

Principles: Measurement uncertainty concept

Uncertainty: "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used"

3

Environmental Chemical Analysis - Analysis Quality

Principles: Measurement uncertainty concept

Uncertainty: "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used"

Measurements reported without uncertainty are only interpretable by the analyst responsible for the analysis.

Measurements reported with uncertainty can be interpreted by everyone.

[this feature is essential to regulate the international market]

Principles: Measurement uncertainty concept

Uncertainty: "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used"

The measurand is defined considering the:

- » Analysed item
- » Analysed parameter
- » Target measurement traceability (if relevant)

JCGM, International vocabulary of metrology — Basic and general concepts and associated terms (VIM), JCGM 200, 2008. (http://www.bipm.org).

ME|Chem: https://mechem.rd.ciencias.ulisboa.pt/

5

Environmental Chemical Analysis - Analysis Quality

Principles: Measurement uncertainty concept

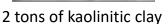
Uncertainty: "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used"

Examples of analysed item: Determination of lead in kaolinitic clay

(clay mineral used as feed additive for calf with the chemical composition $Al_2Si_2O_5(OH)_4$

1 kg of kaolinitic clay

IRMM, Determination of extractable and total lead in kaolinitic clay, JRC 69122, 2012.


Principles: Measurement uncertainty concept

Uncertainty: "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used"

Examples of analysed item: Determination of lead in kaolinitic clay

(clay mineral used as feed additive for calf with the chemical composition $Al_2Si_2O_5(OH)_4$

1 kg of kaolinitic clay

IRMM, Determination of extractable and total lead in kaolinitic clay, JRC 69122, 2012.

ME|Chem: https://mechem.rd.ciencias.ulisboa.pt/

Environmental Chemical Analysis - Analysis Quality

Principles: Measurement uncertainty concept

Uncertainty: "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used"

Examples of parameters: Determination of lead in kaolinitic clav

Total Pb

Acid extractable Pb (5% HNO₃; boiling for 30 min)

COMMISSION REGULATION (EU) No 1275/2013 of 6 December 2013

Principles: Measurement uncertainty concept

Uncertainty: "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used"

Examples of parameters: Measurand definition

Determination of lead in Total Pb: Rational measurand

kaolinitic clay » Total Pb in kaolinic clay sample S1234 (parameter)

Acid extractable Pb: Operationally defined measurand

» Pb extractable with boiling 5% nitric acid in sample S1234 (analytical method) (item) (parameter)

COMMISSION REGULATION (EU) No 1275/2013 of 6 December 2013

ME|Chem: https://mechem.rd.ciencias.ulisboa.pt/

9

Environmental Chemical Analysis - Analysis Quality

Principles: Measurement uncertainty concept

Rational measurands

Total Pb in a lettuce sample – Acid digestion of the sample (100 % efficiency) and analysis of the sample solution by atomic spectroscopy

Nitrate in water – Ion chromatographic analysis after sample dilution

pH in water - Potentiometric measurement of pH

Methane concentration in gas – Determination by chromatography equipped with a flame ionization detector (FID)

Principles: Measurement uncertainty concept

Operationally measurands

Moisture content in soil – Defined as the amount of water in a food sample, measured using oven drying

Protein content in food – Defined as the amount of protein in a food sample, measured using the Kjeldahl method or Dumas combustion method (expressed as a percentage)

Sugar content in food (Brix Value) – Defined as the percentage of soluble solids (mainly sugars) in a food sample, measured using a refractometer (expressed in 'Brix).

Acidity (Titratable Acidity) – Defined as the concentration of acidic compounds in a food sample, measured using acid-base titration (expressed as % acid content).

ME|Chem: https://mechem.rd.ciencias.ulisboa.pt/

11

Environmental Chemical Analysis - Analysis Quality

Principles: Measurement uncertainty concept

Exercise:

Which of these measurements are operationally defined or rational?

