs), a group of proteins that
can transfer redox signals to target proteins by modification of cysteine residues. In the plastids,
the reduction of TRX is mediated either by NADPH-Trx reductases (NTRCs) receiving reducing
power from NADPH or via electron transport from reduced Fds through the Fdx-Trx reductases
(FTRs), thereby receiving reducing power directly from photosynthesis. Both systems apparently
interact in the regulation of enzymes of the central cellular metabolism. In maize leaves, most
members of the TRX signaling system show preferential accumulation in the mesophyll cells
(178). The bundle sheath cells, however, seem to be depleted of components from both TRX
systems and other TRX-like proteins and glutathiones, including NTRCs, FTRs, and many
TRXs (178).

The lack of many redox regulatory components in the bundle sheath cells is particularly
puzzling because several redox-regulated Calvin-Benson cycle proteins are localized in the
bundle sheath cells (131). GAPDH, phosphoribulokinase (PRK), FBPase, and SBPase are directly
redox-activated by TRX, and further control of the Calvin-Benson cycle is mediated by the redox
modulation of CP12 and Rubisco activase. More recently, all other enzymes of the Calvin-Benson
cycle were identified as possible targets of TRX signaling, indicating that the fine-tuning of
Calvin-Benson cycle control is much more complicated than described so far (123). Beside the
Calvin-Benson cycle proteins, other bundle sheath-localized enzymes, such as ADP-glucose
pyrophosphorylase (AGPase), a key enzyme for starch synthesis, are also regulated by the redox
signaling system. In the bundle sheath cells of the NADP-ME species, the C4 cycle would also
require activity of the redox-regulated NADP-MDH in the bundle sheath chloroplast. It is so
far unknown whether the regulatory mechanisms for these proteins are the same in C; and in
the bundle sheath cells of NADP-ME Cy species. Bundle sheath cells contain an m-type TRX
that could be sufficient for enzyme activation in light; additionally, the TRX-like CDSP32 and
ascorbate peroxidase may contribute to redox signaling in the bundle sheath cells (131, 178).

The fine-tuning of the C4 reactions in the CO, pump in the mesophyll cells and carbon re-
duction in the bundle sheath cells are particularly important under fluctuating environmental
conditions (96). The rate of CO, fixation by PEPC must exceed the rate of the Rubisco reaction
because a part of the CO, generated by decarboxylation in bundle sheath cells will leak out again
and would need to be fixed in a second PEPC reaction, costing additional ATP for PEP regen-
eration. Environmental fluctuations, such as light and temperature changes, drought, or nitrogen
availability, could also cause imbalances between the pathways (48). The integrations of the Cy4
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shuttle into the regulatory network of the underlying C; metabolism are achieved by recruitment
of light-dependent and plastid-signal-mediated regulatory elements into the C, shuttle genes,
including the transporters TPT, DCT, BASS2, NHD, and PPT as well as the enzymes CA, NAD-
ME, AspAT;, and pyrophosphorylase (28). More problematic could be short-term acclimation to
rapid fluctuations of light intensity. Comparisons between C; and Cy species under fluctuating
light conditions showed that C4 photosynthesis was more affected than C; under these conditions
(97). Activation of the Calvin-Benson cycle enzymes upon transition from dark to light or from
low to high light conditions is highly dependent on the redox signaling system (132), and it is cur-
rently unclear how rapid light activation of bundle sheath-localized enzymes works in C, species.
Additionally, the pools of C4 cycle intermediates must build up to allow the Cy4 shuttle to work at
sufficient turnover rates (181).

3.8. Consequences of C4 Metabolism on Associated Pathways

Because the concentrations of ATP, reducing equivalents, and other metabolites considerably
differ between mesophyll and bundle sheath cells, all cellular processes need to be adjusted.
Cell-specific preferences have been found for the reaction of sucrose and starch synthesis, of
tricarboxylic acid cycle (T'CA), and of nitrogen and sulfur fixation.

