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A Tutorial for
Understanding

Ecological Modeling

Papers for the
Nonmodeler

Steven L. Peck

ODELING PAPERS PLAY A CRUCIAL ROLE in further

ing the science of entomology. In complex

ecological systems, modeling can be used to
predict outcomes, clarify questions, facilitate com-
puter experiments, and manipulate key variables
that would be impossible to do experimentally be-
cause of cost, logistics, or ethics. Yet, to many ento-
mologists, models remain the domain of
mathematicians, statisticians, and others from more
quantitative disciplines. As a result, modeling pa-
pers sometimes are ignored by the biologists for
whom these papers are written. This is unfortu-
nate because a particular model can provide in-
sights that might help those working on an
empirical problem. Conversely, modelers can al-
ways benefit from those working closely with the
biology of the systems that they are trying to model
by fairly assessing the results and assumptions the
modelers have used to describe the systems. It is
important that both modelers and nonmodelers
speak to one another. Modelers, however, seem to
have a language of their own: analytic models? simu-
lation models? individually based models? stochas-
tic models? Readers unfamiliar with modeling might
wonder how these terms relate to the modeling
paper they are trying to understand.

Becoming familiar and comfortable with any
subject is often a matter of getting to know the
terminology and basic tools associated with the
discipline. If you do modeling on a regular basis,
there is little need to read on. This article is not for
you. Some of the more arrogant modelers might
even feel a wave of condescension, believing that
such things ought to already be a part of the tool
kit of every entomologist. Nevertheless, we all ap-

proach entomology from a different perspective
and often use a different set of tools to pursue our
science. Many of my colleagues shudder at the
thought of anything mathematical, and, in their
circles, it is rare that such tools are ever used. This
primer is for them.

Statistical Versus Process Models

Models can be classified in several different ways.
Like any taxonomist, we would like a nice, neat
dichotomous key, but modeling can be an amal-
gam of many different elements. Although there is
overlap between model types, with one blending
smoothly into the next, there are some general rules
and some dichotomies. We will work through these.
But keep in mind that these many models might all
be combined to produce a more complex model. A
list of definitions of all the model types is given in
the glossary.

The first distinction that needs to be made is
between statistical models and process or descrip-
tive models, which are the kind of mathematical
models I describe here. Statistical models are used
to give a probabilistic interpretation of the data.
Familiar statistical models include techniques such
as simple linear regression that fits a line through a
series of data points. Statistical models do not try
to describe underlying processes through an un-
derstanding of biological mechanisms but rather
attempt to find a set of parameters that can be used
to predict relationships that are described by the
data. The science of statistics is one of the most
valuable tools we have for understanding data. It
can help us find hidden patterns, predict future
trends, find differences between one set of biologi-
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cal conditions and another, and provide a measure
of the probability that such differences are signifi-
cant. Still, typical statistical models do not try to
add “biology” in their description. There is no at-
tempt to describe the underlying mechanisms that
might produce the data that we have obtained. The
same statistical model can be used both for look-
ing at a relationship between labor and costs in an
economic model and between larval and pupal
weights in an entomological setting.

Although process or descriptive models often
share many of the goals of statistical models, such
as prediction, they differ because they achieve that
prediction by incorporating a biological descrip-
tion of relevant processes found in the system one
is studying. These types of mathematical models
attemnpt to describe the pertinent aspects of the bi-
ology behind the behavior one sees in the real sys-
tem and to reproduce the data that one might collect
from biological processes. The focus of this article
is on these types of mathematical models, and when
I use “model,” it is in this limited sense. In addi-
tion, the emphasis is on models used to study eco-
logical processes, but much of what I say applies to
other types of models as well {such as models used
to examine physiological processes).

