
Desafios para a Integração das Energias Renováveis em Portugal

Miguel Centeno Brito

Situação atual

Situação atual

Tecnologia	Capacidade Instalada (MW)	Observações
Hídrica	8300	Inclui grandes barragens e centrais de bombagem.
Eólica	5900	Energia eólica terrestre.
Fotovoltaica	5700	Crescimento de 45% face a 2023; inclui produção descentralizada.
Biomassa	600	Inclui resíduos florestais e urbanos.
Gás Natural	3000	Produção não renovável; em declínio devido ao aumento das renováveis.
Total	23500	Capacidade total instalada

Metas nacionais

Principais Metas para 2030 (PNEC 2030 – Revisão de 2023)

Indicador	Meta para 2030
Energia renovável no consumo final bruto	47%
Energia renovável na eletricidade (REN)	85%
Capacidade instalada solar fotovoltaica	9,3 GW
Capacidade instalada eólica (onshore)	10,4 GW
Capacidade instalada hídrica	8,6 GW
Capacidade de armazenamento (baterias)	2,5 GW
Produção renovável descentralizada (UPACs, CER)	+1,5 GW
Redução das emissões de GEE (face a 2005)	-55% no setor energético

Metas nacionais

Estratégia Nacional para a Neutralidade Carbónica (ENNC 2050)

Indicador	Meta para 2050	
Eletricidade de origem renovável	100%	
Capacidade solar fotovoltaica	≥ 20 GW	
Capacidade eólica (onshore + offshore)	≥ 15 GW	
Capacidade hídrica	~ 9 GW	
Armazenamento elétrico (baterias, bombagem)	≥ 5 GW	
Descarbonização do setor dos transportes	100% veículos elétricos ou neutros	
Descarbonização da indústria	Eletrificação e hidrogénio verde	

Desafios técnicos

Variabilidade

Várias escalas de tempo, sobretudo

• Intra-diário

(pico solar e pico de consumo a horas diferentes)

Sazonal

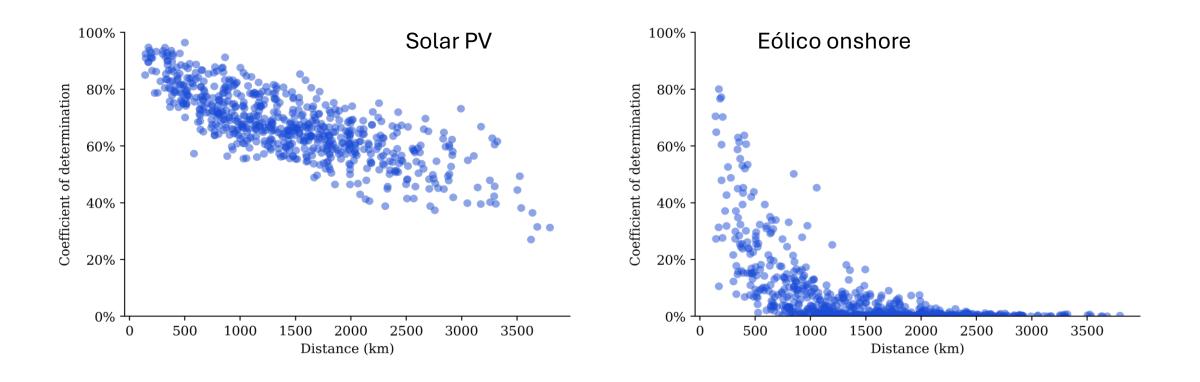
(consumo maior no inverno, geração solar maior no verão)

Desafios técnicos - variabilidade

Previsão meteo (exemplo ecilpse)

Redução da geração solar foi compensada pela redução no consumo para bombagem (armazenamento de energia).

Se descida mais acentuada, aumentar geração **despachável**, como hídrica ou, se for mesmo preciso, gás natural.


