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Introduction
This tutorial was created as a gentle introduction to the R environment via the R Studio interface to R.
While it could be a general introduction to R, the primary objective of this document is to serve as a
“hands-on-tutorial” for the course of “Modela??o Ecol?gica”. It does not assume any knowledge about R, but
some basic programming notions would be desirable.

There is an extensive community revolving around R, and abundant courses, tutorials, books, blogs, list
servers, etc, freely available online. We provide here a small list of these that might be particularly helpful
for beginners:

• R webpage - the main R webpage, including links to downloading R, manuals, tutorials, dedicated
search engines, etc.

• R video tutorials - video how to’s in R
• Online tutorial - a course with interactive exercises
• Online course - notes for a two-day course in R
• Reference card - A very handy list of useful R functions
• Short reference card - A longer reference card with most commonly used R functions
• Cheat sheets - an incredible useful set of resources from the R Studio team, where self contained subject

specific sets of functions are provided for different common tasks

To facilitate the interaction with R we leverage on RStudio, a piece of software which allows users to have
at a click’s distance many useful features in R. In the following sections of the tutorial you will be guided
through a first session of R via RStudio.

The tutorial is intended to follow a brief presentation about R and RStudio, their interaction and capabilities.
It assumes that R and RStudio have been previously installed in the computer you are using. The latest
version of both software packages is recommended. Both are free and open source.

Introduction to R Studio
Nowadays most users (except perhaps die hard command line users) will use some sort of graphical user
interface (GUI) to R. While the basic R installation comes with a simple GUI, here we adopt the use of
R Studio, which considerably facilitates an introduction to R by providing many shortcuts and convenient
features which we introduce next.

A major advantage of RStudio is that it makes it easy for you to type your R code into a script window,
which you can easily save, and then send individual lines or blocks of code to the R command line to be acted
upon. This way, you have a record of what you have done, in the saved script file, and can easily reproduce it
any time you like. We strongly recommend that you save your code script.

Given RStudio has been installed, when you double-click on a R workspace it should open in RStudio. Note
that, if this fails, you might have to first associate .Rdata files with RStudio. After the presentation on R
and RStudio you just sat through, from within RStudio you should be able to know where to find:

• the command line (bottom left pane 1)
• the code scripts (top left pane)
• the workspace objects (top right pane)
• the loaded packages and how to load them (bottom right pane)
• the created plots (bottom right pane)
• the help files (bottom right pane)
• a file navigator system akin to windows explorer (bottom right pane)

Note that you can customize the aspect of RStudio (e.g. font size and colors of the smart syntax highlighting
scheme) via “Tools|Global options”.

1All the tab positions are the RStudio defaults, but this can be customized by the user later.
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A very handy feature of R Studio is that you can preview the possible arguments of functions, as well as their
description, directly when you are inserting the code. Let’s try doing that. Type say seq() in the command
line or the script window and then place the cursor between the parenthesis and press the “Tab” key. . . Is
this a nice feature or what?

Now we have met RStudio and we know how it can make our life simpler, let’s move on.

Dynamic reports and reproducible research
One of the most amazing features of the integration of R and R Studio is how simple it becomes to work
with dynamic reports. This will take you to the next level in data analysis!

Actually, this document was itself created as a dynamic report, using R Markdown. You should explore some
of the basics of R Markdown, and you can do so here: https://rmarkdown.rstudio.com/authoring_basics.html.
You can find additional details here: https://rmarkdown.rstudio.com/. You can read an entire free book on
the topic here: https://bookdown.org/yihui/rmarkdown/.

Experiment yourself to create one. In R Studio, select File - > New file -> R Markdown. . . , then just add a
title, something like “My first dynamic report” and see what happens. Explore the content of the file just
created and see what happens when you press the R Studion buttun knit. Experiment with the created
document to try and change some of the output.

Imagine the potential when you are analysing real data, and the data changes after your report is written!

A first quick session in R Studio
Open RStudio. By default an empty workspace should appear. If you have an existing workspace, you can
open it by selecting File|Open File. We recomend that you begin by creating a script file (Ctrl+Shift+N,
RStudio Shortcut) and use that to save and comment all your code that will be executed during the tutorial.
In this way you will have a record of everything you did.

