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Summary

Models are convenient tools to summarize, organize and synthesize knowl-
edge or data in forms allowing the formulation of quantitative, probabilistic, or
Bayesian statements about possible or future states of the modeled entity. Mod-
eling has a long tradition in Earth sciences, where the capacity to predict ecol-
ogically relevant phenomena is ancient (e.g. motion of planets and stars). Since
then, models have been developed to examine phenomena at many levels of
complexity, from physiological systems and individual organisms to whole
ecosystems and the globe.

The demand for reliable predictions, and therefore, models is rapidly rising,
as environmental issues become a prominent concern of society. In addition, the
enormous technological capacity to generate and share data creates a consider-
able pressure to assimilate these data into coherent syntheses, typically pro-
vided by models.  Yet, modeling still encompasses a very modest fraction of the
ecological literature, and modeling skills are remarkably sparse among ecolo-
gists (Chapter 3). The growing demand for models is in contrast with their lim-
ited contribution to the ecological literature, which suggests that either there are
serious constraints to the development of models or that there are limitations in
the conceptualization and/or acquisition of the elements required for model
construction that result in the requirements of products from models not being
met at present.

Models are apparently not being as widely used as expected given the pre-
sent demand. Hence, the identification of bottlenecks for the development of
models in ecology, and limitations of their application are important goals.
This chapter reports on the conclusions of a discussion group at the IX Cary
Conference set to address these issues.

Background
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Ecological models can be classified in a number of ways. One of the most
useful is the distinction between single-level descriptive (or empirical) models
and hierarchical or multilevel explanatory (or mechanistic) models (de Wit,
1970, 1993, Loomis et al., 1979). An example of a single-level descriptive
model is a regression equation relating annual net primary production, NPP, or
crop yield to annual precipitation and/or temperature. When used within the
range of precipitation and temperature included in the formulation of the re-
gression equation(s), such a model may be rather accurate for interpolative pre-
diction. It does not, however, ‘explain’ the operation of the systems, and the
model may fail when applied to conditions outside the environmental envelope
used for parameter estimation, or when applied to a different ecosystem. Ex-
planatory models often include at least two levels of biological/ecological orga-
nization, using knowledge at one level of organization (e.g., biological organs)
to simulate behavior at the next higher level of organization (e.g., organisms),
although other factors may come into play.  Information at the lower levels may
be empirical or descriptive information (Loomis et al., 1979) that helps explain
behavior at the level of the organism. Of course, in explanatory ecological
models, knowledge gaps arise and simplifications are inevitable.

Modeling terrestrial net primary production provides a robust example of the
spectrum of modeling possible in ecology (Fig. 1). The highest modeling com-
plexity is found with mechanistic carbon flux models for plot level applications
that require intensive data for execution (Rastetter et al 1997), and yet more
sophisticated mechanistic models are becoming now available (Amthor et al.
2001). These models compute photosynthesis minus respiration balances of
leaves and model the allocation of photosynthate to plant growth. Somewhat
more generalized models such as FOREST-BGC do not treat each plant explic-
itly, but compute the integrated carbon, water and nutrient biogeochemistry of a
landscape (Running 1994). Recent attempts to distill these complex NPP mod-
els to require more simplified input data, such as PnET-II and 3-PGS, have
been impressively successful for forests (Law et al 2000, Aber and Melillo
2001). Other models have explicitly considered treatment of NPP by different
vegetation biomes from a common logical framework (VEMAP 1995). These
multi-biome NPP models are becoming important to drive policy issues re-
garding terrestrial carbon sources and sink dynamics. (Schimel et al. 2000). A
new generation of NPP models uses satellite data for input, and uses a simple
light conversion efficiency factor to compute NPP from absorbed photosyn-
thetically active radiation. Use of satellite data for primary input data has al-
lowed broad mapping of NPP from regional up to global scales (Coops and
Waring 2001, Running et al 2000).

This dramatic simplification from full photosynthesis-respiration balances to
a simple light use efficiency model to compute a common variable, NPP, ex-
emplifies the range of logic used in ecosystem modeling (Fig. 1). No single
model can be optimally used throughout all scales (Fig. 1) that span from the
individual leaf to the global biosphere (Waring and Running 1998).
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Figure 1. The scaling of models across ecological scales requires means to integrate
the model logics.
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Limits to the development of models

Bottlenecks impairing the development of models seem to be multiple and to
encompass limitations in the scientific community (Chapter 23). Improvement
will require actions at the capacity-building stage, and the removal of techno-
logical bottlenecks, and limitations in the data available to build, drive, and
validate the models.