Se descida não for esperada, é mais difícil manter a rede operacional i.e. **apagão.**

Desafios técnicos - flexibilidade

Na geração

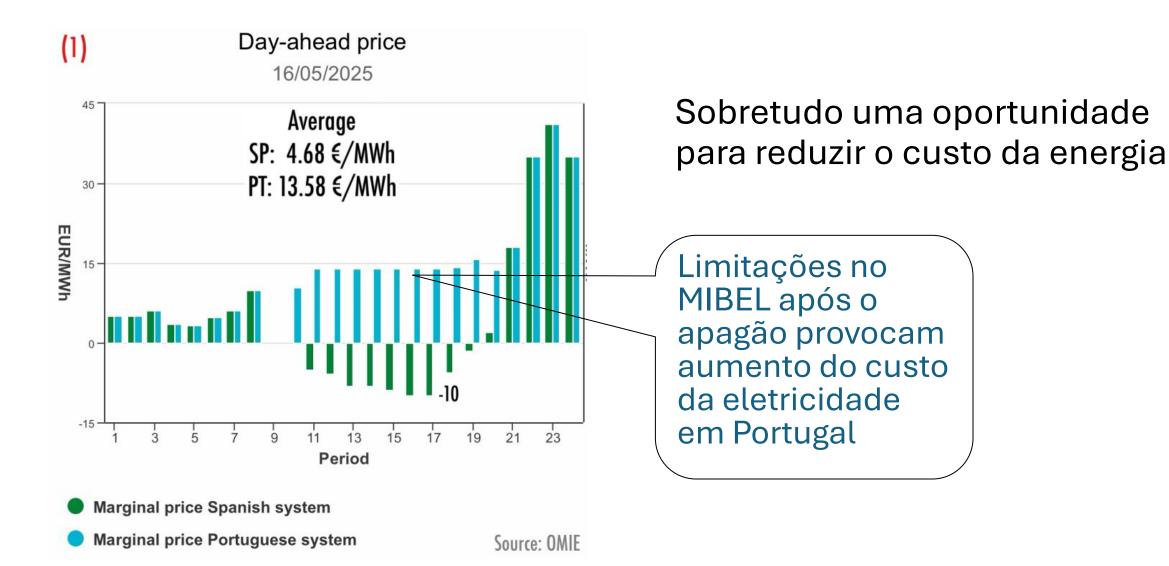
- Geração despachável hídrica, centrais GN (e um dia a biogás?)
- Geração renovável, mas distribuída

Desafios técnicos – produção distribuída

A agregação da geração distribuída de solar e eólico contribui para um aumento do fator de capacidade nacional de energias renováveis

Desafios técnicos – interconexões

Resiliência da rede


Pode acomodar quedas abruptas na geração

Otimização do ajuste oferta-procura
e.g. pico solar ao longo de vários fusos horários

 Oportunidade de importar/exportar quando eletricidade é mais barata/cara

Pode ser bom para as empresas do sector, não necessariamente para os consumidores/indústria

Desafios técnicos – interconexões


Desafios técnicos - flexibilidade

Na geração

- Geração despachável hídrica, centrais GN (e um dia a biogás?)
- Geração renovável mas distribuída
- Interconexões

No consumo

Demand response

Desafios técnicos - flexibilidade

Energia:

6 milhões de carros x 70 kWh/carro = 4200 GWh

(= consumo mensal PT)