You know that R is ready to receive a command when you see the R prompt on the command line (on the
bottom left tab by default in R Studio): >. If you type a line of code that is not complete, R presents the +
character, so that the user knows it expects the conclusion of the current line.

Important note: while the prompt > and + might not be shown in this tutorial’s code, they are often
present in material online. You should not try to add either > nor + to the command line: this is something
that R does for you and will complain if you try to do it yourself! Past experience tells us that more than
one person will have problems because they forgot to delete a > and/or + from code when they copy paste
the code into their own R sessions. Avoid being that person!

On the top right corner tab, where objects available in the Environment are listed, you currently have no
objects.

Here we just create a couple of objects and use them, but below we will do it again in more detail. Now we
just want to create some objects so that we can then save them and retrieve them again.
# assign the value 3 to the object hh2
hh2<-3
# assign the value 5 to the object hh3
hh3<-5
# multiply them up
hh2*hh3

## [1] 15
# add them up
hh2+hh3

## [1] 8
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#note how you can write comments in R by using "#"
#anything in front of # is not interpreted by R
#and treated as a comment
#you should have the good habit of extensively commenting
#all your code so that you know what you've done
#when you return to it even months or years later

We can print an object to the screen by simply typing its name and press enter (despite the fact that currently
you can actually see the values on these objects Environment tab - but that is because they are simple objects
and the workspace is almost empty.)
hh2

## [1] 3
#same as
print(hh2)

## [1] 3

R is a very powerful calculator! Try some simple maths, say for example (you need to press enter after each
line so that the line is evaluated)
4+3

## [1] 7
log(8)

## [1] 2.079442
sin(pi)

## [1] 1.224606e-16
1234*sqrt(234)-12/23*4^(0.12-0.4)

## [1] 18876.22

Tip: There is actualy a simpler way to do sourcing from the script file in RStudio. CTRL-Enter is a keyboard
shortcut for “source the current line of code in my script file and move the cursor to the next line”. In general
if you like keyboard shortcuts, look in RStudio under the menu Help | Keyboard shortcuts - there are
probably many more than those you will be able to remember!

It is now time to end our first R session. At this point you need to decide what to do, as all objects created
so far are in the memory, but this will be wiped out unless we explicitly save it to a file. The easiest way to
do so is by calling the save.image function
save.image(file="my1stR.Rdata")

Note the unusual extension name .Rdata associated with R workspaces (an R file is called a workspace). We
could now load up this workspace in a new R session, or typically we will load up that workspace by starting
R by double clicking on the file created. Do this to see that you retrieve the above created objects. Note that
if you already have an R session open, you can load up any previously saved workspace via function load.

Note that you have saved your workspace in some directory but you have not defined it. By default, this is
your working directory. You can check what that directory currently is by using the following command
getwd()

## [1] "C:/Users/tam2/Dropbox/Trabalho/DBA/20192020/ME2019/aulas/Intro2R Tutorial/Rtutorial"
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You can always change the directory you are working on by setting it up explicitly to your desired location,
using
#set the working directory - but remember to use your own path!!!
setwd("C:/Users/tiago/Desktop/mycourse")

It is a very good habit to make sure that you are working in the directory you think you are working. Many
errors might occur if R can’t find some object or file because it is looking on the wrong place.

Now you have used R in RStudio, let’s use the power of their integration to work directly in a dynamic report.

Working through R via a dynamic report
Create a new dynamic report using a RMarkdown file, as described above. Comment all you do in the
appropriate place. At the end you will have a record that makes it easy to track everything you did, and a
template you can use in future classes.

Once you created the RMardown from scratch, your workspace is tipically empty, but we can change that
easily by creating new objects. We will create a variable called myvar1 which we will assign the value of 4.
This is typically done using the assign operator <-.
myvar1<-4

There are typically multiple ways to do the same thing in R, and this is sometimes referred to as a disadvantage.
For simplicity, we deliberately avoid presenting the several alternatives for each action, and concentrate on
the ones we prefer. This is not the same as saying these are the best, and if you continue to work with R you
will likely get used to doing things your way - for now we do it our way!

An object should have been created in your workspace. You can list all objects in a given workspace using
ls()

## [1] "hh2" "hh3" "myvar1"

You can also remove any object by using therm function, so here we remove myvar1.
rm(myvar1)

and hence our workspace is empty again.