Ecological models can be constructed for sev-
eral purposes and can vary from the specific [e.g.,
How does the parasitoid Tetrastichus giffardianus
Silvestri affect the population dynamics of
Bactrocera dorsalis (Hendel) on wild guava?] to
the very general (e.g., How do local extinctions af-
fect regional population stability in spatially con-
nected systems of subpopulations?). They may be
used to conduct theoretical experiments on sys-
tems for which manipulation is impossible for lo-

gistic or ethical reasons. They allow one to speed
up time and provide a level of control over the
system that would be impossible in the field. They
also may be used to generate hypotheses for test-
ing in the field or laboratory. For example, the
model might suggest that under condition A, and
given assumption B, the system should behave like
X, Y, and Z. The model provides a standard against
which the real system can be compared. If the model
and biology do not agree, it affords the opportu-
nity to explore what might be missing from the
model or examine what we do not understand
abourt the biology of the system. By reducing the
complexity and by focusing on only certain as-
pects of a system, models help us determine which
factors are most important in driving the system of
interest. And, finally, models also can be used to
decide which biological data are most important to
gather. For example, perhaps a model of a specific
system suggests that movement rates influence
population dynamics more than fecundity (perhaps
an attribute already well studied), suggesting that
future research should be directed to movement.

Thus, models complement and support basic
research into the ecology, behavior, and other as-
pects of natural systems. Modeling makes predic-
tions, generates hypotheses, and allows us to
explore questions that otherwise would be impos-
sible to examine.

Assumptions

Models are always an incomplete description
(they even might be called a caricature) of reality
and because of this, a choice must be made on
which aspects of reality to include and which to
exclude. Examples of questions that could be asked
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Fig. 1. The behavior of a model using the deterministic logistic equation N,, = N, + N, K’; N

to predict the size of an insect population through time. The behavior of the model differs depending on the
value of the growth parameter r (see text for details). When r = 2.3, the population has predictable oscillations.
When r = 2.9, the behavior of the model is very erratic and enters into the realm known to mathematicians as

“chaos.”
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would be as follows: What influences the dynamics
that [ am trying to capture in my model? Do I need
to include space in the model? Do the insects mi-
grate first and then mate, or do they mate and then
migrate? Are actual population numbers impor-
tant or will tracking simple proportions be ad-
cquate? Which components of the real ecological
system are important to include in the model to
capture the processes I am interested in examin-
ing? Although all of these types of questions could
be addressed, it is how they are addressed that is
the most important step in deciding if a model is
meaningful because how they are addressed com-
prises the assumptions of the model. Examining
assumptions is arguably the most important con-
tribution nonmodelers can make in helping mod-
elers decide if they have created an adequate
description of the biological process they are try-
ing to capture. Because a model can never capture
every aspect of a natural system, some aspects of
the actual ecological system must be omitted, and
this is where modeling becomes more art than sci-
ence. From my perspective, deciding on what things
to include in a model, what processes I am trying to
capture, and determining the salient components
of the biology that need to be represented are among
the hardest parts of building a useful model.

Examining what is to be included in the model
and what will be omitted is one way the person
familiar with the biology of an insect can be helpful
to the modeler. Is the modeler making a contribu-
tion or just flexing his or her computational muscles
without adding anything relevant to our science?

Assumptions often are not stated explicitly and,
at times, can be difficult to sort out. When examin-
ing a paper, if there are things that are unclear or
you cannot find the assumptions, it is time to give
the author a call. Assumptions make or break a
model. Often, the inner workings of the model,
what tools were used to evaluate the model, and
other details of the modeling process can be evalu-
ated by mathematicians and must take a back seat
to the importance of evaluating biological assump-
tions.