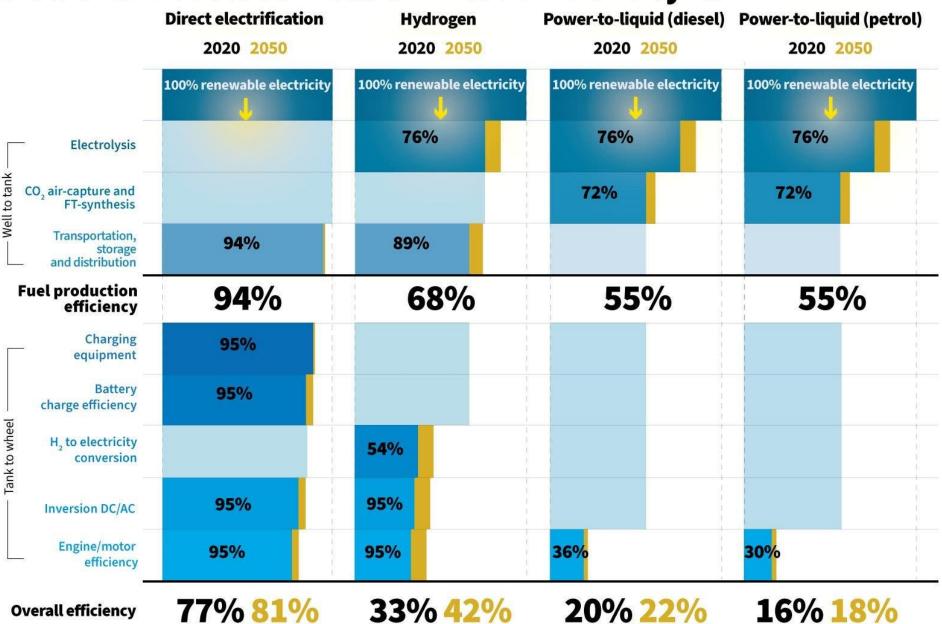
Potência:

1 carregador per 10 EV >>> 600 000 carregadores x 50 kW = 300 GW

(= 6x potência instalada em 2050)

Mesmo com uma redução significativa na frota (urbana) automóvel, a eletrificação da mobilidade é uma reserva de energia e potência que permite a integração de 100% renováveis.

Desafios técnicos – H₂


Produção de hidrogénio com energias renováveis: Fator de capacidade reduzido pode limitar rentabilidade financeira dos investimentos

Usos do hidrogénio verde:

- Injeção na rede gás natural
- Aplicações industriais (e.g. refinaria Sines)
- Mobilidade (células combustível)

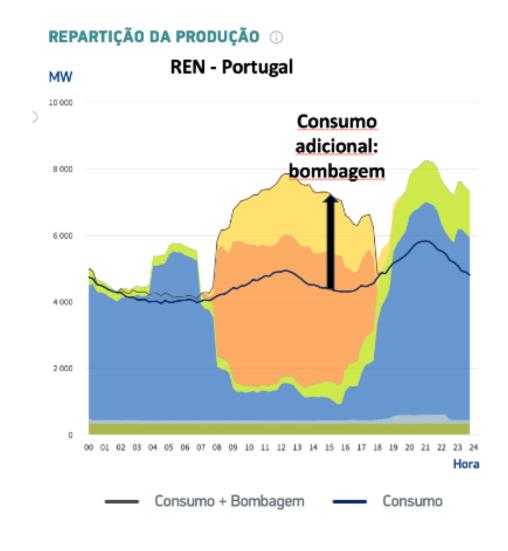
Cars: direct electrification most efficient by far

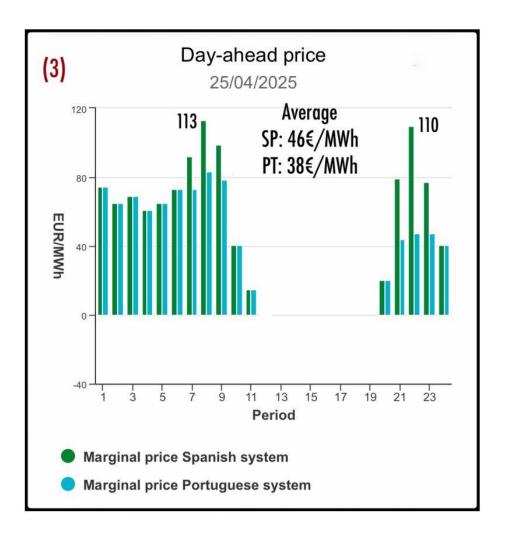
Hydrogen vs battery electric trucks - Long distance