Task 0: Create some objects and assign numbers to them. Then try to make some basic calculations with
the objects you just created. Finally, clean up the workspace again.

Note a key difference between the functions ls and rm. While the first function does not need any arguments,
the second requires at least one argument (but can take several). This can be easily seen by checking their
help files and noting that rm needs at least 1 explicit argument while ls can work with defaults
?rm

This is a convenient way to obtain more information about a given function. If one does not know what
the name of the function might be, one can search for functions containing a given string. The following
command lists all the functions with the string mean in them.
apropos("mean")

## [1] ".colMeans" ".rowMeans" "colMeans" "kmeans"
## [5] "mean" "mean.Date" "mean.default" "mean.difftime"
## [9] "mean.POSIXct" "mean.POSIXlt" "rowMeans" "weighted.mean"

Not surprisingly, most if not all of these functions will be used for some kind of calculation involving a mean.
You can look into any one of them using the ? as above. We have assigned a number to a variable , but we
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can actually more generally have vectors (strictly, myvar1 was a numeric vector of length 1) containing a
large number of values “inside” them.

The following code assigns some numbers to 5 different vectors.
x2<-c(1,2,0.12,4,-22)
x3<-seq(1,8,by=2)
# : useful shortcut for sequences with the by argument = 1
x1<-1:5
z1<-10:8
z2<--10:10

Take a peak at the objects just created:
x1

## [1] 1 2 3 4 5
x2

## [1] 1.00 2.00 0.12 4.00 -22.00
x3

## [1] 1 3 5 7
z1

## [1] 10 9 8
z2

## [1] -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
## [18] 7 8 9 10

The function seq is very useful for setting sequences of numbers. The optional arguments length.out and
along.with provide extra flexibility.

We can use the usual mathematical operators over vectors. A few examples follow:
x1+x2

## [1] 2.00 4.00 3.12 8.00 -17.00
x4<-x1+x2
x5<-x1-x2
x6<-x1*x2
x7<-x1/x2
x4

## [1] 2.00 4.00 3.12 8.00 -17.00
x5

## [1] 0.00 0.00 2.88 0.00 27.00
x6

## [1] 1.00 4.00 0.36 16.00 -110.00
x7

## [1] 1.0000000 1.0000000 25.0000000 1.0000000 -0.2272727

Note that if the vectors are of the same length, R performs the operation element-wise. Another useful
feature is that R recycles vectors if they are not the same length
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x8<-c(1,2,3,4)
x8+2

## [1] 3 4 5 6

However, if one of the vectors is smaller, unexpected behaviour can happen, because R recycles elements
regardless (so be careful, a warning is typically produced)
x9<-c(3,4,5)
x10<-c(0.7,0.9,1.3)
x9+x10

## [1] 3.7 4.9 6.3
x8+x9

## Warning in x8 + x9: longer object length is not a multiple of shorter
## object length

## [1] 4 6 8 7

Notice that a warning message was produced when x8 and x9 were added. Usually these messages are
important and should be read! Quite often the answer to your current question lies in the previous error or
warning message.

Another useful function is rep, which allows one to create repetitions of patterns. As examples, see the
difference between the next two lines of code
rep(c(1,2,3,4),times=3)

## [1] 1 2 3 4 1 2 3 4 1 2 3 4
rep(c(1,2,3,4),each=3)

## [1] 1 1 1 2 2 2 3 3 3 4 4 4

We have just started R, created and removed some objects, and used simple functions like ls, seq or save.
R is an object oriented language, and functions and vectors are just examples of types of objects available in
R. In the next section we go through the most commonly used classes of objects in R.

Types and classes of objects
Objects can have classes, which allow functions to interact with them. Objects can be of several classes.
We already used the class numeric, which is used for general numbers, but there are also additional very
commonly used classes:

• integer, for integer numbers
• character, just for character strings
• factor, used to represent levels of a categorical variable
• logical, the values TRUE and FALSE

While many others exist, these are the more commonly used. Another type of object which we have already
used are functions.
class(mean)

## [1] "function"

While there are thousands of available functions inside R, later we will learn how to create our own functions.