Capacity Building
University curricula in biology are notoriously poor in providing students

with modeling skills, which probably derives from a general neglect of solid
mathematical training in biology programs, at both undergraduate and graduate
levels. Consequently, modeling is largely a self-taught craft. This imposes se-
vere limitations in the recruitment of modelers to the community, which ac-
counts for the relatively small number of ecological modelers. Poor training
also limits the understanding of the data requirements for model construction by
experimental ecologists, resulting in insufficient coordination between data
acquisition and the requirements of the models.  The ineffective communication
between modelers and experimental ecologists has other important conse-
quences, such as the present tendency of papers on ecological models to be
“ghettoed” into particular journals. This tendency further enforces, by increas-
ing isolation, the insufficient communication between modelers and experi-
mental ecologists.

Ecological modeling will also benefit from establishing firm interdiscipli-
nary links, which will allow capitalizing on developments in other fields. Such
developments include recent advances in computing science and technology,
such as optimized algorithms for parallel computing. In addition, recent devel-
opments in new modeling approaches, such as dynamic modeling of complex
systems in mathematics and theoretical physics, could be conveyed faster to the
community of ecological modelers if platforms to foster interdisciplinary links
between these different disciplines were better established. The opportunity to
interact with ecological modelers could also benefit mathematicians and theo-
retical physicists, who are in a continuous search for complex systems to serve
as test benches for their new developments. In addition, human intervention in
ecological processes is now widespread at all scales, requiring this forcing to be
factored into model formulations. This will require greater collaboration be-
tween social scientists and ecologists to incorporate human influence in eco-
logical models (National Assessment Synthesis Team 2000).

Technological Developments
Technological bottlenecks appear to be minor at present, because computing

power has increased so rapidly that the gains made since ecological simulation
began more than 30 years ago are no less than staggering. Only the larger,
global models seem to be constrained by access to adequate computing facili-
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ties. In addition, software developments have provided modeling platforms and
analytical tools that now render model construction and analysis a relatively
simple task. Quantitative, robust approaches to decide on the optimal size of
ecological models are now becoming available (Chapter 8), guiding model de-
velopment. As a result, technological bottlenecks cannot, in general, be held
responsible for the insufficient development of models in ecology, although
increased networking between supercomputer facilities could improve their
availability to the scientific community.

Appropriate Observational Basis
The empirical basis for developing and testing models is generally insuffi-

cient, and may well be the ultimate bottleneck for the development of mecha-
nistic models. Even available data are usually poorly fit to model needs, for
they may lack the required spatial and temporal coverage, or they may poorly
encompass the range of gradients that must be encompassed covered by the
model. This limitation may be somewhat alleviated by developing modeling
approaches flexible enough to incorporate and combine a variety of data, in-
cluding data at various hierarchical levels (population, classes within a popula-
tion, individuals), and addressing tactical questions that do not require complete
data descriptions of a system (Chapter 5). Nevertheless, data limitation will
remain a chronic problem, because, despite the activity of many ingenious field
ecologists, collection of some types of data is by its nature difficult and expen-
sive. The data sets available to test models are, therefore, limited, leading to
growing concern that most models may be validated against a few, common
data sets, which – while allowing for model comparison – involves the danger
that these few data sets become the “world” the models recreate. Moreover,
there are also unduly long time lags between data acquisition and the time these
data are made available for model construction and validation, precluding the
development of on-line models, which are becoming available in other disci-
plines (e.g. operational oceanography). The inadequacy of ecological data for
modeling purposes largely stems from insufficient appreciation of the require-
ments for model construction, again calling for a greater connection between
modelers and experimental ecologists in education programs and during the
formulation of research programs. Results from present experimental research
focuses heavily on statistical analysis of end points rather than explanation of
the processes yielding those end points, whereas knowledge of processes forms
the basis of explanatory (or extrapolative) models. In addition, experiments are
rarely useful as a base for modeling because of the emphasis on contrasts and
ANOVA-directed designs, instead of gradient designs (Chapter 12).



