Theoretical + Computational Projects

1. Landau Theory vs. Ising Monte Carlo
· Theory: Use Landau mean-field theory to predict the order parameter, susceptibility, and heat capacity near the critical point of the Ising model.
· Computation: Implement a 2D Ising Monte Carlo simulation (Metropolis + Wolff cluster algorithm).
· Integration: Compare mean-field predictions with simulation data. Emphasize why fluctuations in 2D invalidate mean-field exponents but preserve qualitative features.

2. Critical Slowing Down
· Theory: Derive the concept of dynamic critical exponents z and how autocorrelation times diverge near criticality.
· Computation: Simulate the Ising model using local (Metropolis) and cluster (Wolff) updates. Measure autocorrelation times as T→Tc.
· Integration: Compare the scaling of relaxation times for different algorithms, illustrating both universality and algorithmic efficiency.

3. Universality: Ising vs. Liquid–Gas
· Theory: Show that the Ising model and lattice gas are mathematically equivalent, with magnetization ↔ density and external field ↔ chemical potential.
· Computation: Simulate both models (spin and particle representation) using Monte Carlo.
· Integration: Extract critical exponents from both and confirm their shared universality class.

4. Phase Separation: Passive vs. Active Matter
· Theory: Review Cahn–Hilliard theory of phase separation and discuss how activity modifies coarsening dynamics.
· Computation: Simulate (i) passive lattice gas phase separation and (ii) Active Brownian Particles with repulsion.
· Integration: Compare coarsening kinetics, domain growth exponents, and clustering statistics between passive and active cases.

5. Self-Organized Criticality and Absorbing-State Transitions
· Theory: Explore connections between sandpile models, branching processes, and absorbing-state phase transitions.
· Computation: Implement a sandpile model and measure avalanche distributions.
· Integration: Compare critical exponents to those predicted by branching process theory (mean-field) and to directed percolation universality class.

Assessment
· Report (research-paper style): including derivations, methodology, numerical results, and critical comparison.
· Oral Presentation: emphasize the “bridge” between analytic predictions and numerical evidence.

Level 1: Low Coding, Strong Conceptual Payoff
1. Landau Theory vs. Ising Monte Carlo
· Difficulty: ★☆☆
· Coding effort: Basic 2D Ising with Metropolis (many templates exist).
· Theoretical load: Medium — mean-field derivation is straightforward.
· Best for: Students new to coding but comfortable with equations.
· Extra challenge: Add Wolff cluster algorithm to compare critical slowing down.
Level 2: Moderate Coding, More Analysis
2. Critical Slowing Down
· Difficulty: ★★☆
· Coding effort: Requires implementing both Metropolis and cluster algorithms, plus autocorrelation analysis.
· Theoretical load: Intermediate — need to introduce dynamic scaling, τ∼ξz.
· Best for: Students who like connecting physics with computational efficiency.
· Extra challenge: Try extracting the dynamic exponent z.
3. Universality: Ising vs. Liquid–Gas
· Difficulty: ★★☆
· Coding effort: Two different models (spin and lattice gas) — moderate.
· Theoretical load: Medium — mapping between Ising and liquid–gas requires care.
· Best for: Students who like to see deep equivalence between models.
· Extra challenge: Simulate both in 3D and compare.

Level 3: Advanced, Research-Style Projects
4. Phase Separation: Passive vs. Active Matter
· Difficulty: ★★★
· Coding effort: High — requires simulating active Brownian particles (ABPs) with noise and interactions.
· Theoretical load: Strong — need familiarity with Cahn–Hilliard and nonequilibrium statistical physics.
· Best for: Students comfortable with programming and keen on active matter.
· Extra challenge: Compare coarsening exponents numerically with passive case.
5. Self-Organized Criticality and Absorbing-State Transitions
· Difficulty: ★★★
· Coding effort: Medium — sandpile models are easy to implement, but collecting clean statistics takes work.
· Theoretical load: High — requires bridging SOC with branching processes and directed percolation universality.
· Best for: Students interested in complex systems, criticality beyond equilibrium.
· Extra challenge: Test universality of avalanche exponents with different SOC models.