The Calvin-Benson cycle provides the substrate for the synthesis of sucrose and starch. Pro-
teins and transcripts of the starch metabolism have all shown higher abundances in the bundle
sheath, although under high CO, conditions starch accumulation was also observed in mesophyll
cells of C4 Panicum, indicating that mesophyll cells are in principle capable of accumulating transi-
tory starch (177). Starch accumulation has also been observed in the bundle sheath of young leaves
in many C; species, where it is thought to function as storage of energy and carbon for further
growth (124). The ability to accumulate starch in the bundle sheath is supposed to be favorable
for the evolution of C4 photosynthesis. In the C; leaf, the Calvin-Benson cycle reactions produc-
ing the substrate for starch synthesis are localized in the bundle sheath. High concentrations of
3PGA in the bundle sheath would also allosterically activate the AGPase, one of the key enzymes
for starch synthesis (68). Transcripts for sucrose metabolism are preferentially found in the mes-
ophyll cells. TrioseP, the substrate for sucrose synthesis, is produced by the mesophyll-localized
Calvin-Benson cycle reactions, but considerable parts of the trioseP must be returned to the bun-
dle sheath for ribulose 1,5-biphosphate regeneration (106). Sucrose synthesis in the C4 meso-
phyll cells should therefore be under tight control. Indeed, it was found that the affinity of maize
FBPase for trioseP is one order of magnitude lower than in C; species, which contributes to al-
lowing the buildup of the TrioseP concentration gradient (171). Differences between C; and Cy
grasses were recently also detected for sucrose transport from the bundle sheath into the veins. In
contrast to the connection between mesophyll and bundle sheath cells, the plasmodesmata den-
sity is low between bundle sheath and phloem cells, and it was suggested that the SWEET'13
transporter contributes to the apoplastic transport of sucrose between these cell types (55).

In the NAD-ME and also PEPCK species, the C4 cycle continually generates pyruvate
that needs to be prevented from entering the TCA cycle (25). The mitochondrial pyruvate
dehydrogenase complex can be inhibited by reversible phosphorylation via the pyruvate dehy-
drogenase (PDH) kinase. In NAD-ME species, expression of the PDH kinase is enhanced (25)
and shows bundle sheath specificity in Panicum virgatum and G. gynandra, but this does not seem
to be the case in the NADP-ME species. Labeling experiments showed very low leakage of Cy4
metabolites into the respiratory metabolism in illuminated maize leaves (10).

Nitrogen metabolism of the leaf is closely connected to photorespiration in C; species. An
increase in environmental CO; resulted in the expected reduction of photorespiration but also
a reduction in nitrogen assimilation in C; (20). It is thus expected that in the C; leaf, nitrogen
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metabolism needs to be adjusted to the low photorespiratory rates. Assimilation of nitrate requires
reducing power and enzymatic activities. Transcripts for nitrate reductase, nitrite reductase, and
the Fd-GOGAT, as well as one copy of the GS1, are preferentially found in the mesophyll cells (65,
126) (Figure 2), where photosynthetic linear electron transport provides the reducing power. A
second copy of GS1 with similarly high expression levels but bundle sheath-specific accumulation
was found in the tested Cy4 species. Because photorespiration, albeit at a low rate, is present in
the C4 bundle sheath and the expression of the glycine decarboxylase system is restricted to this
cell type, ammonium assimilation would be required in the bundle sheath to cope with ammonia
release from photorespiration.

In contrast to nitrogen metabolism, the first steps of sulphate assimilation, including ATP sul-
phurylase, APS reductase, and sulphite reductase, take place in the bundle sheath cells of C4 species
(29, 65, 95). The sulphide is incorporated into cysteine and transported into the mesophyll cell
for the synthesis of glutathione (65, 195). The preference for sulphate reduction in the bundle
sheath is not simple to explain since reducing power, especially in the NADP-ME species, is
mainly supplied by the C, shuttle (195). The bundle sheath-specific localization of sulphur as-
similation, however, might predate the evolution of Cy4, and bundle sheath specificity in the path-
ways has also been found in C; species such as Arabidopsis (13). Bundle sheath-specific elements
have recently been identified in the promoter of a low-affinity sulphur transporter (SULTR2;2)
of Arabidopsis, and these elements were also active in the C4 Asteraceae F bidentis, showing that
bundle sheath cells even in C; species are more specialized than previously assumed and that
existing bundle sheath expression systems can be integrated into C, species during evolution

93).