6 C. M. Duarte et al.

Limits to the Achievements of Models

The bottlenecks identified above are substantial, but cannot alone explain the
limited application of modeling approaches to ecological problems. We suggest
that there must be other, external limits to what models can achieve. An appre-
ciation of these limits requires, however, an identification of the goals of mod-
els as a pre-requisite to identifying the circumstances that may preclude the
achievement of these goals.

The Goals of Models
Models are often used as heuristic tools to organize existing knowledge,

identify gaps, formulate hypotheses, and design experiments. Models can also
be used as analytical tools to increase our understanding about the relative im-
portance and interplay of the various processes involved in the control of
populations, communities or ecosystems, and to use this understanding to ex-
amine their behavior at scales that extend beyond direct observation. Societal
needs impose increasing pressure for ecological models to help inform man-
agement decisions, as to the likely consequences of alternative management
options and future scenarios of the status of populations, communities or eco-
systems (Chapter 7). Indeed, heavy human pressures upon the Earth’s resources
are leading to major changes in the functions of the Earth system and loss of the
biodiversity it contains. The need for ecological models by society in the 21st

century will become a benchmark upon which the robustness of ecological
knowledge will be assessed. This demand is largely articulated through the so-
cietal request for predictions, which must be supplied along with the logical
rationalization of the models’ mechanistic basis that provides reassurance on
the reliability and generality of the model’s principles.

The role of models as tools in formulating hypotheses is a non-controversial
– although insufficiently explored – use. In contrast, conflicts between the goals
of understanding vs. prediction have been the subject of recurrent debates (e.g.
Peters 1986,1991, Lehman 1986, Pickett et al. 1994, Pace 2001). These debates
mirror those in other branches of science, where in some cases mechanistic
models have been claimed to be overemphasized to the detriment of progress
(Greene 2001). We contend, however, that prediction and understanding are
mutually supportive components of scientific progress and that ecological mod-
eling would greatly benefit from an improved integration of both these goals,
which should if possible progress in parallel (Fig. 1). Even the simplest statisti-
cal models are used to test hypotheses (Peters 1991), through the mechanistic
reasoning that generally guides the selection of candidate predictors, thereby
leading to increased understanding (Pace 2001). On the other hand, models de-
veloped to test the reliability of our understanding generally do so by compari-
son between model output and observations, thereby assessing the predictive
power of the models. We, therefore, contend that the discussion on the priority
of prediction vs. understanding in model formulation is largely futile. Whether
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the models are empirical, statistical models that make few assumptions on the
underlying mechanisms or are mechanistic-rich, this cannot be consi dered, a
priori, to offer any particular advantage when predictions are sought, for
“Whether the cat is black or white does not matter, as long as it catches the
mice” (Mao Tse-tung).

The key issue is, therefore, whether the model works, i.e. is conducive to the
formulation of reliable, validated predictions. For instance, Chinese observers
were able to accurately predict tides > 2,000 years ago, despite the fact that they
understood the process to result from the breathing of the sea (Cartwright,
2001). More than two millennia later, we have been able to improve somewhat
our capacity to predict tides. However, despite what we believe is an adequate
understanding of the tide phenomenon, the prediction is still based on site-
specific empirically fitted curves (Cartwright, 2001).

The Complementary Goals of Prediction and Understanding
Whereas predictive capacity is an objective trait amenable to quantitative

test (Chapter 8), the degree of understanding achieved through modeling is
more difficult to assess in any specific way. Although understanding is not a
pre-requisite to the achievement of predictive power, modeling approaches that
offer absolutely no possibility to test hypotheses and, therefore, gain under-
standing are regarded as suspect and have not being used as reliable sources of
predictions. Hence, both scientists and society are not satisfied with projections
of past dynamics into the future that provide little or no understanding, but
rather require predictions, which must be derived or be consistent with theory
(Pace 2001). This requirement provides an indication of the importance scien-
tists and humans in general assign to understanding, as reflected in the quote: “I
believe many will discover in themselves a longing for mechanical explanation
which has all the tenancy of original sin…” (Bridgman 1927).