(1) Determination of suspended matter in wastewaters

(mass of matter from 1 L of water collected in a 1.5 µm pore filter after drying between 103 °C and 105 ºC)

- (2) Determination of total Cd in a soil sample (complete acid digestion of an analytical portion and subsequent analysis of a solution of Cd by atomic spectroscopy)
- (3) Determination of nitrate in treated efuent

(determination of nitrate by ion chromatography after sample dilution)

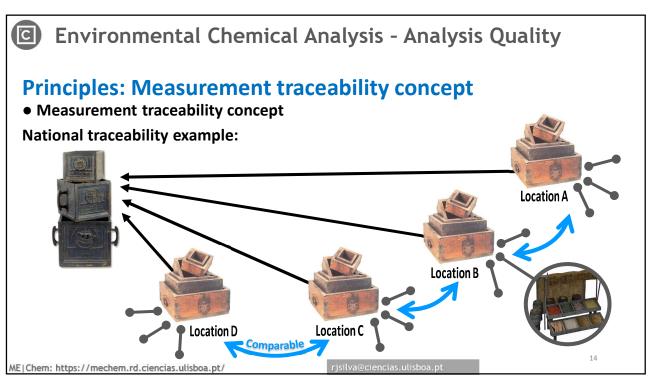
(4) Determination of oil and grease in a wastewater (mass extracted with n-hexane determined after solvent evaporation).

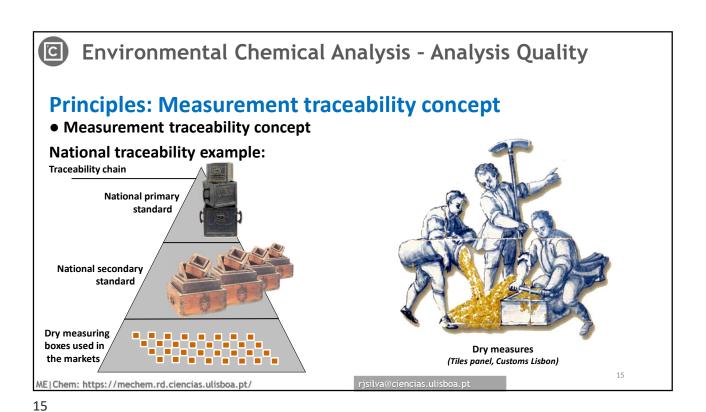
Principles: Measurement traceability concept

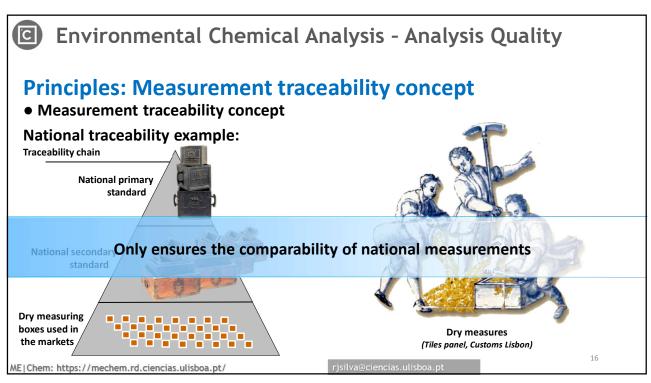
• Measurement traceability concept

The measurement uncertainty concept is intimately related to the measurement traceability concept since the last one involves defining a reference for the measurement.

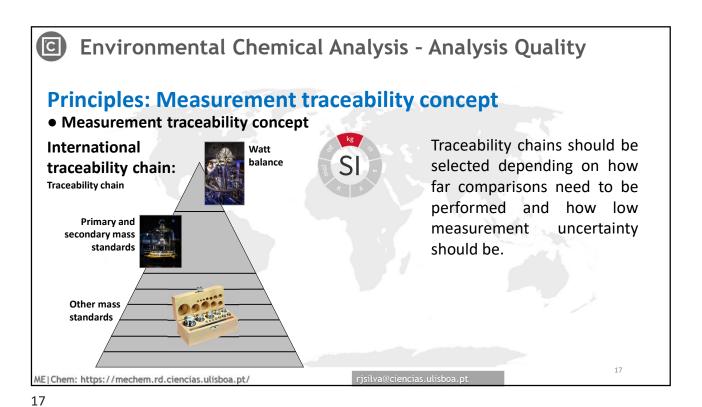
National traceability example:

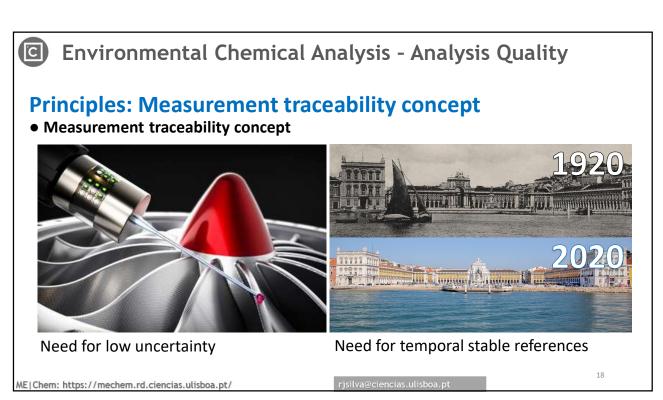

Dry measures standards from D. Sebastião kingdom


Dry measures are units of volume used to measure bulk commodities which are not liquid. They were typically used in commodity markets to measure grain, dried beans, and dried and fresh fruit.