4. IMPLEMENTATION OF C; LEAF ANATOMY

The evolution of the biochemical C4 pathways is strongly connected to changes in the anatomy
of the leaf (for a recent review, see 164). The anatomy of the Cy leaf provides the structural ba-
sis for separation of the PEPC and Rubsico fixation reactions while allowing for high fluxes of
metabolite exchange. Variation exists also among the Kranz anatomy of different C; species re-
garding the number of bundle sheath layers around a vein, presence or absence of a mestome
sheath, formation of a suberin layer, chloroplast positioning, and chloroplast dimorphism (164).
Besides Kranz anatomy, specific forms of C4 anatomy have been found in succulent species of the
Chenopodiaceae where bands of mesophyll and bundle sheath cells are arranged around a central
water storage and vein tissue (52). The leaves of single-cell Cy4 species are characterized by very
large cells with dimorphic plastids. These plastids harbor either primary or secondary CO; fixa-
tion reactions and are arranged at opposite cell sides or at the outer border of the cell versus the
central compartment of the cell (186).

In the large majority of Cy species, leaf anatomy is characterized by two concentric layers of
mesophyll and bundle sheath cells around the leaf vasculature. This leads to high vein density and
a stereotypical leaf architecture consisting of vein-bundle sheath cell-mesophyll cell-mesophyll
cell-bundle sheath cell-vein (V-BS-M-M-BS-V). Hence, every mesophyll cell is in physical
contact with a bundle sheath cell, an absolute requirement for the function of efficient Cy4
biochemistry. In comparison to C; leaves, bundle sheath cells in C4 species occupy a larger share
of the leaf cross-sectional area, they contain more chloroplasts and other organelles, and their
cell walls are often thickened. It has long been suggested that certain architectural preconditions
are necessary in C; leaves for the evolution of C4 biochemistry (156). Among the grasses, two
large clades can be distinguished: the BEP (Bambusoideae, Ehrhartoideae, and Pooideae) and
the PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae and
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Danthonioideae) clade. While Cy4 evolution had been frequent within the PACMAD clade, to
our knowledge it is absent from the BEP clade. Large-scale analysis of leaf anatomy traits showed
that high rates of C4 evolution could be associated with a high proportion of bundle sheath tissue
in the leaves resulting from short distances between the bundle sheath and a large cross-sectional
area of bundle sheath cells (34). These results support the hypothesis that anatomic enablers can
promote or prevent C4 evolution in certain plant groups.

As shown above, C4 biochemistry requires high fluxes of metabolites between the mesophyll
and bundle sheath cells, including the C4-related carbon shuttle, the 3PGA/trioseP shuttle of the
Calvin-Benson cycle, and translocation of glycerate from the photorespiratory pathway. Recent
advances in the development of new clearing techniques together with three-dimensional im-
munolabeling confocal microscopy allowed detailed comparisons of the symplastic connectivity
between mesophyll and bundle sheath cells in C; and Cy grasses. Plasmodesmata density at the
mesophyll-bundle sheath interface was up to nine times higher in C; grasses compared to Cy4
leaves (41). This was due to increases in the number of plasmodesmata per pitfield area, as well
as increased pitfield density at the interfaces in NADP-ME and PEPCK species. In NAD-ME
grasses, plasmodesmata density was increased by larger pitfield area only (42). Also noticeable was
the increased bundle sheath surface area to leaf area ratio in all Cy4 leaves (42). Recent work with
a Setaria viridis line displaying reduced PEPC activity showed increased stomata density between
mesophyll and bundle sheath cells, and it has been speculated that the plasmodesmata density is
actually responsive to changes in the C4 photosynthetic flux (6).