In addition, prediction and understanding are linked through effective feed-
back processes, for predictions are derived from theory, and, at the same time,
their success or failure serves to improve theory. Predictions can be derived
from simple, statistical models, analytical models, or complicated simulation
models. The growing complexity of the models may provide a greater sense of
understanding, if successful predictions can be derived, but often this complex-
ity leads to reduced predictive power and/or various interpretive constraints
(Fig. 2). Such loss of predictive power is clearly illustrated in the comparison of
the predictive record of statistical vs. mechanistic models of El Niño-La Niña
events (Chapter 4). Probably the most studied and implemented use of statisti-
cal (regression) models in ecology involves “prediction” of crop yield based on
environmental conditions (e.g., mean air temperature during the growing sea-
son, or total precipitation). However, simple statistical models are not formu-
lated from a random trial and error approach. Rather, the candidate independent
variables that achieve predictive power are deduced from theory, such as sea
surface temperature anomalies and atmospheric pressure locations in the case of
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statistical models used for El Niño-La Niña prediction (Chapter 4), or
evapotranspiration in models of terrestrial net primary production (Leith 1975).

Mechanistic models are not necessarily bounded in their predictive capacity,
for the predictive capacity of net primary production models has increased sig-
nificantly since the initial formulations. However, the requirements of mecha-
nistic models do exceed those of statistical, descriptive models by virtue of the
simple fact that they contain (and therefore need as input) more elaborated in-
formation that is more scientific. Indeed, the more realistic an explanatory
model is sought to be, the more information is needed to parameterize the
model and initialize its driving variables. “If these (data) are unavailable, then
the regression model may still be our best option” (Penning de Vries 1983). A
common pitfall of statistical models is, however, oversimplification (“every-
thing should be made as simple as possible, but not one bit simpler,” A. Ein-
stein). Applying simple models to different locations, or even different years,
often fails to yield accurate predictions unless the environment is relatively uni-
form (Penning de Vries 1983).

Mechanistic constraints can also be imposed upon empirical models (e.g.,
potential quantum use efficiency based on underlying biophysics can be used to
constrain an empirical light-response curve for leaf photosynthesis), thereby
using understanding to formulate them. Indeed, most models are neither purely
statistical nor mechanistic models, but rather hybrids between the two, usually
containing empirical relationships or parameters, linked according to theory.
Freshwater eutrophication models are amongst the most widely applied in the
management context (e.g. Dillon and Rigler 1975, Vollenweider 1976, Smith
1998). The model generally applied is a semi-empirical one (Vollenweider
1976), combining regression-derived relationships between chlorophyll a con-
centration and total phosphorus concentrations, with a simple mass-balance
approach to predict the phosphorus concentration in lake waters. Mass balance
approaches, which are essentially empirical models guided by simple, funda-
mental principles, are widely used in ecological modeling (Chapter 15). The
search for the optimal compromise in the complexity and the empirical vs.
mechanistic components of models must be guided by parsimonious criteria,
and is a key milestone in the successful development of models (Chapter 8).
Indeed complex models should be rigorously evaluated to be made as “mini-
malistically-complex” as possible (Fig. 2). This objective would allow for a
greater focus on more specific or relevant mechanistic understanding of a given
process and would provide a more useful tool to policy makers and managers
with a greater change of being appropriately validated.

(Insert Figure 2 here)
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The successful formulation of predictions from simple empirical models in-
spired by theory is eventually assimilated as providing “understanding,” de-
fined by Pickett et al. (1994) as “an objectively determined, empirical match
between some set of confirmable, observable phenomena in the natural world
and a conceptual construct.” Indeed, many parameters in mechanistic models
are but empirically determined quantities that are “understood” in the sense that
they have been repeatedly tested and are consistent and linked with the consoli-
dated body of principles or laws in ecology (Fig. 2).

The preceding discussion clearly indicates that the goals of prediction and
understanding are self-supportive, and that, as a consequence, they advance in
parallel (Fig. 2). Yet, this parallel advancement is dynamic, involving lags and
delays, and may be, therefore, somewhat out of phase. Indeed, empirical pre-
dictions derived from simple models inconsistent with current theory or mecha-
nisms may be suspect, but may also hint at flaws in the current understanding or
theory. A mismatch between empirical observations and the desired under-
standing of underlying mechanisms has been a recurrent stumbling block in
science, as illustrated by the long resistance to accept the theories of evolution
by natural selection and continental drift, simply because they lacked a clear
mechanism at the time they were formulated (Greene 2001). Hence, ecologists
must be prepared to accept that prediction and understanding may be at times
discordant, and that the process of model development for prediction is dy-
namic. Indeed, increased understanding results in model reevaluation and im-
proved predictive capacity. For these reasons, the following sections assess the
limits to the use of ecological models for prediction and understanding sepa-
rately.