Trips up to 400 km represent 62% of EU truck activity

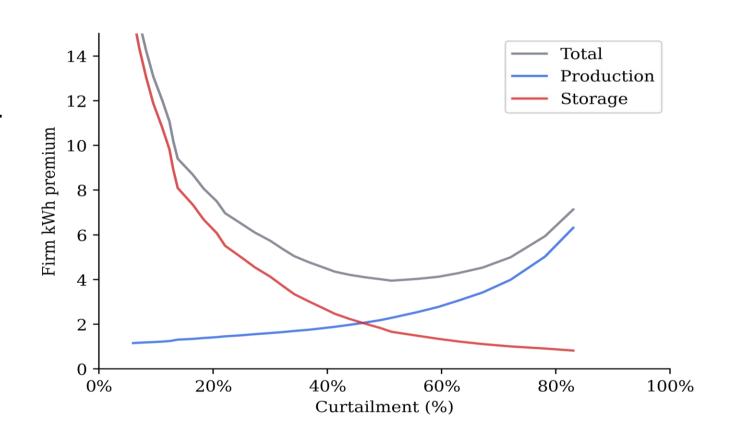
Fuel cell electric truck	Battery electric truck
H ₂	30
€ 459 k	€ 393 k
€139 k	€167 k
€38 k	€22 k
Mid 2040s	Early 2030s
Low	High
1200 km	800 km
10-20 minutes	8 hours (overnight) 60 minutes (opportunity)
None	None
	H ₂

hydrogen cost for the end user of € 5.40/kg (2030) and renewable electricity cost for the end user of €-cent 15.26/kWh (2030).


^{2:} Additional weight from the onboard battery pack (assumed energy density of 318 Wh/kg in 2030) of 4.2 t is compensated for by the additional ZEV weight allowance (2 t) under the EU Weights & Dimensions Directive and net savings from replacing a conventional with an electric drivetrain (2.4 t).