The key proteins involved in C4 biochemistry could be identified due to their high activity
and their high protein and transcript abundance in the leaf tissue. The identification of factors
that control the Cy specific architecture is much more difficult. Forward genetics screening re-
sulted in only a handful of interesting mutants, indicating that the construction of C4 anatomy
is highly complex and possibly characterized by redundancy (103). In maize, two mutants with
bundle sheath-specific defects could be identified. In the bsdI mutant, the G2 transcription fac-
tor is lost (76, 104), and the bsd2 mutant was affected in the assembly and stabilization of bundle
sheath Rubisco (27, 152). In the high chlorophyll fluorescence mutant 136 (hcf136), disturbance in the
stabilization of the photosystem II caused mesophyll-specific defects (39). In rice, mutants with
increased vein density could be isolated. They displayed enhanced photosynthetic rates, but the
molecular mechanisms behind the architectural changes were not identified (59).

Early anatomical studies had already recognized some similarities between the endodermis of
the root and the bundle sheath of the leaf. Cy-related features, such as high activities of decar-
boxylating enzymes, were also detected in the cells surrounding the vein in C; tobacco (81). The
GRAS transcription factors SCARECROW (SCR) and SHORT ROOT (SHR) regulating
the organization of the root endodermis were therefore tested for their possible involvement in
the control in C4 bundle sheath structure (63, 103, 168). Genes encoding both transcription fac-
tors are upregulated during vascular development in maize leaves (192), and mutation in the Ser
gene resulted in disturbed bundle sheath chloroplast development, vein disorientation, and re-
duced vein density in maize leaves (168). Recent work in maize, however, identified a second copy
of the ZmSCR1 gene (ZmSCR1b), and analysis of the single and double Zzmscr mutants indicates a
role of the transcription factor in mesophyll cell development (83).

Genome-wide transcriptome sequencing experiments were recently applied to the search
for regulators of Cs-specific anatomical features. In contrast to the genes for C4 biochemistry,
developmental regulators are expressed in low abundance and often only at specific stages and in
specific cells. Their identification is therefore much more difficult than that of abundant enzymes
in C4 biochemistry. The transcriptome pattern along a developmental gradient (Supplemental
Table 1) had been investigated in the NADP-ME species Z. mays (44, 109, 141, 176, 192, 204)
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and Flaveria (101, 115), as well as the NAD-ME species G. gynandra (12, 99). Mesophyll- and
bundle sheath-specific transcriptomes have been investigated in the NADP-ME grasses maize
(29, 44, 109, 176), S. bicolor (47), and S. italica (86) and the NAD-ME species P. virgatum (144)
and G. gynandra (12). The transcript comparisons identified candidate regulators with transcript
patterns associated with certain developmental stages, cell-type specific expression, or other
Cy-related processes.

In G. gynandra, the differentiation of enlarged bundle sheath cells in the mature leaf could
be associated with changes in the transcript pattern of cell cycle genes. In comparison with the
leaf development in the related C; species Tarenaya hassleriana, the differentiation of mesophyll
and bundle sheath cells was generally retarded in the Cy4 leaf. An inhibitor of endoreduplication
(GTL1) was expressed more highly at the later stages of leaf development in C4 but not in C;
species, indicating that endoreduplication was less suppressed in the mature leaf of Cy4 species. In
the same developmental stages, a bundle sheath-specific increase in nucleus size and increases in
cells with high ploidy level could be detected in the G. gynandra leaf (99).