Types of Mathematical Models

Models can be classified by what role random
events play in the model. If nothing is random in
the model, it is said to be deterministic, if random
events are included in the model, it is called sto-
chastic (discussed below). In a deterministic model,
a given set of inputs will always result in the same
answer. For example, the simple model N,,; = 2N,
states that if the population at a certain time zis N,
then at the next time £+1, it will have doubled. This
is deterministic. If you put in the number 100, you
will always get 200 back. This is a simple example,
but deterministic models can be complex. For ex-
ample, one deterministic model I worked with con-
tained more than a thousand lines of computer
code, modeled more than 2,500 crop fields, and
tracked the genetics and population dynamics of
the insects living in each field (Peck and Ellner
1997). The most typical deterministic models that
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you will encounter are difference equations or dif-
ferential equations. These two modeling types also
suggest another way in which models might differ
based on how time is handled in the model. In
discrete-time models, such as difference equations,
time takes on values only at certain time-points
(i.e., time is broken into discrete segments, usually
of fixed length). In differential equations, time is
continuous. We will first look at discrete-time mod-
els, then at continuous time models.

One of the most famous difference equations is
the Fibonacci sequence:

Nt+2 = Nt + Nt+1

For this equation, we need two starting times;
Ny and Nj. If we start with 0 and 1, we get the
famous Fibonacci series: 0, 1, 1, 2, 3, 5, 8, 13, 21,
. . . Fibonacci assumed that if you started with a
pair of rabbits that gave birth when they were 1
month old to a single male-female pair for each of
two consecutive months, and all the rabbits sur-
vived long enough to mate and then died, the num-
ber of pairs after 8 months would be as follows:

Month 1: 0 +1=1
Month 2: 0 +1=1
Month 3: 1+1=2

Month 4: 1+2=3

Month §: 2+3=5

Month 6: 3+45=8

Month 7: 5+8=13
Month §: 8§+13=21

The first number on each line represents the
number of rabbits born 2 months ago; the second
number gives the total born last month; and the
last number, after the equal sign, the number alive
this month (i.e., the number of rabbits born 2
months ago + the number of rabbits born last
month = population size in the current month).

Now, examine the assumptions of this model:
exactly one pair replaces the old pair each month,
rabbits are always born in opposite sex couples,
and only two pairs are born per parental pair each
generation. Are these assumptions realistic? How
could the model be made more realistic? What part
of rabbit biology does this capture? What part does
it ignore? Take some time to work through this
example with the assumptions given. How the
numbers work out might not jump out at you un-
til you work through it with pencil in hand.

Another famous difference equation is that of
the discrete logistic:

Ni.1=N;+ 7N, LS
K 3
where N, is the population size of female insects at
time ¢, 7 is the growth parameter, and K is the car-
rying capacity (the highest number of insects that
can be supported in the location of the popula-
tion). If we start with 100 females, the carrying
capacity is 200, and the growth rate of the popula-
tion, 7, is 1.5 per generation, and we assume a gen-
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eration time of one month, after three months the
population size would be as follows:

Month Population size
Month 0: 100

Month 1: 100 + 1001.5¢(200-100)/20 = 175
Month 2: 175 + 175¢1.5#{200-175)/200 = 207.8

Month 3: 207.8 + 207.81.5¢(200-207)/200 = 196.9

Notice that when the population is above the car-
rying capacity the term in brackets becomes nega-
tive and the population shrinks. This equation is
especially interesting because it demonstrates three
special kinds of population behavior, depending
on the value that r takes: constant, cyclic, and cha-
otic population dynamics. Figure 1 shows the popu-
lation size for this model plotted for two different
values of r. Chaos is a property of certain deter-
ministic dynamic systems in which final outcomes
are sensitive to small differences in initial condi-
tions. In the equation, chaos occurs for values of 7
greater than 2.6. For values of 7 less than 2.6, you
will see stable (although cyclic) behavior. These sys-
tems, although completely deterministic, can mimic
stochastic dynamics (discussed below) in a model
because of their unpredictability. A difference equa-
tion implies (1) time is modeled discretely in steps,
(2) the model is completely deterministic, (3) the
equation completely describes the process, and (4)
specific mathematical tools exist for evaluating the
model.

