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A useful approach for modelling ecological systems of interacting organ-

isms is through the use of individual-based models (IBMs). Individuals

differ from each other in distinct ways and also from themselves during

different stages of their life cycle. More important, they have self-directed

motivation, can adapt to changing conditions, and can modify their

environment through their actions. An IBM (also called agent-based

models, ABM) allows the capture of this feedback within a modelling

framework. Properties at higher levels — populations, communities, and

ecosystems — emerge from these individual interactions and the interac-

tions with their environment. Without self-direction and adaptation

ecological systems would be much easier to model and understand. Such

is the case with physical or chemical systems. Since individuals within

ecological systems do have self-direction and the ability to adapt, IBMs

are one way to capture this complexity.

9.1. History of Individual-Based Models

Early IBMs in ecology include a forest model (Botkin, Janak, & Wallis,

1972) and a fish cohort model (DeAngelis, Cox, & Coutant, 1980). The

forest model, JABOWA, has successfully predicted species composition

resulting from succession in a mixed-species forest, and has spawned
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a series of related models (Shugart, 1984; Liu & Ashton, 1995). The suc-

cess of the fish cohort model was due to the inclusion of feedback pro-

cesses such as cannibalism and competition, and it also precipitated a

plethora of off-shoot models (Grimm & Railsback, 2005). Other early

applications of ABMs originated in the artificial life literature, such as

ECHO, Tierra, and Avida (Parrott, 2008).

The IBM approach was first formalized as a discipline in the article

by Huston, DeAngelis, and Post (1988), and has developed consider-

ably since then. What makes an IBM different from a population

model? The first question to be addressed about this approach is what

makes it different from the standard approaches already being

employed in ecological modelling. For one thing, traditional popula-

tion models were not able to answer specific questions central to ecol-

ogy regarding mating, foraging, and dispersal because the models

treated all individuals within the population as homogeneous; there-

fore, the entire population acted accordingly without any individual

variation. Giving specific traits to each individual allowed for greater

variation in the behavior of the population. Furthermore, in traditional

models, the agents were unlikely to adapt their behavior throughout

the length of the simulation. In IBMs, the heuristics that determine

the individual behavior can be updated based on feedback from the

success of previous interactions and encounters. Lastly, the environment

can be altered by the actions of the individuals performing work on it to

survive. In this manner, there is another level of feedback in which the

organism influences the environment in which its future success is

determined, exerting some degree of self-control on overall higher level

system behavior. Such closed loop feedback is an important characteris-

tic of systems ecology as expressed in network environ analysis (Patten

1978a, 1981) or niche construction (Odling-Smee, Laland, & Feldman,

2003).

Uchmanski and Grimm (1996) proposed four criteria that represent

the core features of individuality, adaptability, and environmental

feedback to consider what distinguishes an IBM from classical models:

1. The degree to which the complexity of the individual’s life cycle is

reflected in the model

2. Extent to which variability among individuals of the same age is

considered
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3. Whether real or integer numbers are used to represent the

population size

4. Whether or not the dynamics of resources used by individuals are

explicitly represented

The implementation of IBMs can affect the paradigm one has about

ecology in general. This has led to a new approach called Individual-Based

Ecology (IBE) in which the understanding of macroscopic organizational

levels (populations, communities, ecosystems, and biosphere) arise from

the interactions of microscopic components (agents and individuals).

Characteristics of IBE have been proposed by Grimmand Railsback (2005):

• Systems are understood and modelled as collections of unique

individuals.
• System properties and dynamics arise from the interactions of

individuals with their environment and with each other.
• IBMs are a primary tool for IBE.
• IBE is based on theory.
• Observed patterns are a primary kind of information used to test

theories and design models.
• Instead of being framed in the concepts of differential calculus,

models are framed by complexity concepts such as emergence,

adaptation, and fitness.
• Models are implemented and solved using computer simulations.
• Field and laboratory studies are crucial for developing IBE theory.