Outputs of some analyses have special classes, as an example, the output of a call of function lm is an object
of class lm, i.e., a linear model. Many packages introduce special classes for objects, so that functions know
how to behave when those objects are used as arguments. Typically, functions behave differently according to

7



the class of an object. As an example, note how summary treats differently an object of class factor or one of
class numeric, producing a table of counts per level for a factor but a 6 number summary for numeric values.
obj1<-factor(c(rep("a",12),rep("b",4),rep("c",2)))
summary(obj1)

## a b c
## 12 4 2
obj2<-c(2,5,-0.2,89,12,-3,-5.4)
summary(obj2)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -5.4 -1.6 2.0 14.2 8.5 89.0

We can check the class of an object using function class, as in the following examples
class(obj1)

## [1] "factor"
class(obj2)

## [1] "numeric"
class(TRUE)

## [1] "logical"

It is sometimes useful to coerce, i.e. force, objects into different classes, but care should be used when doing
so. Some examples are presented below. Can you describe in your own words what R did below?
as.integer(c(3,-0.3,0.4,0.6,0.9,13.2,12))

## [1] 3 0 0 0 0 13 12
as.numeric(c(TRUE,FALSE,TRUE))

## [1] 1 0 1
as.numeric(obj1)

## [1] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3

A common way to organize multiple vectors together is in the form of a matrix. Here we create such an object
mat1<-matrix(1:12,nrow=3,ncol=4)
mat1

## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12

Note that by default R fills the first column (with 1,2,3) then the second column (4,5,6) etc. If you want it to
fill the first row, then the second, you can use the optional argument byrow=TRUE, like this:
matrix(1:12,nrow=3,ncol=4,byrow=TRUE)

## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
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R also allows data structures with more than 2 dimensions – we don’t cover those here, but look up the help
on “array” if you’re interested. A matrix is just a two dimensional array.

Arrays are useful objects, but can be complex to visualize due to their potential high dimensionality. Another
common type of object is a data.frame. This is essentially a matrix but for which each column can be of a
different type. These are what we would typically associate with an excel spreadsheet or a table in a database.
Typically columns correspond to variables observed in a number of subjects, each subject recorded in its own
row. A simple example with 3 variables and 5 subjects follows:
mysex<-c("male","female","female","male","male")
myage<-c(34,23,56,45,12)
myhei<-c(185,178,167,165,148)
df1<-data.frame(ID=1:5,sex=mysex,age=myage,height=myhei)
df1

## ID sex age height
## 1 1 male 34 185
## 2 2 female 23 178
## 3 3 female 56 167
## 4 4 male 45 165
## 5 5 male 12 148

Typically, data.frames are used to store the data we subsequently analyse. Usually the data are not manually
imputed as above, but read into R from other software, using R functions addressed in a later section.

A data frame is just a special type of list. A list can contain objects of different types and dimensions.
An example is here
list1<-list(Note="whatever I want here",X2=4,age=1:4)
list1

## $Note
## [1] "whatever I want here"
##
## $X2
## [1] 4
##
## $age
## [1] 1 2 3 4

Lists are typically used to store outputs of computations which require different kinds of objects to be
recorded. Note the use of $ to access the sub components of a list or a data.frame.
list1$X2+10

## [1] 14

Alternatively, one might use index to retrieve elements of a list
list1[[3]]+5

## [1] 6 7 8 9

In the next section we will learn more about using indexes to access subsets of data.

Subsetting data
One useful feature of R relates to how we can index subsets of data. The indexing information is included
within square brackets:[ ]. As an example, we can select the 3rd element of a vector
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x<-c(1,3.5,7,8,-7,0.43,-1)
x[3]

## [1] 7

but we can also select all except the second and third elements of the same vector
x[-c(2,3)]

## [1] 1.00 8.00 -7.00 0.43 -1.00

We can also select only the objects which follow a given condition, say only those that are positive
x[x>0]

## [1] 1.00 3.50 7.00 8.00 0.43

or those between (-1,1)
x[(x>-1) & (x<1)]

## [1] 0.43

Note the subtle difference between the previous and next statements
x[(x>=-1) & (x<=1)]

## [1] 1.00 0.43 -1.00

which reminds us we should be careful when setting these logical conditions, especially when working with
integer boundaries which might be on the limits of those conditions. Note indexing can be done using
additional information. As an example, we select here the elements in x such that the corresponding elements
in y are positive:
#rnorm(k) produces k Gaussian random deviates
x<-rnorm(10)
y<-rnorm(10)
x2<-x[y>0]