The other type of deterministic modeling yon
are likely to see is the differential equation model.
In modeling with ordinary differential equations,
we assume that time is continuous. For example,
the classic Malthusian growth model is written
thus:

—— =N,

where and the population size N is a function of
time. Here we see that the change in the population
size (dN/dt) during any instant is the size of the
population multiplied by the parameter #, which
gives the growth rate of the population. We can go
further by “integrating” both sides, which allows
us to find the population size at any time #:

Nt = Noe",

where Ny is the initial population size at time 0 (the
starting time) and e is an analytic number, such as
p, which has a value of 2.7183 if taken to 4 decimal
places. Therefore, if the initial population is 100,
and r = 1.5, and time is being measured in years,
then after 5 years the population will be as follows:

100 » 2.7183 15°3 = 180,804.24 .

By plugging in a few values for ¢, you can see
that the population rises quickly so that in just a
few years, it rises above the ability of your calcula-
tor to handle the large size of the number.

Ordinary differential equation models can be
more complicated, as in this system of three coupled

differential equations from Anderson and May’s
{1981) insect-pathogen model:

%H(su)—uSP
%: vSP - (o = b)]
%i_)=u_(u=v(8+1))1’,

where § is the number of susceptible insects in the
population, I is the number of infected individuals,
P is the number of parasitoids, r and | are the growth
rate of susceptible and parasitoid individuals, re-
spectively, n is the rate of parasitism, a and b are
mortality sources for the parasitized individuals,
and m is the mortality rate of parasitoids. The
analysis of this set of equations goes far beyond
the scope of this paper, but, because we can write
down a formula, there are several well worked-out
methods for understanding the long-term behav-
ior of the system. We can find stable points where
host and parasitoids can coexist and find a set of
parameter values where one or both populations
become extinct. When you see a differential equa-
tion, you know at least four things: (1) time is
modeled continuously, (2) the model is completely
deterministic, (3) the equation completely describes
the process, and (4) there are specific mathematical
tools for evaluating the model.

In short, the difference between difference equa-
tions and differential equations is that the former
evaluates the population at discrete time-points
whereas in the latter, time is considered continu-
ous. In general, continuous models are handled
more easily mathematically. In reality, however, we
usually have to examine the populations we are
studying at specific time points so discrete models
may be closer to what we might expect to examine
in the field.

Unlike deterministic models in which there are
no random events, stochastic models explicitly
contain randomness. Even simple processes rarely
are understood well enough to predict the out-
come with complete accuracy. For example, the
physics of flipping a coin are fairly well under-
stood, but tiny variations in the coin’s initial ve-
locity, the angle of its launch, and the air currents
surrounding its spin all provide enough variation
to make it a wonderful way to randomly choose
who gets to kickoff first in a soccer game. Com-
paratively, the complexity of an ecological system
is enormous, and stochastic forces play a major
role. Almost every aspect of any measurable sys-
tem will vary because of natural variation and
complex interactions. One way to mimic these ef-
fects in a model is to add randomness to some of
the parameters; this adds a degree of realism that
is lacking in deterministic models. Adding ran-
dom variables also allows us to examine how the
natural variation in parameter values affects the
overall behavior of the system. For example, if
you know that a pest moves an average of 4 m
and individuals overall move between 1 and 7 m,
you can incorporate both pieces of information
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into the model to explore the effect of that varia-
tion on the rate an insect population disperses
throughout a region.

A stochastic model implies that there is some-
thing random in the model. For example, to decide
how many eggs are laid per female, in a model that
follows the dynamics of a simple population, a ran-
dom number might be chosen between 1 and 20.
The randomness in the model might come from
any number of statistical distributions and may be
very sophisticated, but the basic idea is that there
are events in the model that cannot be predicted.
At one time you might put in N insects and get out
2N, and the next time you might put in N insects
and get out 4/9N insects. The kinds of stochastic
models that you will see in the entomological litera-
ture generally require that you run them many times
so that you can get a feel for the variation and
average behavior of the model (just as in biological
systems, modelers often will talk about “model
behavior” meaning the output pattern through
time) and how much it varies from time to time. If
an author of a stochastic model presents only one
run, or there are no error bars on the plots, it is a
red flag that the model may not have been explored
thoroughly. An exception might be if it is a model
based on stochastic equations (which are beyond
the scope of this article) in which some of the model
parameters are defined as random variables and
from these equations, distributional properties of
the model, such as its mean and variance, might be
derived using certain mathematical techniques for
dealing with these kinds of equations. This brings
us to still another way to split models: analytic
versus simulation models.