9.2. Designing Individual-Based Models

There are three primary aspects to consider when developing an IBM:

(1) agent behavior, (2) agent-agent interactions, and (3) environment. The

key to IBMs is developing them in a manner in which the adaptive traits

canmodel behavior of real organisms. Anadaptive trait is a rule or heuristic

that allows the organism to make situation-specific decisions. The traits

may be programmed or learned. They determine the choices that the

organisms make during each encounter, and are often programmed using

a series of IF-THEN statements and loops corresponding to the individual’s

specific conditions. Following the heuristics does not necessarily lead to an

optimal behavior, since not all information is known to always make opti-

mal decisions, but the behaviors are context-dependent and goal directed
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(Grimm & Railsback, 2005). For example, rules describing foraging behav-

ior describe how the agent responds to the local conditions (is food avail-

able or not) and the agent’s internal goals (time since last feeding). The

movement patternmay be programmed from a simple randomwalk func-

tion to a more complex environmental assessment and deliberate moves

such as seeking a preferred food source, following subtle perceived differ-

ences in environmental gradients, or learning from previous encounters

with the landscape. A conceptual model used in this instance is called

beliefs-desires-intents (BDI), which models the hierarchical progression

leading to certain actions. The beliefs contain the background information

held by the agent (i.e., food is good, mating is necessary, run from preda-

tors, etc.), the desires are the goals, and the intents are the actions taken

to achieve these ends (Parrott, 2008).

Agent-agent interactions may be direct such as mating, communica-

tion, predation, or resource competition, or indirect throughmodifications

to the environment. An example of indirect interaction is the chemical or

physical marking of an area as signals to ensuing agents upon that area.

The end result is that group-level dynamics emerge from these agent-agent

interactions.

The environment represents the local landscape on which the organ-

isms move and interact. It is typical that the environment has variation

but is regular enough for agent learning and adaptation. The environ-

ment is commonly modelled as a lattice or network. A lattice approach

provides spatial variation such that each cell in the lattice may be hetero-

geneous and can include environmental variables as well as other agents.

Network models forego some spatial capability to focus on the flows or

interactions, such as trophic networks. An important, but not surprising,

conclusion from IBM work is that the environment can have a substantial

influence on the individual behavior and on the overall group dynamics

(Parrott, 2008). This is consistent with the perspective of systems ecology,

which also places high value on the role of environment, indirect interac-

tions, and holism.
9.3. Emergent versus Imposed Behaviors

As stated previously, one of the important outcomes of IBMs is the

unexpected macroscopic behavior that can be viewed from the results

of the simulation. This occurs because the agent-agent interactions with
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adaptive traits and adaptive environmental variables allow for the emer-

gence of novel system behavior. In addition to being unexpected, emer-

gent behaviors can differ from the behavior of individuals and are

holistic in the sense that the whole is more than the sum of the parts.

Therefore, it is essential not to impose strict, unchanging attributes to

the individual’s choices. One way to view behavior is that if the attri-

butes are derived from an understanding of process then there is more

variability and freedom of option as the behavior unfolds. However, if

the attributes are derived from strict empirical observations, that is,

fixed parameters from field or laboratory experiments, then the out-

come will be predictable since there can be no variation. For example,

consider the case of egg production rate in fish in which temperature

dependence has been documented (Secor & Houde, 1995). In one

model, the rate is fixed based on empirically derived field studies and

each individual has this trait. In the second model, the rate is a function

of the temperature of the environment in which the individual inhabits

at that time. In this manner, the results of the first model are imposed

by the rigid constraint of the parameterization, whereas in the second

model, variation and adaptability can lead to new patterns, such as

clustering of high density populations around warmer pools. Another

possibility in model development is to have intermediary outcomes so

that the first stage might be imposed, such as egg production rate in

each grid cell, but a second choice, based on movement across the envi-

ronment, can allow for the same kind of clustering if there is a process

preference for certain temperature ranges. Overall, the goal for IBMs is

to develop rules that are process-based so that the organism can

respond accordingly to different situations with flexibility. Therefore, it

is important to know some factors that motivate, guide, and orient the

behavior of the agents.
9.4. Orientors

A key question in formulating an IBM is determining the characteristics

that comprise the individual’s decision set. There are a primary set of

survival and behavioral functions common to all agents (as modelled

as complex adaptive systems). There have been proposals to holistically

describe these tendencies in which these systems change over time.