When working on a matrix the indexing is done by row and column, therefore for selecting the value that is
in the third row and second column of a matrix we use
mat1[3,2]

## [1] 6

but we can also select all the elements in the second row
mat1[2,]

## [1] 2 5 8 11

or the fourth column
mat1[,4]

## [1] 10 11 12

Mathematical functions and simple data calculations
Within R there are a number of mathematical operators but also mathematical and statistical functions. As
any other functions, many of these have required parameters and optional parameters. It would take a very
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long time to describe even the most basic functions. Therefore, we prefer to let you try hands on explore a
number of these.

Task 1: Take your time to explore the functions below: sum(x), sqrt(x), log(x), log(x,n), exp(x),
choose(n,x), factorial(x), floor(x), ceiling(x), round(x,digits), abs(x), cos(x), sin(x), tan(x),
acos(x), acosh(x) , max(x), min(x), mean(x), median(x), range(x), var(x), cor(x,y), quantile(x).

(Tip: do not forget that you can get a full description what each function can be used for, what arguments it
takes, and what kind of output it produces, using ?. Further, the help of most functions includes examples of
their use, which proves invaluable to understand their usage.)

Importing and exporting data
Rather than importing data into R manually, typically the data we work with are imported from some
external source. Typically this might be some simple file format, like a txt or a csv file, but while not covered
here, direct import from say Excel files or Access data bases is possible. Such more specialized inputs often
require additional packages.

R Studio includes a useful dedicated shortcut Import dataset, by default available through the top right
window of R Studio’s interface. Note this shortcut essentially just calls the appropriate functions required for
each import. Here we present a couple of examples just for practicing.

First, we load up a data frame which exists in R (note R includes a large variety of example data sets which
are useful to illustrate the use of code) and contains an example data set, with variables measured in 150
flowers of 3 varieties. This is in object iris, and we use the function data to load it so that we have access
to it.
data(iris)

we can take a look at what this data set contains
#example of head use: see the first 4 rows in iris
head(iris,4)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
#example of str use
str(iris)

## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#example of summary use
summary(iris)

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
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## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##

Now we create a new data frame which we then modify to include a new variable
mydata<-iris
mydata$total<-mydata$Sepal.Length+mydata$Sepal.Width+
mydata$Petal.Length+mydata$Petal.Width

Now, we are going to export this data set as a txt, named mydatafile.txt
write.table(mydata,file="mydatafile.txt",row.names=FALSE)

Note the use of the optional argument row.names=FALSE, otherwise some arbitrary row names would be
added to the file. If you look in the folder you are working in, you should now have a new file there. Open it
and check that it looks as you would expect. Next, we are going to import it back into R, into an object
named indat.
indat<-read.table(file="mydatafile.txt",header=TRUE)

So now we have our data back in R.

Task 2: Import the file dados1.csv into R, giving it the name newfile. Tips: Explore the possible options
including (1) Import Dataset shortcut in the Environment tab, (2) the optional argument sep="," in
function read.table or (3) consider using function read.csv.

Graphics
One of the most amazing R capabilities are its graphics customization properties. One can create pretty
much any graphic output desirable. The plot function is, as we have seen before for function summary, a
function that attempts to do something smart depending on the type of arguments used. Using the data set
iris previously considered, plot examples are implemented below, with some optional arguments being used
to show some of the possibilities to customize plots.
#default use
plot(indat$Sepal.Length)
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We now add some labels to a new plot of sepal length as a function of species (note the use of ~ to mean “as
a function of”; this is also used below when specifying regression models, where the object on the left of ~
will be the response variable and the objects on the right explanatory variables)
ys<-indat$Sepal.Length
xs<-indat$Species
#note use of ~ to represent "as a function of"
plot(ys~xs,ylab="Sepal Length (in mm)",main="Sepal length by species")
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We can also set the graphic window to hold multiple plots. This is obtained via argument mfrow, one of the
arguments in function. Note this function controls a much larger number of graphical parameters. You can
take a look at its help file to get a feel for how many and what kind of control it allows you. An example
follows, in which we leverage on the use of function with to avoid having to constantly use indat$ to tell R
where the data can be found.
#define 3 rows and 2 columns of plots
par(mfrow=c(3,2))
with(indat,hist(Sepal.Length,main=""))
with(indat,hist(Sepal.Width,main=""))
with(indat,hist(Petal.Length,main=""))
with(indat,hist(Petal.Width,main=""))
with(indat,plot(Petal.Length,Petal.Width,pch=21,col=12,bg=3))
with(indat,plot(Sepal.Length,Sepal.Width,pch=16,col=3))
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We used argument mfrow, but looking at the help for function par gives you an insight to the level of
customization one can reach with respect to these graphical parameters, via dozens of different arguments.