Analytic Models. Analytic models usually have
a specific mathematical form (i.e., you can write an

equation for the model). They may be either deter-

ministic or stochastic. If the model is stochastic,
some of the parameters in the model will be defined
as random variables (i.e., parameter values come
from a probability distribution)—rather than just
taking on a fixed number, as do the parameters in
deterministic models. Analytic models are the sort
used to describe gravity in your high school phys-
ics classes, or the famous E = mc2. Analytic models
are not simple necessarily, and they include every-
thing from large systems differential equations to
large, spatial arrays of interacting equations called
coupled-map lattices. They are especially valuable

because there are well-developed mathematical tools
that can allow the modeler to explore the behavior
of these models in great detail. For example, with
analytical models you can find the particular value
of model parameters where the model behavior
changes. The drawback of analytic models is that
they often cannot handle the complexity of real
biological systems.

Simulation Models. The popularity and growth
of simulation models, or as they are sometime called
computer models, has followed the advance in
modern computer technology. Simulation models
(Table 1) are the most likely type of model that a
reader will encounter in the entomological litera-
ture. Computers allow us to model very complex
processes and, often, are limited only by the imagi-
nation of the modeler. This can be problematic be-
cause the complexity of simulation models can
quickly rise to the level of that found in the biologi-
cal process itself. Among the principal reasons to
model a system is to reduce the complexity so that
underlying processes can be understood more
clearly. When a simulation model becomes too com-
plex, this advantage is lost. Understanding com-
putational models requires much more work, and
interpretation of these models must be examined
carefully. These models can, however, handle the
biological complexity that would have been un-
heard of in the years before the development of
modern computer technology.

Two kinds of simulation models, rule-based and
individual-based, can be particularly valuable to en-
tomologists. Rule-based modeling is characterized
by having the computer follow the same rules that
an insect, or insect population, might follow when
faced with given environmental factors or natural
situations. There are now computer packages that
require little, if any, mathematical know-how that
will allow one to define rules and relationships for a
system and run simulations from rules one has de-
fined. Individual-based modeling, often a kind of
rule-based modeling, follows the activities of indi-
vidual insects through time and/or space. This al-
lows “computer insects” to interact with their
computer environment and other members of the
population, providing the opportunity for a detailed
description of the original system in the model. It
allows one to look at how individual behaviors may
influence population-level processes.

There are computer packages available for rule-
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Table 1. A sample of modeling papers published in Environmental Entomology between 1989 and 1998 classified by
whether they are analytic or simulation, and deterministic or stochastic.

Model Deterministic Models Stochastic Models
Analytic models Schaalje 1990, Yu et al. 1992, Brewster and Allen 1997 Munholland and Dennis 1992
Simulation models  Culin et al. 1990, Geden et al. 1990, Berry et al. 1991, Besin et al. 1991, McCann et al. 1989,
Wilhoit et al. 1991, Flinn et al. 1992, Follett et al. 1993, 1995, Kemp and Dennis 1991,
DeGrandi-Hoffman et al. 1994, Korzukhin and Porter 1994, McKibben et al. 1991,

Flinn and Hagstrum 1995, Gribko et al. 1995, Hagstrum 1996, Provencher and Riechert 1994