One approach worth mentioning identifies six fundamental orientors,
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which are meant to apply for all complex adaptive agents (Bossel, 1998,

1999). These include:

1. Existence: Attention to existential conditions is necessary to ensure

the basic compatibility and immediate survival of the system in the

normal environmental state.

2. Effectiveness: In its efforts to secure scarce resources (energy, matter,

information) from, and to exert influence on, its environment, the

system should on balance be effective.

3. Freedom of action: Ability to cope in various ways with the challenges

posed by environmental variety.

4. Security: Ability to protect itself from the detrimental effects of

variable, fluctuating, unpredictable, and unreliable environmental

conditions.

5. Adaptability: Ability to change its parameters and/or structure in

order to generate more appropriate responses to challenges posed by

changing environmental conditions.

6. Coexistence: Ability to modify its behavior to account for behavior

and interests (orientors) of other systems.

Orientors are defined as dimensions of concern, not specific goals, as

they arise from the system interactions and are considered emergent

system properties. They function as attractors of the system develop-

ment and the six orientors are responsive to the six general properties

of the environment.

1. Normal environmental state: The actual environmental state can

vary around this state in a certain range.

2. Scarce resources: Resources (energy, matter, information) required for

a system’s survival are not immediately available when and where

needed.

3. Variety: Many qualitatively different processes and patterns occur in

the environment constantly or intermittently.

4. Reliability: Normal environmental state fluctuates in random ways,

and the fluctuations may occasionally take it far from the normal

state.

5. Change: In the course of time, the normal environmental state may

gradually or abruptly change to a permanently different normal

environmental state.
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6. Other systems: Behavior of other systems changes the environment of

a given system.

Bossel (1999) proposed a one-to-one relationship between the prop-

erties of the environment and the basic orientors of systems. Therefore

the system equipped to secure better overall orientor satisfaction wil

have better fitness, having a better chance for long-term survival and

sustainability. The orientor approach provides some guidance for deter-

mining individual attributes that shape the choices according to a basic

needs hierarchy.
9.5. Implementing Individual-Based Models

Many IBMs are created from scratch by the modelling team; however, it

can be quite difficult and time-consuming to gather and analyze a large

number of observations, equations, and parameters. Without a standard

toolbox, such as from object-oriented programming, the developed soft-

ware can be inefficient and not easily transparent. Alternatives for devel-

oping the model from scratch are using software libraries, such as Swarm

and Repast, which are maintained by active user communities, or estab-

lished modelling environments. These modelling environments, such as

CORMAS and NetLogo, are more general programming platforms from

which one can develop IBMs. They are also maintained by their develo-

pers and as teaching tools include tutorial support and examples, making

them a good choice for beginners in the field. In any case, the field

benefits from the extraordinary increase in computing power that every

personal computer (PC) now has, which is sufficient to run most IBMs

although large models or sensitivity analyses may require PC clusters or

other advanced computing power (Grimm, 2008).