We can look at the correlation structure between all variables using function pairs.
pairs(indat)
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Task 3: Using data cars, create a plot that represents the stopping distances as a function of the speed
of cars. Use the points function to add a special symbol to points corresponding to cars with speed lower
than 15 mph, but distance larger than 70m. Check out the function text to add text annotations to plots.
Customize axis labels.

Extending basic capabilities via packages
While R base installation includes enough functions that getting acquainted with them could take several
years, many more are available via the installation of additional packages available online. A package is just
a set of functions and data sets (and the corresponding documentation plus some additional required files)
which usually have some specific goal. As examples, in our course we will be using packages vegan and mgcv,
which allow the implementation of a variety of numerical ecology techniques and generalized additive models
(GAM), respectively.

Note packages cover a very wide range of applications, and chances are that at least a package, often more
than one, already exists to implement most kinds of statistical or data processing tasks we might imagine.

Installing a new package in R requires a call to function install.packages. A RStudio shortcut is simply
to follow the Tools|Install packages... shortcut.

After a package is installed it needs to be loaded to be available. In R this is done calling function library
with the package name as an argument. In RStudio this becomes simpler by checking the boxes under the
RStudio tab packages (by default this tab is available on the bottom right window, along with the Files,
Plots, Help and Viewer tabs).

We use vegan as an example. Notice to begin with that vegan is not available yet
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#
?vegan

Next, we install the package.
#
install.packages("vegan")

Then, we load the package
#
library("vegan")

## Loading required package: permute

## Loading required package: lattice

## This is vegan 2.5-4

and finally we check that the functions in it are now loaded
#
?vegan

We would now be ready to do all sorts of classification and ordination techniques, say.

Task 4: Run the example code available in the help page from package cca. Try to understand what is
happening.
#here are the relevant lines of code to run
data(varespec)
data(varechem)
## Common but bad way: use all variables you happen to have in your
## environmental data matrix
vare.cca <- cca(varespec, varechem)
vare.cca
plot(vare.cca)

Linear regression
One of the most common type of data analysis is a regression model. Despite common and conceptually
simple, it is a very powerful way to understand which (and how) of a number of candidate variables, sometimes
referred to covariates, independent or explanatory variables, might influence a dependent variable, also often
referred as the response. There are many flavors of regression models, from a simple linear regression to
complicated generalized additive mixed models. We do not wish to present these in any detail, but to
introduce you to some functions that implement these models and the syntax that R uses to describe them.

Let’s start with the basics. You have used the cars data set above. We use it here again to try to explain
the distance a car takes to stop as a function of its speed. We start with a linear model using function lm.
data(cars)
mylm1<-lm(dist~speed,data=cars)

We have stored the result of fitting the model in object mylm1. The function summary can be used to print a
summary of the fit
summary(mylm1)

##
## Call:
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## lm(formula = dist ~ speed, data = cars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## speed 3.9324 0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

Do not get frightened about all the output. The coefficient associated with speed tells us what intuition alone
would anticipate, the higher the speed, the larger the distance a car takes to stop. The easier way to see the
relationship is by adding a line to the plot (note this is a similar plot to what you should have created in task
3 above!). The predicted relationship is shown in figure ??.
xl<-"Speed (mph)"
yl<-"Distance (m)"
plot(cars$speed,cars$dist,xlab=xl,ylab=yl,ylim=c(0,120),xlim=c(0,30))
abline(mylm1)
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Note how function abline is used with a linear model as its first argument and it uses the parameters in said
object to add a line to the plot. The optional arguments v and h are often very useful to draw vertical and
horizontal lines in plots.

Task 5: Use abline to draw dashed lines (tip, use optional argument lty=2) representing the estimated
distance that a car moving at 16 mph would take to stop.