Limits to Prediction

Uncertainty in the observational data available to develop the models leads
to uncertainty about the model predictions, which imposes a limit on the preci-
sion of the predictions (Amthor et al. 2001, Chapter 8). Similarly, uncertainties
about the data available to test and validate models lead directly to uncertainty
about the accuracy of model predictions (Amthor et al. 2001, Chapter 8). A key
related difficulty is that “biological principles which have to form the base of
model-building are too fragmentary to embark on straightforward model-
building along the same lines as in the physical sciences” (de Wit 1970). Eco-
logical modelers must continuously make compromises to overcome knowl-
edge gaps, and modeling may be reduced to expressions of intuition or educated
guesses in some cases. Indeed, de Wit (1970) concluded that success “is only
possible when we have the common sense to recognize that we know only bits
and pieces of nature around us and restrict ourselves to quantitative and dy-
namic analyses of the simplest ecological systems.” This is not encouraging
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when the goal is to understand and predict complex systems such as ecosys-
tems.

Models often develop from a need to formulate predictions on processes that
elude direct observation, such as processes that are very slow (e.g. seagrass
meadow formation, Duarte 1995), operate at very small spatial scales (e.g. sub-
millimeter plankton patchiness, Duarte and Vaqué 1992), or result from epi-
sodic or extreme phenomena (e.g. floods, extreme droughts; Turner et al. 1998,
Changnon 2000), which are difficult to observe directly, as well as future
events (e.g. global change, National Assessment Synthesis Team 2000). Lack
of adequate observations precludes the assessment of predictive power in these
circumstances, so that the models' reliability is entirely dependent on the confi-
dence in its mechanistic basis. The extensive evaluation of model outputs is
particularly useful to help assess the models and examine, in detail, their be-
havior. For example, the ability of a model to hindcast a historical event such as
a drought or a fire improves the model’s acceptance for prediction.

Models are, to a variable extent, specific, and their predictive power is re-
stricted to a particular domain (e.g. independent variable range in regression
models, particular vegetation type or species), beyond which the reliability of
the predictions requires additional testing. Because model components are typi-
cally multivariate, their corresponding domains are complex, multivariate
spaces that cannot be reliably probed even if multiple validation tests are con-
ducted. The model domain also encompasses the assumptions built into the
model (e.g. homogeneity of the variances, steady-state, equilibrium, etc.),
which must be met by the subject if they are to be applied with any confidence.
Any extension of models beyond the domain over which they were originally
developed or tested involves uncertainty in the predictive power achievable.
Most models predicting NPP were developed for specific biomes, although they
have been since applied to other vegetation types or climatic regimes. This ex-
tension involves a re-examination of the underlying theory in the model; it’s
appropriateness to these new biomes, as well as the parameterization of the
model parameters for these new biomes. General models do exist, such as the
so-called Miami model (equations 12-1 and 12-2 in Leith 1975), a simple sta-
tistical model relating NPP to annual mean temperature and annual precipita-
tion based on field data/estimates from multiple biomes. Such global models,
however, have been found to poorly represent the dynamic changes occurring
within a particular site, which seem to be due, in the case of the Miami model,
to time lags in responses of vegetation structure to the changing conditions (cf.
Lauenroth and Sala 1992).

Model outputs are not always deterministic, for even simple models can dis-
play complex behavior derived from both deterministic and stochastic compo-
nents of the model. This results in undefined predictions, where very different
outcomes are equally likely. These sources of uncertainty are, however, poorly
addressed by current sensitivity analysis in ecological modeling, which, by in
large fails to address the consequences of simultaneous variability in the driving
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parameters and variables, and tests for alternative expressions of ecological
processes.