One effort to add standardization to the IBM model development was

the introduction of the ODD protocol by Grimm et al. (2006), which refers

to three primary blocks: Overview, Design concepts, and Details. Within

these three blocks there are seven elements. The overview block includes

(1) purpose, (2) state variables and scales, and (3) process overview

and scheduling. This block lays out the model purpose and structure

from which the model skeleton is apparent including the definition

of the objects (state variables) and process scheduling. The second

block, design concepts, with only one element – design concepts – links



298 FUNDAMENTALS OF ECOLOGICAL MODELLING
the study to the broader framework of complex adaptive systems. It

should address issues of interaction types, adaptation, learning, emer-

gence, and the role of stochasticity. The third block, details, includes

three elements: (1) initialization, (2) input, and (3) submodels. This

section includes all the model detail, such as initial conditions, equations,

and parameters. The information should be sufficient for any reader to

reconstruct the model and achieve the baseline simulations. In their

paper, Grimm et al. (2006) referred to testing ODD on 19 different models

(with specific examples therein), and, since then, the approach has been

widely used in the IBM community.

An example following this protocol is given by Dur et al. (2009) to study

the reproduction of egg-bearing copepods. The model was parameterized

from laboratory and field experiments as well as data from the literature. It

is a good application for IBM because the authors were able to model the

detailed reproductive cycle of the organism (Figure 9.1). The IBM included

attributes: location, number, age, longevity, embryonic development time,
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FIGURE 9.1 Complicated reproductive cycle of Eurytemora affinis permission statement.
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latency time, spawning time, hatching time, ovigerous state of female,

clutch size, and four intermediate parameters regarding the individual

variability on longevity, latency, embryonic development time, and clutch

size. The environment is represented by one attribute, temperature.

Results showed that temperature effects are very important to daily egg

production (Figure 9.2). For example, females at 4�C were able to produce

only 16 clutches, whereas production reached a maximum of 30 clutches

at 23�C. In this model, the emphasis of detail is on the life history of the

reproducing individuals, not the environmental factors.

9.6. Pattern-Oriented Modelling

Due to the high complexity of IBMs, the results can be hard to under-

stand. A new general strategy, pattern-oriented modelling (POM), has

been developed to optimize model complexity and deal with uncer-

tainty in model structure and parameters. A pattern is the macroscopic

order that arises from the microscopic interactions from the system’s

internal organization and is an indicator that there is something more
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going on than simple random variation. Because of the emergence of

higher order organization, it is necessary to develop approaches to rec-

ognize these patterns as different from the background. A pattern is a

clearly identifiable structure in nature or data that is distinguishable

from random variation indicating that underlying processes could be

generating it (Grimm et al., 1996). In other words, the macroscopic

pattern is generated by microscopic activity, such as the demographic

interactions (dispersal, foraging, mating, etc.) and environmental con-

straints (topography, landscape, resources, climate, etc.). These pat-

terns occur at a higher level than the processes that cause them.

Comparing the observed processes with the model simulations that

produced them, it is possible to restrict the parameter space available

for uncertain or key features to detect the underlying processes. For

example, Swannack et al. (2009) used POM to estimate life history

characteristics of amphibian populations. Specifically, they compared

simulation results to observations from four population-level patterns:

population size, adult sex ratio, proportion of toads returning to their

natal pond, and mean maximum distance moved. The models (11 of

16) that did not fit the observed patterns were rejected (Figure 9.3).
Table 3-summary of results from 650, 10-year, monte carlo simulations based on each of 16 versions of the model

Model version

Field
1
2
3e

5e

7e
6

9e
8

11e
10

13
14
15
16

12

4

?
0.005
0.005
0.0075

0.009

0.0095
0.009

0.01
0.0095

0.0105
0.01

0.015
0.015
0.02
0.02

a Swannack (2007).
b Swannack, Grant, and Forstner (2007).
c Breden (1987).
d Price (2003).
e Versions of the model that generate reasonable patterns in all 4 system attributes.

Results include mean (1) final population size, (2) final adult sex ratio, (3) percentage of toads at their natal pond at the time of their death or
at the end of a simulation, and (4) maximum distance moved (m) by an individual toad during a simulation. Different versions of the model
represent different combinations of annual survival estimates (probabilities) for juveniles and adult males. ? represents no field data available.