Note that the line added to the plot represents the distance a car would take to stop given its speed. Oddly
enough, it seems like a car going at 3 mph might take a negative time to stop, which is just plain nonsense.
Why? Because we used a model which does not respect the features of the data. A stopping distance
can’t be negative! However, implicit in the linear model we used, distance is a Gaussian (=normal) random
variable. We can avoid this by using a generalized linear model (GLM). Now the response can have a range
of distributions. An example of such distribution that takes only positive values is the gamma distribution.
We implement a gamma GLM next
#fit the GLM
myglm1<-glm(dist~speed,data=cars,family=Gamma(link=log))
#predict using the GLM for speeds between 1 and 30
predmyglm1<-predict.glm(myglm1,
newdata<-data.frame(speed=1:30),type="response")

Our model now assumes the response has a gamma distribution, and the link function is the logarithm. The
link function allows you to change how the mean value is related to the covariates. This becomes rather
technical rather fast. Details about GLMs are naturally beyond the scope of this tutorial. References like
Faraway (2006) or Zuur et al. (2009) will provide further details in an applied context. The predicted
relationship is shown in the next figure.
#create a plot
plot(cars$speed,cars$dist,xlab="Speed (mph)",
ylab="Distance (m)",ylim=c(0,120),xlim=c(0,30))
#add the linear fit
abline(mylm1)
#and now add the glm predictions
lines(1:30,predmyglm1,col="blue",lwd=3,lty=3)
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However, this GLM still requires that the response is linear at some scale (in this case, on the scale of the link
function). Sometimes, non-linear effects are present. These can be fitted using generalized additive models.
A good introduction to GAMs is provided by Wood (2006) and Zuur et al. (2009).

So finally we fit a GAM model to the same data set. For that we require library mgcv. The outcome is shown
below. Here the fit is not very different from the GLM fit, but under many circumstances a GAM might be
required over a GLM. We will see such an example in the next few days, when we model the detectability of
beaked whale clicks as a function of distance and angle (with respect to hydrophones).
#load the mgcv library
library(mgcv)

## Loading required package: nlme

## This is mgcv 1.8-28. For overview type 'help("mgcv-package")'.
#fit the GAM
mygam1<-gam(dist~s(speed),data=cars,family=Gamma(link=log))
#predict using the GAM for speeds between 1 and 30
predmygam1<-predict(mygam1,newdata=data.frame(speed=1:30),
type="response")

#create a plot
plot(cars$speed,cars$dist,xlab="Speed (mph)",
ylab="Distance (m)",ylim=c(0,120),xlim=c(0,30))
#add the linear fit
abline(mylm1)
#and now add the GLM predictions
lines(1:30,predmyglm1,col="blue",lwd=3,lty=3)
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lines(1:30,predmygam1,col="green",lwd=3,lty=2)
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Simulation and random number generation
Another powerful use of R is for simulation. To this end, R has the ability to simulate random deviates
from a large number of distributions. Perhaps the more useful and commonly used are the uniform and
the Gaussian distributions. We now create 50 random deviates from each of these, as well as some Poisson
deviates, for illustration
#generate 50 pseudo-random Guassian numbers with mean 20 and standard deviation 3
rdnorm<-rnorm(50,mean=20,sd=3)
#generate 50 pseudo-random 50 uniform numbers between 3 and 6
rdunif<-runif(50,min=3,max=6)
#generate 50 pseudo-random 50 Poisson numbers with mean 6
rdpois<-rpois(50,lambda=6)

R can create random numbers from many different distributions (see help(Distributions) for a list) – the
relevant functions generally start with r and then an abbreviated distribution name (rbinom, rexp, rgeom, etc).
Additionally, R also includes the ability to obtain the density function, distribution function and quantile
function via the d+name, p+name and q+name functions. As an example, the Gaussian function usage of
these functions is presented below
dnorm(0,mean=0,sd=1)

## [1] 0.3989423
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pnorm(0,mean=0,sd=1)

## [1] 0.5
qnorm(0.975,mean=0,sd=1)

## [1] 1.959964

Task 6: Using what you have learnt here, create two histograms, one of 50, another of 5000, random deviates
from a Gaussian distribution (you can choose the mean and standard deviation you prefer!), using the
optional argument freq=FALSE (leading to an estimate of the density function). Then add a line to the plot
that represents the true underlying density (tip, you can use function dnorm), and comment on the results.
You can also do similar experiments with other distributions. How weird are a beta(1,1), a beta(1,5) and a
beta(0.5,0.5) distributions. Can you guess which one is sometimes referred to as bath tub distribution. What
might be a beta useful for?