Regniere 1996, Carter et al. 1998, Throne et al. 1998, Weseloh 1998

Nonspatial models are in black; spatial models in blue (see Spatial Models section).
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Start time t (a)
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mate & Lay eggs

larval movement

* S: proportion of field planted in susceptible cotton

end time t )

adults migrate
to neighboring
fields

genotype--
plant-type specific
adult emergence

T: proportion planted in transgenic cotton

()

genotype--plant-
type specific

selection

density dependent

survival

Fig. 2. This spatial model (Peck et al. 1999), which explores the regional development of
resistance in Heliothis virescens (F.) to a Bacillus thuringiensis Berliner (Bt) d-endotoxin in
transgenic cotton, has several compartments. In each day and within every field, the
activities of the insects are represented in the model by using compartments to handle
the separate aspects of their life history. Starting in the upper left-hand comer (a), the
insects randomly mate and lay eggs, which are then divided among the plantings of
susceptible and transgenic cotton in the field. These eggs hatch and the larvae move
between the two crop types (b); the size of the arrows indicate that most movement is
from the transgenic crop to the susceptible plants because larvae are more likely to drop
once they have tasted the Bt-containing leaves. These events are followed by (c)
selection through mortality (based on their allele type and what kind of plant they are on),
(d) density dependent survival (if the population is large), (e) plant-type (transgenic or
susceptible) specific adult emergence, and (f) migration to neighboring fields, after which
a new day begins and the same processes are repeated. Each of these compartments is
a separate model! that captures a particular life history stage of the insect and then
passes the information it has generated to the next compartment. By sharing information
among the compartments, the entire life history of the insect can be modeled.
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based modeling, but, often higher level languages
like C, C++, FORTRAN, PASCAL, or BASIC are
used. In particular, object-oriented programming,
which is available in some newer computer lan-
guages such as C++, provides an excellent envi-
ronment for rule-based programming.
Object-oriented programming languages allow one
to define objects with certain attributes and func-
tions that are associated with these objects. For
example, I developed a program in C++ that de-
fined insects as one class of objects. Associated
with an insect object was its sex, genetic makeup,
location on a plant, and its fecundity. Rules asso-
ciated with the inscct-object included how the in-
sect should respond when it met another insect,
or move when it was living on a dying plant. The

insect objects foraged and moved among plant
objects that, in turn, had attributes such as health
and a location in the field. It was like having a
minimicrocosm in my computer!

Simulation models are relatively easy to pro-
duce, largely because they typically are computer
programs designed to mimic aspects of a biological
system. Nevertheless, their testing and interpreta-
tion can be time-consuming. For example, in a com-
plex simulation model of Heliothis’s resistance to
transgenic cotton (Peck et al. 1999), the model was
constructed in just over 1 month, but testing and
refining took more than 1 year, thousands of runs,
and a substantial investment of time to convince us
that the model was doing what we hoped it would
do. Most of the hard thinking started after the
model was written as we devised ways to test the
model and sort out its complexities.

The amount of effort to develop the Heliothis
model is typical of what is required to develop a
simulation model. Never let their simplicity to con-
struct lull you into thinking that they are a quick-
and-dirty method of exploring complex questions.
When done correctly, they can be among the most
time-consuming methods of modeling. There has
been a lively debate on simulation versus analytic
modeling, and the role of population dynamics
modeling (Berryman 1991, 1997; Onstad 1991;
Logan 1994; Hess 1996a). These articles in the
American Entomologist describe in detail some of
the issues and problems with these two types of
models.

Often one will see several of the model types
described in this article combined into a larger more
complex model. For example, a compartment
model will consist of several analytic, and/or simu-
lation models combined to produce a single model.
Typically, these are explored through simulation,
The analytic models are run in “compartments,”
and the information from these runs is passed on
to other compartments, which in turn mode! dif-
ferent aspects of the system. The flow of such a
model is illustrated in Fig. 2. Each of the compart-
ments is controlled by a mathematical or simula-
tion model that passes information to the next
compartment after modeling the processes repre-
sented inside the individual compartment.