Limits to Understanding
The history of science provides evidence that a model’s capacity to accu-

rately predict cannot be used to infer the veracity of the processes underlying a
mechanistic model. This implies no more than the acknowledgement that eco-
logical modeling does not escape the generic limitation of science’s capacity to
never fully prove hypotheses. Yet, the successful application of a model to a
variety of different subjects, encompassing the broadest possible ranges in the
key traits or variables would increase the confidence on the robustness of the
model’s principles. Even if the results of an explanatory ecological model cor-
respond to observations of the system being modeled, “there is room for doubt
regarding the correctness of the model” (de Wit 1993). Whenever discrepancies
between model output and reality occur, the model may be adjusted (“tuned”)
to obtain better agreement, and since there are typically many equations and
parameters, this is easy to do. It is, however, a “disastrous” way of working
because the model then degenerates from an explanatory model into a descrip-
tive model (de Wit 1970). The word “degenerates” does not mean that descrip-
tive models are inferior, but simply that they no longer explain the system. The
attribution of explanation to such descriptive models “is the reason why many
models made in ecological studies…have done more harm than good” (de Wit
1993). The limitation of our fragmented ecological knowledge can and will,
therefore, undermine explanatory modeling.

Mechanism-driven models cannot be formulated in cases where there is little
or no understanding of the problems, or where the empirical base is thin and
critical data are missing. The contribution of modeling must derive, in these
cases, from the development of simple, empirical or conceptual models that
promote the emergence of sufficient understanding as to render the develop-
ment of mechanism-driven models possible (Chapter 25).

Increasing model complexity may increase the extent to which models are
believed to reproduce nature, but at the same time, they become more open to
unexpected behavior. This has both potential advantages and disadvantages.
One advantage is that a model’s prediction of unexpected behavior, if it can be
tested against observations, can offer either strong corroboration or rejection of
the model. Another advantage is that complex models are likely to produce a
variety of outputs (intermediate-level output) other than merely that of the par-
ticular variables of interest. These outputs may provide predictions that can be
tested against independent data, thus partially checking the model. Unexpected
behavior, including erratic predictions, may derive from either deterministic or
stochastic processes in the model. The uncertainties in the numerous mecha-
nisms may add or multiply, and, if there is no way of observing intermediate
variables in order to correct for this process, lead to a large and perhaps un-
known amount of uncertainty in the variables of interest, and a model that is
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difficult to interpret or understand (Fig. 2). This results in the paradox that the
more mechanism-rich a model becomes (the more knowledge it incorporates),
the more uncertain it becomes (Chapter 2). Much of the art of modeling lies in
constructing models that avoid this paradox by producing a variety of outputs
that can be tested against as much independent observational data as possible.

Conclusions and Recommendations

Consequences for Model Use
Efforts to promote the use of existing models must be enhanced, for only

widespread use of a model can help assess the model domain and predictive
power under sufficiently contrasting situations. Failures and successes derived
from model use open opportunities for improved model design and
reformulation. Therefore, model validation should rely heavily on the widest
possible use of the models by the scientific community. Consequently, model-
ers – and the funding agencies that fund model development – must make all
possible efforts to make the models widely available as stand-alone products.
The users must be, however, fully aware of the model assumptions, limitations,
behavior, and domain of construction, which must be supplied as extensive
metadata accompanying the model. The latter is the responsibility of the model
developers (Aber 1997). Obviously, this lack of communication on behalf of
model developers has lead to the misinterpretation or misuse of their models by
able model-users (Chapter 13).

Consequences for Model Design
Limited data availability implies that site or subject-specific models may be

possible only for a limited number of subjects (ecosystems, communities, or
species). As a consequence, there is little hope that the large-scale problems of
ecosystem alteration, habitat loss and biodiversity erosion may be addressed
merely through a mosaic of subject-specific models. Addressing these questions
on the large scale will require the development of ecological models aimed at
achieving generality at the expense of detail. This does not reduce the useful-
ness of site- and subject-specific models when data are available for them. Tac-
tical models, addressing key specific goals, such as the conservation of high-
profile endangered species or of critical ecosystem functions, can be designed
to be flexible enough to utilize a variety of types of available data (Chapter 5).
However, for the most part, more generic models will be necessary.