0.0105

0.0075

0.15–0.27a

0.15
0.27
0.15

0.15

0.15
0.27

0.15
0.27

0.15
0.27

0.15
0.27
0.15
0.27

0.27

0.27

225a

0.02
0.10
3.32

45.35

86.52
63.22

164.88
123.05

290.00
209.69

46814.61
48967.53
42581.38
43335.67

365.29

7.69

5.5b

0.00
41.01

5.76

6.67

7.33
15.49

7.65
15.81

7.85
15.83

4.48
5.98
1.92
2.72

16.31

15.81

0.73c

0.73
0.72
0.66

0.62

0.60
0.61

0.59
0.60

0.58
0.59

0.70
0.71
0.84
0.84

0.57

0.65

900–1900d

1133
1184
1289

1355

1382
1399

1427
1429

1461
1460

1751
1761
1665
1676

1511

1308

Juvenile survival Male survival Population size Sex ratio Percentage at
natal pond

Maximum
distance moved

FIGURE 9.3 Shows table from Swannack et al. (2009) in which the 16 model runs compare observations

with simulation results.
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The remaining models had a similar feature that population depends

heavily on juvenile survival and provided a narrow range for the juve-

nile survival parameter. Values of juvenile survival below 0.01 had

populations too small and those with values 0.015 and higher were

too high. The model was very sensitive to this parameter. This is a very

good application of using POM to identify key parameters and to pro-

vide a range for acceptable values.
9.7. Individual-Based Models for Parameterizing
Models

Whereas the previous example used POM to test the uncertainty of

certain parameters, a growing tendency is to supplement the paucity

of certain field data with simulated data to parameterize and evaluate

population models. One such approach is the use of a data set gener-

ated by IBMs. Two such examples are presented next.

Hilker,Hinsch, andPoethke (2006) usedan IBMtoparameterize apatch-

matrixmodel (PMM)andagrid-basedmodel (GBM). They first constructed

an IBM (in this specific case, agents represent three different grasshopper

species in varying landscapes with demographic and environmental

stochasticity). Fromthismodel, they generateda long-termset of simulated

data and extracted from this short-term “snapshot” data, which are used as

estimators within the PMMandGBM (Figure 9.4). Specifically, theywanted

parameter estimates for grasshopper movement regarding nest and mate

radius as well as patch and matrix distance over a range of three mobility

types. They used snapshot data from two or five years to correspond to

typical field studies (amount of years ended up not having a big impact

on themodel performance). Thebest resultwasobtainedwith the inclusion

independent migration data (such as from mark-recapture experiments).

Overall, the authors were able to demonstrate the IBM as a general model

that can be used to relate IBM-simulated parameters to emergent behavior

at the metapopulation level.

In another example, Gilioli and Pasquali (2007) also used an IBM for

estimating population parameters. In this case, the IBM is applied to

egg production of a fruit fly. Specifically, an IBM simulates the number

of eggs produced by the adults and a compartmental model simulates

stage-structured population dynamics. The IBM allows for a precise

description of the physiological age-structure (eggs, larvae, and pupae)
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and time distribution such as recruitment and emergence profiles. The

IBM also contributes to the estimation of age-structured mortality and

fecundity parameter values. The combination of a microscopic (IBM)

and macroscopic (compartmental) models provides a more detailed

prediction of population dynamics and good agreement with the

observed data. Overall, the use of IBMs for parameterizing models is

becoming a more common approach.
9.8. Individual-Based Models and Spatial Models

While there are many different examples of IBM applications to address

ecological questions, let us end this chapter with one further example

that combines the IBM approach with a spatially explicit model

(Chapter 11). Overall, we see there is a lot of synergy between the ability

to model individual agents and the spatially explicit landscape on which
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they interact. Wallentin, Tappeiner, Strobla, and Tasserd (2008) con-

structed an IBM to understand alpine tree line dynamics. This model

is used to test the effects of climate change on a forest community in

the Austrian Central Alps. Due to a warming climate, the leading edge

of the tree line from spontaneous forest regeneration is climbing to

higher elevations. Forest regeneration is influenced by seed dispersal

characteristics and land use changes (i.e., availability of migration into

abandoned alpine pastures). The model construction involves six steps:

(1) deriving landscape features from remote sensing data, (2) building

the model, (3) parameterization based on ecological processes, (4) sce-

nario runs, (5) validation, and (6) sensitivity analysis (Figure 9.5). The

model includes as main processes recruitment, growth, and mortality.

Recruitment is a function of distance to seed trees, land cover type,

and elevation. Growth follows a standard sigmoid curve and mortality

is impacted by age and density. The model iterates each year through

the processes of recruitment, growth, and mortality. Establishment of

new seedlings depends on distance to the nearest seed tree, ground

vegetation, and elevation. A tree dies if the survival probability based
2
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on tree age and tree density is smaller than random mortality values.

Results from the model show the upward movement in elevation of

the tree line, which is a good prediction of the observed forest regener-

ation trend during the study period from 1954 to 2006. Overall, the max-

imum elevation rose almost 150 m and the mean elevation about 90 m.

This is a good example of how a spatially explicit IBM can be used to

model population dynamics in response to changing environmental

conditions, such as climate change.
9.9. Example

To give the reader a clearer idea of how to construct an IBM, in this sec-

tion we present an IBM recently developed by Chon, J�rgensen, and Cho,

(2010) for studying how individual survival is dependent on the dynamic

relation between the gene-individual-population. At the lowest scale the

genes are under different constraints regarding the metabolic efficiency

and toxin susceptibility (Chon et al., 2010). In this model, the individuals

move around in 2D space and compete for food, such that the entire

population acquires the most adaptable genes (concerning combination

of metabolic efficiency and toxin resistance) over the long run. The indi-

vidual attributes are controlled by the gene information, which in turn

determines the gene levels of the entire population.

Individual attributes include age, health score, and location (x and y

coordinates). Food and toxins were present in the grid as environmental

factors. Individuals on the same location as food or toxins would con-

sume them and their health would be affected accordingly (positive

for food and negative for toxin). Food and toxins were both resupplied

regularly to the matrix. Variables in the model include total population

densities and densities in different types of gene information in the

population (Chon et al., 2010).

The model, programmed in Visual Basic, uses a lattice grid size of

800 � 800 units and was run for 7000 time steps. Each interior site (i, j)

(where i ¼ 2, . . ., n � 1 and j ¼ 2, . . ., n � 1) has 8 immediate neighbor

cells (i � 1, j � 1), (i � 1, j), (i � 1, j þ 1), (i, j � 1), (i, j þ 1), (i þ 1, j � 1),

(i þ 1, j), and (i þ 1, j þ 1). Individuals move across this landscape

according to a random walk (one unit per time step). If a nutrient is

located at one of the neighbor lattices, then the individual moves to that
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lattice. In the case of multiple food items in the individual’s nearest

neighbors, the movement selection is made randomly. If there are no

food items in the nearest neighbors, then the individuals move at ran-

dom. Toxin exposure occurs randomly (Chon et al., 2010).

Two different genes carry information regarding the metabolic effi-

ciency and toxin susceptibility, and both were determined at fixed rates

with low, medium, or high levels (e.g., 0.1, 0.25, and 0.5 for metabolic effi-

ciency). This information was converted to phenotypic properties

through health scores. The maximum score of metabolic efficiency and

toxin susceptibility was assumed to be 20 points. The health scores accu-

mulate according to the food uptake and toxin exposure. If the health

score drops below zero, then the individual dies. When the health score

is greater than a fixed threshold and the age is older than three time steps,

reproduction occurs. Reproduction can occur by asexual fission or con-

jugation if a neighboring cell is occupied. In each iteration, only gene

type is randomly selected for exchange (see Chon et al., 2010).