The most detailed data sets of leaf developmental transcriptome patterns exist for maize.
Besides the developmental stages along the mature leaf, transcriptome patterns have also been
studied in leaf primordia of foliar and husk leaves (192). In contrast to foliar leaves, husk leaves
surrounding the female inflorescences are characterized by increased mesophyll cell numbers
between the veins. All of these studies resulted in lists of genes, mainly transcription factors, with
predicted function in the setup of Kranz anatomy. The overlap between the candidate lists from
different experiments had been limited, but transcription factors with potential mesophyll- or
bundle sheath-specific activity could be identified in multiple studies (Supplemental Table 2).
From the list of Wang and colleagues (192), 60 transcription factors with possible positive
regulatory function toward Kranz anatomy have been tested by transformation into rice, but
none of these genes were individually sufficient to induce C4-like anatomy into rice (191). A large
group of the candidate regulators had no phenotype; others affected the leaf hormone metabolism
or perturbed the root/shoot development or cell formation (191). The most promising results
have been obtained from overexpression of the maize G2-like (GLK) transcription factors in rice
(193). GLK transcription factors also regulate chloroplast development in C; monocot and dicot
species (12), but overexpression of the OsGLKI gene in rice influenced chloroplast development
only at the young seedling stage (130). Constitutive expression of the ZmGLK genes in rice
now induced chloroplast and mitochondria development in the cells surrounding the veins, but
not in the mesophyll cells. The increased organelle volume was accompanied by an increased
number of plasmodesmata between mesophyll and bundle sheath cells. The results show that
trans-regulation of several Cy-like features is possible (193). Large-scale analysis of transcript
patterns along early maize seedling development was recently used for the identification of cis
elements in groups of coexpressed genes and the prediction of their interaction with coexpressed
transcription factors (204). The engineering of C4 pathways into C; species will largely depend
on the ability to understand and implement the regulatory elements conferring Cy-like leaf
anatomy.

1. The large majority of changes to C; photosynthetic metabolism during the evolution of
C4 photosynthesis occurred gradually, by small successive changes driven by small fitness
gains in the direction of Cy, e.g., by the improvement of nitrogen balancing between

Schliiter « Weber


https://www.annualreviews.org/doi/suppl/10.1146/annurev-arplant-042916-040915

Annu. Rev. Plant Biol. 2020.71:183-215. Downloaded from www.annualreviews.org
Access provided by 148.71.103.72 on 03/10/24. For personal use only.

cells, increases in bundle sheath decarboxylation activity, increases in Cy4 production in
the mesophyll, relocation of Rubisco activity to the bundle sheath, and adjustment of
leaf architecture by increases in vein density, bundle sheath activity, and intercellular
connectivity. Many of the regulatory changes occur by the capture of regulatory elements
that are already present in C;.

2. In addition to the changes in regulation manifested at the genomic level of C4 species,
efficient C, photosynthesis is probably also supported by regulatory systems that already
confer flexibility in C; species. The activity of enzymes could thereby respond to changes
in the redox balance and subsequent signaling pathways of a cell under C; conditions.
The availability of high redox power in mesophyll cells, for instance, could activate spe-
cific processes and thereby drive their cell specificity.

3. With the exception of the reaction for CO, prefixation and PEP regeneration, various
solutions have evolved in different C4 lineages, most prominently in the evolution of
different decarboxylation types.

4. The different decarboxylation schemes entail specific changes in the interconnecting
steps for the CO; pump and the specific metabolic environment created in the mesophyll
and bundle sheath cells.

5. Overlap in the recruitment of specific elements into the regulation of C4 was found
(e.g., light- and plastid-regulated elements). However, for many additional regulatory
steps, individual solutions evolved in the different lineages. Hence, opportunities for the
identification of regulatory elements through the comparison of multiple C; lineages
might be limited.

1. Regarding the thiol-based regulation of Calvin-Benson cycle enzymes in bundle sheath
of nicotinamide adenine dinucleotide phosphate malic enzyme (NADP-ME) C; species,
How does redox regulation work in the absence of linear photosynthetic electron trans-
port in this cell type?

2. How is acclimation to rapidly fluctuating light conditions achieved and regulated in C,4
plants?

3. Do photorespiratory metabolites such as glycerate serve as reserve carbon pools for the
replenishing of the Calvin-Benson cycle during dark-to-light transition and under fluc-
tuating light conditions?

4. What is the contribution of parallel decarboxylation pathways in achieving robustness

to environmental fluctuations in C4?

5. How is Kranz anatomy regulated?
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