The Representation of Space in Models
Increasingly, it has been recognized that the spa-
tial dimension in which organisms move plays a
major role in ecological processes (Levin 1989,
Karieva 1990). Living things move. Individuals,
populations, and even entire ecosystems change
their location at spatial scales ranging from milli-
meters to thousands of kilometers. This annoying
fact has plagued ecological studies since the time
that insects first descended upon our ancestors’
plantings of domesticated crops. If living things
would just stay put, they would be so much easier
to study, understand, and quantify. But they do
not—and we just have to deal with it. To under-
stand what effect space has on the dynamics of a
population in the field can be challenging. Models,
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however, allow the addition of spatial manipula-
tion with comparative ease.

Spatial Models. An important decision for de-
veloping spatial models is how space is handled in
the model. Space usually is incorporated either im-
plicitly or explicitly. With spatially implicit models,
we look at the proportion of sites with a specific
attribute but track nothing about actual location
or spatial relationships. The most famous of these
is Levins’ (1969) metapopulation model. A
metapopulation is a group of subpopulations con-
nected by the dispersal of individuals among the
patches that make up a regional population. Levins
proposed a model that followed the change in the
proportion of patches that is occupied:

d
L 1 -p)-xp.

In this model, p is the proportion of patches
that is occupied. The parameter # is the movement
rate between patches, x is an extinction rate, and ¢
is time. The term on the left, you will recall from
calculus, dp/dt is the derivative operator (and if
you have forgotten calculus, this gives the slope of
p as a function of ¢, so we know how fast and in
which direction p is changing with ¢). This model
predicts that the proportion of occupied patches
will stabilize over time to the value 1-x/m. For ex-
ample, if the extinction rate is x = 0.10 per time
period, and the movement rate is m = 0.50, the
proportion of occupied patches in this region over
the long term would be 1-(0.1/0.5) = 0.8. In this
model, we do not actually know anything about
the location of the patches, and there is nothing in
the model about the distances between patches. We
only know the proportion occupied—hence, space
is implicit, rather than explicit. In these kinds of
models, there is no measure of distance or direc-
tion between sites.

Spatially Explicit Models. These models incor-
porate the idea of distance as an aspect in the model
(i.e., some places are further away than others).
Fig. 3 illustrates several ways space may be repre-
sented in a spatially explicit model. All of these
madels are discrete. In stepping-stone models (Fig.
3 a and b), insects may disperse only to adjacent
patches. This implies that for a member of a popu-
lation at one location, it may take several steps to
reach a more distant patch. In an island-continent
model (Fig. 3c}, all dispersing individuals come
from a mainland source and movement among the
islands typically is ignored; in an island model (Fig.
3d) the interaction of interest is among islands.
Notice that in each of the spatial representations
illustrated in Fig. 3, the idea of distance is inherent
in the model. Some things are closer to others and
this affects the dynamics and behavior of the model.

Metapopulation Models. These models may be
implicit or explicit. Metapopulation modeling re-
cently has generated much interest, especially in
conservation biology (Hanski and Kuussaari
1995). Formally, a metapopulation (Fig. 3e) is de-
fined as a set of populations distributed over a
number of patches that are connected by dispersal
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Typical Arrangements for Space in Modeling Papers

Stepping-Stone Models (2)

Each population exchanges with its neighbors

Cellular-Automata (b)
(two-dimensional stepping-stone model)

Each population
exchanges with
its neighbors f
e -0‘0- nd

Island Model (d)
Any population can exchange

Island-Continent Model (c¢)

Islands receive immigrants
from mainland pool

Metapopulation Model (e)

«m» - occupied patch
< - unoccupied patch

with any other

Fig. 3. Space can be handled in a number of different ways. The spatial structure that is

used in a model should match the biological process one is trying to capture with the
model. In a stepping-stone model (a), populations can exchange individuals with
neighboring populations but not with more distant populations. Cellular automata (b) is a

two-dimensional spatial model that also incorporates discrete time to signify the model's

behavior. These two models (a and b) consider local processes so that changes that
start in one population spread more slowly to the rest of the other populations in the
region. In an island-continent model (c), exchanges in population only happen in one
direction— a large population (the continent) sends out individuals that arrive on the

islands. In an island model (d), each of the spatially separated populations can exchange
with any other population; however, the rates of exchange can vary among the different

populations. In typical metapopulation modeling (e), one is concerned with a population of
habitat patches of varying sizes, some of which are occupied and some of which are not.