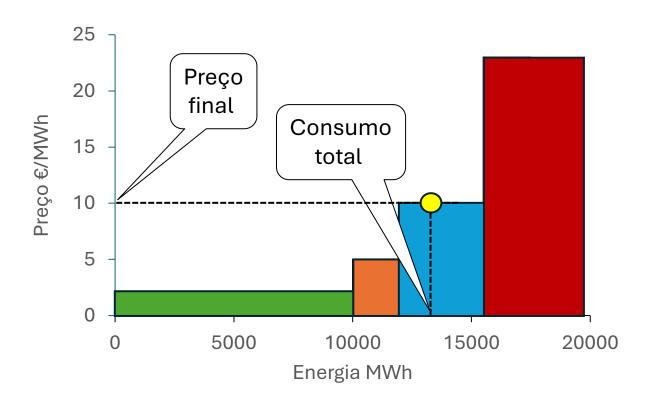


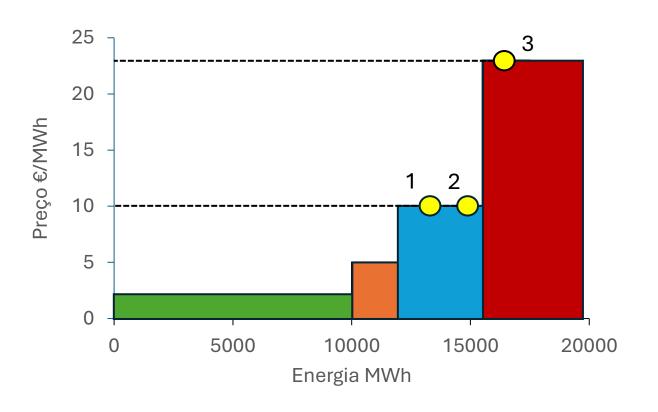
Desafios técnicos - armazenamento



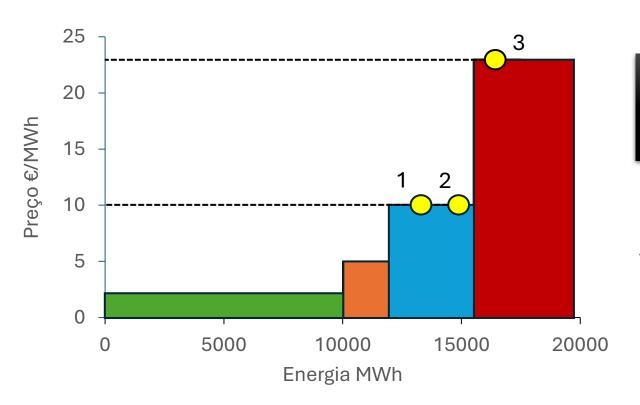
Desafios técnicos

Firm power


Sobre-instalação de centrais renováveis (e por isso aumenta a energia perdida = "curtailment") mas que reduz as necessidades de armazenamento.


ALERTA! Exige alterações ao modelo de mercado de eletricidade.

Mercado de energia: modelo marginalista



Mercado de energia: modelo marginalista

Um pequeno aumento do consumo pode aumentar muito o preço final de toda a eletricidade transacionada a essa hora (2-3) ou não ter qualquer efeito no preço (1-2).

Mercado de energia: modelo marginalista

Quando a geração solar + eólica satisfaz 100% da procura, o preço passa para zero euros (ou mesmo negativo).

Há um efeito de "canibalização" do mercado, em que novos projetos renováveis são cada vez menos competitivos, e os existentes perdem rentabilidade

É preciso inventar um novo modelo que incentive mais renováveis sem aumentar preço da energia...

Comunidades de energia

Potenciais benefícios

- Eletricidade mais barata
- Maior autoconsumo, por agregação de consumos
- Consumo local, redução perdas na distribuição
- Dinamização social, comunidade de *prosumers*

Comunidades de energia

- Mecanismo para formalizar partilha de energia solar entre vizinhos
- Demoras administrativas dificultam processos

(na realidade a grande maioria dos projetos são autoconsumos coletivos, sem a componente social das comunidades)

Desafios sociais e ambientais

Aceitação social e participação:

- Casos de resistência local a projetos renováveis (e.g. PV e eólico)
- Importância da comunicação e envolvimento das comunidades locais
- Exemplos de boas práticas para garantir aceitação social

Impactos ambientais e conflitos de uso do solo:

- Ocupação de solo por parques solares e eólicos (e.g. AgriPV)
- Interferência com habitats naturais e biodiversidade
- Avaliação ambiental rigorosa e mitigação de impactos

Educação e sensibilização ambiental:

- Papel da educação para aumentar a compreensão das renováveis
- Impacto positivo da literacia energética na aceitação social

Outros impactos...

O desafio da pobreza energética

(oportunidade para mitigar ou aprofundar do problema?)

Digitalização da energia...

Garantir a privacidade

Desigualdade de acesso aos benefícios e à eficiência energética Vulnerabilidade do sistema elétrico a ciberataques

E porque energia não é só eletricidade...

O desafio da descarbonização da indústria e da mobilidade

O transporte marítimo e aéreo – revolução de paradigmas?

Síntese dos desafios e estratégias para o futuro

Estratégias em desenvolvimento em Portugal para superar esses desafios:

- Continuar a aumentar a instalação de tecnologias renováveis
- Expansão da rede inteligente e digitalização
- Desenvolvimento do armazenamento de energia
- Reformas regulatórias e novos modelos de mercado
- Políticas de participação e envolvimento comunitário
- Iniciativas de investigação e inovação