Programing tricks
Some very useful programming structures are those required to evaluate conditional statements and those
used to repeat statements many times. These are fundamental for implementing simulations. In R we have
if statements and for loops, respectively.

As an example, see how an if statement works
X=2
if (X>0) print(X+3)

## [1] 5

One can also use an if-else statement, which executes either (1) something or (2) something else, depending
on the condition being TRUE or FALSE. Here’s an example:
X=2
if (X>0)

{Y=abs(X)} else
{Y=X^2}

Y

## [1] 2
X=-5
if (X>0)

{Y=abs(X)} else
{Y=X^2}

Y

## [1] 25

on the other side, here’s how a for loop works
n=4
X=1:n
for (i in 1:n) print(sum(i+3))

## [1] 4
## [1] 5
## [1] 6
## [1] 7

note there is nothing special about the use of i for an index; you can use any index that you might want
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n=4
X=1:n
for (j in 1:n) print(sum(j+3))

## [1] 4
## [1] 5
## [1] 6
## [1] 7

or even
n=4
X=1:n
for (i in X) print(sum(i+3))

## [1] 4
## [1] 5
## [1] 6
## [1] 7

Task 7: Create 9 histograms of samples of Gaussian random variables, adding the mean value on the plot
as a vertical dashed line, in blue if the mean of the observations is positive and in red if the mean of the
observations is negative.

Other interesting structures for “control flow” are the while, repeat and break. Look into the help for ¿‘if” to
see details.

Writing your own functions
While the above functions, and the many more available, make R a very useful tool, there are sometimes
problems which require a special tool. For these, we can create our own functions. Note this is an advanced
topic.

The way of doing that follows a specific syntax

> name <- function(arg1,arg2,...) {what the function does goes here}

As an example, we create a function that returns the sum of its 2 arguments:
myfun<-function(i,j){

myres<-i+j
return(myres)

}

You can now see the function in the works
myfun(3,5)

## [1] 8

Task 7: create a function called mystats which returns the mean, variance, maximum and minimum of the
first argument (a vector). Then, update your function such that it can also return the mean excluding the
negative numbers. Then, create some other function you might think is useful.

A final task integrating all of the above
Here we will implement an exercise were we pretend we are sampling an animal population, using some (very
basic) simulations to understand the process better. Create plots that represent all the steps of your task,
with proper legends, labels, colors, etc, and add all your comments to the dynamic report.
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1. Simulate the positions of 10000 animals in a study area, with length 10km and width 1km. Assume
that any animal has an equal chance to be at any location in the study area (this corresponds to a
uniform density surface).

2. Generate a transect at a random location along the study area.

3. Assume that you can potentially detect at most animals up to 500 meters from your transect. Count
all the animals that you would detect if detection was perfect across your transect.

4. Consider that animals far from your transect are harder to detect - yes, you are doing distance sampling!
Define a function that represents a distance sampling half-normal detection function (If needed, look
back at your slides from the 1st class). Assume that sigma=200m.

5. Simulate the detection process and get a sample of those animals detected.

6. Create a plot that allows you to estimate (at this stage just a visual guess in needed) the detection
probability.

7. Repeat the sampling process 500 times, and store the number of animals detected in each one of your
simulated surveys.

8. plot the distribution of the number of animals that you would detect each new survey.

Take your own conclusions about all that you did.

Wrap up
A full introduction to R course could take an entire week. A full course in regression modelling with R could
take an entire semester. A full course of data analysis in R could take a life time.

Our objective with this tutorial was simply to introduce you to R such that when we use R in the next few
days, the commands do not look too esoteric. Nonetheless, this material, as well as the references provided,
should constitute a good basis to learn R further if you so desire.

Beginners find the R learning curve is often steep, but once mastered, R simplifies enormously the task of
statistical data analysis.

Finally, to promote good habits, we clean the workspace. An organized workspace is very important!
#cleaning the workspace
rm(list = ls())
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