(Hess 1996b). In metapopulation models, the ques-
tion of interest often is about exploring the inter-
action between habitat patches with a viable
population and habitat patches in which the popu-
lation has become extinct. For example, how many
metapopulation patches must be occupied with vi-
able populations, and what movement rates among
patches are necessary to avoid extinction of the
regional population for a given number of years?
Moilanen and Hanski (1995) used a metapopu-
lation model to explore the relationship between
habitat destruction and the coexistence of two com-
peting populations of butterflies.

Continuous spatial models also play an impor-
tant part in modeling space. These types of models
typically use partial differential equations to ex-
press the dynamics of population movement in the
model. As with ordinary differential equations de-
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scribed earlier, partial differential equations assume
that both time and space are continuous, and they
have the following form:

3 &b

8_t = pa +1rb s

where b is the population density at location x and
time ¢, m is the dispersal rate, and 7 is the growth
rate. [ illustrate this only to give an example of
what the equations look like should you come
across one while reading a modeling paper. Their
full analysis is beyond the scope of this article, but
many of the same assumptions hold as in ordinary
differential equations and should be stated in the
paper. The assumptions should be examined as
carefully as any other type of model. The model is
deterministic {although stochastic versions do ex-
ist) and there are specific tools for evaluating these
types of equations.

Tackling the Modeling Paper

Table 1 lists a selection of articles from Envi-
ronmental Entomology classified according to
some of the criteria mentioned above. In examin-
ing these articles, one should explore their assump-
tions: Are they clear? What should be added or
deleted from the model? What assumptions
strengthen the modeler’s case? What things weaken
it? This table makes it clear that the most common
kind of modeling is deterministic simulation mod-
els. From a probability standpoint, therefore, these
likely are the kinds of models that will cross your
desk. These also are the models that require the
most careful review from entomologists familiar
with the system being modeled.

The first step in evaluating a modeling paper is
to determine what questions the authors are trying
to address. Why did they write the model? Was it
to make predictions for insect control programs?
Was it to conduct computer experiments that
would be impossible for the real system? Were the
authors exploring theoretical questions? How gen-
eral or specific did they hope to make their results?
The answers to these questions will help in assess-
ing the modeler’s goals and how well they met them.

The next step is to identify the modeler’s as-
sumptions. First, look for the assumptions offered
up front {i.e., look for explicit statements about
the assumptions). There typically will be statements
such as “We assume that the number of eggs laid
per female is . . .” Next, list the variables used in the
model. This gives you a picture of what aspects of
biology are supposed to be included in the model.
Determine if important processes appear to be miss-
ing. How did the modeler handle space and time?
Remember, however, the mode! always will be a
simplification of the real system. The question is
thus: Were critical processes omitted?

Next, look at the flow of the model, (i.e., the
order that events take place). For example, deter-
mine if reproduction precedes or follows move-
ment, which can have profound repercussions on
the results (Alstad and Andow 1995). Does feed-
ing come before or after reproduction? Does the

order of events mirror the way things really hap-
pen in the system being modeled?

Exploring a modeling paper does not mean you
need to understand everything about the work-
ings inside of the model. But you should not be
intimidated to the point that you ignore the paper
because your modeling background is weak (or
nonexistent). You can make a real contribution by
looking over the details of a modeling paper. It
may be that the model never has been explored by
someone with your biological insight into the pro-
cesses being modeled; your comments and ques-
tions about how the model works can be a valuable
aid to the modeler. The role of the biologist’s view
of the model cannort be overstated. Otherwise, a
model may end up being an exercise in computa-
tion only, and of little practical value. h 4
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