ME|Chem: https://mechem.rd.ciencias.ulisboa.pt/

rjsilva@ciencias.ulisboa.pt


13



16

Principles: Measurement traceability concept

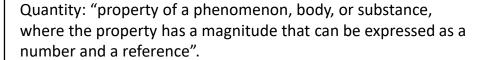
VIM defines measurement traceability as:

"property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty".

All measurements are traceable to a reference. This reference can be local, national or international and supports the comparability of results traceable to it. Sometimes the used reference is unstable or is ambiguously defined. The main goal of assessing measurement traceability is to check if measurement reference is adequate.

JCGM, International vocabulary of metrology — Basic and general concepts and associated terms (VIM), JCGM 200, 2008. (http://www.bipm.org).

ME|Chem: https://mechem.rd.ciencias.ulisboa.pt/


19

Environmental Chemical Analysis - Analysis Quality

Principles: Measurement traceability concept

Comparability: "comparability of measurement results, for quantities of a given kind, that are metrologically traceable to the same reference".

Kind of quantity: "aspect common to mutually comparable quantities"

Example: The quantities diameter, circumference, and wavelength are generally considered to be quantities of the same kind, namely of the kind of quantity called length.

JCGM, International vocabulary of metrology — Basic and general concepts and associated terms (VIM), JCGM 200, 2008. (http://www.bipm.org).

Principles: Measurement traceability concept

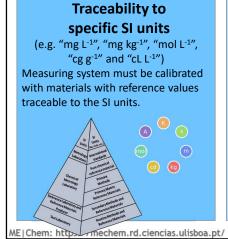
Selection of the measurement reference:

- 1) Common reference to measurement results or values to be compared with
- 2) Reference capable of producing measurements with adequately low uncertainty

JCGM, International vocabulary of metrology — Basic and general concepts and associated terms (VIM), JCGM 200, 2008. (http://www.bipm.org).

ME|Chem: https://mechem.rd.ciencias.ulisboa.pt/

rjsilva@ciencias.ulisboa.pt


21

Environmental Chemical Analysis - Analysis Quality

Principles: Measurement traceability concept

Types of traceability chains in measurements in chemistry

Traceability to the value embodied in a reference material

(using SI units without metrological accuracy; e.g. organic compound purity estimated by GC-FID using total area method)

Traceability to the value defined by the measurement procedure

(i.e. applicable to empirical or operationally defined measurement procedures; e.g. determination Pb extractable in specific acid conditions).

Principles: Measurement traceability concept

• References:

Measurement uncertainty principles:

JCGM, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, JCGM 100, 2008. (www.bipm.org)

Eurachem/CITAC, Quantifying Uncertainty in Analytical Measurement, Third edition, 2012. (www.eurachem.org)

Measurement traceability:

Eurachem/CITAC Guide: Metrological Traceability in Analytical measurement, Second edition, 2019. (www.eurachem.org)

P. De Bièvre, R. Dybkaer, A. Fajgelj, D. B. Hibbert, Metrological traceability of measurement results in chemistry: Concepts and implementation, Pure Appl. Chem. 83 (2011) 1873–1935.

ME|Chem: https://mechem.rd.ciencias.ulisboa.pt/

rjsilva@ciencias.ulisboa.pt

23

Environmental Chemical Analysis - Analysis Quality

Principles: Measurement traceability concept

Exercise:

Define the measurement traceability:

- (1) Determination of oil and grease in a wastewater (mass extracted with n-hexane determined after solvent evaporation).
- (2) Mass fraction of total mercury in sediments

Principles: Measurement traceability concept

Exercise:

Define the most relevant advantage of tracing measurements to an SI unit:

- » Ensuring that two labs using the same standard get comparable results
- » Ensure the use of the cheapest standards
- » Ensure produced measurements can be comparable with the ones collected in the future
- » To be committed to French Revolution achievements