We contend, therefore, that model design should proceed hierarchically,
stemming from simple empirical rules to formulate a parsimonious, generic
simple model, to eventually result in case-specific applications. A modular con-
struction approach should clearly specify the reduction in the model domain
and generality at each development stage, so that the transferability of the mod-
els produced is explicit at each level. Effort allocation in ecological models



24.  The Limits to Models in Ecology 13

needs to be readjusted to provide the needed attention to the development of
general models, even if these are perceived to be imprecise or provide less un-
derstanding.

 Model construction must engage experimental ecologists and modelers
throughout the entire process from model conception to validation, ensuring,
thereby, a more adequate match between data acquisition and model require-
ments. The full potential of models to achieve synthesis should also be explored
further than it is currently done, and large research programs will benefit from
such exercises, which should be facilitated by program managers. An improved
feedback between statistical and mechanistic models must be established. The
development of ecosystem models will also greatly benefit from increased in-
terdisciplinary connections (Fig. 3), which would allow the rapid implementa-
tions of new approaches to model complex systems – the stone against which
many disciplines (physics, health science, etc.) are presently stumbling - and to
analyze model output and behavior, as well as a better represent human inter-
vention in ecological models.

(Insert Figure 3 here)

In summary, present demand for predictions in ecology implies that models
are called to be at the forefront of ecology. The limitations to model develop-
ment and achievements outlined here are, largely, derived from poor coordina-
tion within the scientific community. A commitment to the participation in
model construction and validation by the entire community is, therefore, re-
quired (Chapter 27). This effort must extend beyond the boundaries of ecology
to benefit from inputs and progress in other disciplines (Fig. 3). Ecologists must
also be sufficiently educated as to be able to understand models and model re-
quirements and to formulate, at least, simple models (Chapter 23) (Fig. 3). Pro-
gress in model development is also likely to benefit from a better coordination,
as opposed to competition, between the development of simple statistical mod-
els and their integration into mechanistic models. These actions require a sub-
stantial effort from all ecologists. Benefits will become apparent in the form of
better synthesis, through modeling, and a better service to society through the
use of the models for the effective preservation of biological diversity and eco-
system function.
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Figure Legends

Fig. 2. A schematic overview of systems model conceptualization and formula-
tion, driven by understanding, with the ultimate objective of prediction (or pro-
jection). Simple analytical and statistical models formulated using logic or the-
ory and empirically derived observations are compiled into larger complex
systems models. Model parameters are rigorously tested using a variety of
techniques resulting in a feedback loop increasing parameter and model under-
standing, identifying those parameters that are the most ecologically relevant in
order to create “minimalistic-complex” system models, potentially useful for
prediction. Solid arrows outline this process. The large white arrow linking pre-
diction through model development and reevaluation via understanding empha-
sizes that model building is a dynamic process benefiting from both elements.
The broken arrow denotes the “danger” of increasing model complexity and the
limitations associated with this.

Fig. 3. Network of suggested pathways to alleviate present limitations in model
development.
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Para ver esta película, debe 
disponer de QuickTime™ y de 

un descompresor GIF. 
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Duarte et al. (Fig. 1)

Analytical and Statistical:
Simple models

Logic Observations

Complex Systems Models:

Constructs of multiple simple models interact-
ing to evaluate population, community or eco-
system dynamics

Dynamic in Structure

Conceptualization
Parameterization

*Limits:
1) asking good questions
2) data quality
3) “common sense”
4) education
5) addition of stochastic
events

Model testing
Model failure

Hypothesis generation
Redefine Model

New “minimalistic-complex”
Systems Model

Increased
Understanding

*Limits of mechanism overload!
1) Amplification of error
2) Negative degrees of freedom
3) Impossible to validate

*Limits to observations:
1) data quality
2) instrumentation
3) possible time and
space scales of collection

*Limits to logic:
1) asking good questions
2) understanding of theory
3) “common sense”
(Descartes: all humans
think they have it!!)

Sensitivity and
uncertainty analysis

*Limits:
1) Stochastic nature of
model behavior
2) Method constraints

  Understanding

   Complexity: Interpretative constraints

Prediction:
policy and

management

Validation

*Limits to validation:
1) appropriate and good
quality data
2) impossible collection of
data for forecasting models

*Limits to prediction:
1) Model transfer (among

scales)
2) Policy “set in stone”
(need to incorporate
Dynamic understanding)