	Project
	Difficulty
	Coding Effort
	Math vs. Code Balance
	Best For

	Landau vs. Ising
	★☆☆
	Low
	Math-heavy
	Beginners in coding

	Critical Slowing Down
	★★☆
	Medium
	More coding
	Algorithm-oriented

	Universality (Ising vs. LG)
	★★☆
	Medium
	Balanced
	Model-comparison lovers

	Passive vs. Active Phase Separation
	★★★
	High
	Code-heavy
	Ambitious coders

	SOC + Absorbing States
	★★★
	Medium
	Math-heavy
	Complex systems focus








Project 1: Landau Theory vs. Ising Monte Carlo
Aim: Compare mean-field predictions of phase transitions with numerical simulations of the 2D Ising model.
Tasks:
1. Derive Landau mean-field predictions for magnetization, susceptibility, and heat capacity near Tc.
2. Implement a 2D Ising Monte Carlo simulation (Metropolis algorithm).
3. Measure order parameter, susceptibility, and Binder cumulant.
4. Locate Tc and compare exponents with mean-field theory.
Deliverables:
· Report with derivation, plots of observables vs. temperature, scaling analysis.
· Discussion of why mean-field fails in 2D.
Suggested References:
· Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (1992).
· Newman & Barkema, Monte Carlo Methods in Statistical Physics (1999).

Project 2: Critical Slowing Down
Aim: Investigate how correlation times diverge near a critical point.
Tasks:
1. Implement the 2D Ising model with both Metropolis and Wolff algorithms.
2. Measure autocorrelation functions of magnetization and energy.
3. Extract autocorrelation times near Tc.
4. Compare scaling of relaxation times between algorithms.
Deliverables:
· Plots of autocorrelation times vs. temperature.
· Estimate of dynamic critical exponent z.
· Comparison of algorithm efficiency at criticality.
Suggested References:
· Sokal, “Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms” (1997).
· Landau & Binder, A Guide to Monte Carlo Simulations in Statistical Physics (2009).

Project 3: Universality – Ising vs. Liquid–Gas
Aim: Demonstrate universality by comparing two models of the same class.
Tasks:
1. Show mapping between Ising spins and lattice gas variables.
2. Implement both models (Ising and lattice gas).
3. Extract critical exponents using finite-size scaling.
4. Compare results and explain universality.
Deliverables:
· Analytical mapping between models.
· Numerical comparison of critical exponents.
· Discussion of universality classes and symmetry arguments.
Suggested References:
· Yeomans, Statistical Mechanics of Phase Transitions (1992).
· Stanley, Introduction to Phase Transitions and Critical Phenomena (1987).

Project 4: Passive vs. Active Phase Separation
Aim: Compare classical phase separation with motility-induced phase separation in active matter.
Tasks:
1. Review Cahn–Hilliard theory of spinodal decomposition.
2. Simulate (a) passive lattice gas, (b) Active Brownian Particles (ABPs).
3. Measure cluster sizes, correlation functions, and coarsening kinetics.
4. Compare scaling laws in passive vs. active systems.
Deliverables:
· Phase diagrams and snapshots of domain growth.
· Plots of characteristic length scale vs. time.
· Discussion of how activity modifies universality.
Suggested References:
· Cates & Tailleur, Annual Review of Condensed Matter Physics 6, 219 (2015).
· Bray, Theory of Phase-Ordering Kinetics (1994).

Project 5: Self-Organized Criticality and Absorbing States
Aim: Explore the emergence of criticality without fine-tuning in SOC models.
Tasks:
1. Implement the Bak–Tang–Wiesenfeld sandpile model.
2. Measure avalanche size and duration distributions.
3. Fit distributions to power laws and extract exponents.
4. Compare with branching process theory and directed percolation.
Deliverables:
· Plots of avalanche statistics with scaling collapse.
· Critical exponent estimates and universality discussion.
· Connections to absorbing-state transitions.
Suggested References:
· Bak, Tang & Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).
· Henkel, Hinrichsen & Lübeck, Non-Equilibrium Phase Transitions (2008).