The model was initialized with food occupying 20% of the total lattice

and replenished at regular intervals in 10% of the empty spaces in each

100 time step. Toxin was also present initially in 20% of the total lattice

but was resupplied at a rate of 1% of the remaining empty space (after

resupply of nutrients) in each 100 time step. A range for the model para-

meters, metabolic efficiency (ME) and toxin susceptibility (TS), was

determined to obtain balanced population densities, which occurred

expectedly in the range of higher ME (i.e., efficiency in metabolism)

and lower TS (i.e., higher resistance to toxins). Two similar sets of con-

ditions (C1 and C2) for different genetic values were provided to ME

and TS as follows.

The first condition (C1):
Type A: ME; 0.5; TS; 0.4

Type B: ME; 0.4; TS; 0.3

Type C: ME; 0.3; TS; 0.2
The second condition (C2):
Type A: ME; 0.5; TS; 0.4

Type B: ME; 0.3; TS; 0.25

Type C: ME; 0.1; TS; 0.1
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Chon et al. (2010) found that the overall changes in population size

showed common patterns through simulation. Population densities

increased rapidly with consumption of initial nutrients, peaking at

around 100 iterations. The population size decreased as nutrients were

depleted, and reached the minimal size at around 200 iterations. After-

wards, population size periodically changed in the range of 400 to 800

individuals along with resupply of the nutrients at 100 iteration intervals

(Figure 9.6). The Determination of dominant types of gene information

appeared to be critical when the population size was minimized due to

nutrient depletion.

The overall change in fitness due to reproduction was also modelled.

The case without conjugation did not allow for gene recombination and

is not discussed here. It is noted that the case with the best initial

parameter values (type A-A) had the highest population and the one
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FIGURE 9.6 Changes in population size in different gene types in the gene-individual-population

relationships: (a) without conjugation and (b) with conjugation ¼ 25%.
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with the worst values (type C-C) had the lowest or went extinct. Greater

diversity was found in the species composition when conjugation was

allowed for gene exchange between individuals. The amount of mixing

depended on level of conjugation (which ranged from 0 to 100%). The

dominant types changed depending on the different simulation condi-

tions, C1 and C2. For condition C1, Type A-C, which is most suitable

for both ME and TS, appeared as the first dominant type, followed by

A-B and A-A at conjugation ¼ 25%. For condition C2, however, type

A-B was most dominant, followed by A-A and A-C. The overall diversity

changed with increasing conjugation (Figure 9.7). In conclusion, the

authors found by using an IBM that overall biomass and eco-exergy

(see Chapter 10) increased with conjugation.
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9.10. Conclusions

Individual-based models have filled a natural gap in the ecological mod-

elling toolbox. They allow more detail and flexibility for individual action

than the traditional compartmentmodelling approach. The key factors in

an IBMare: (1) the inclusion of individual variation including detail about

the life history and age classes, (2) the possibility for agents to adapt and

learn (i.e., update in real time the interaction rules) from experiences,

and (3) the modification of the environment by the behavior of the indi-

vidual. Libraries of data now exist for use in IBMs, development of a stan-

dard protocol for developing IBMs, and software platforms that are

available for IBMs. Many applications of this new approach have been

implemented and their use will continue to grow in the future.

Problems

1. What is an individual-based ecology? How does the interplay of

microscopic and macroscopic levels influence ecological

characteristics?

2. The three main features of an IBM are: (1) agent behavior, (2) agent-

agent interactions, and (3) the environment. Explain how each of

these could be modelled.

3. Explain the ODD protocol introduced to standardized IBM studies.

4. Develop a conceptual model for an IBM representing a forest

ecosystem. Include a description of the spatial variation in the

species distribution and how the different sized structures could be

modelled. What are some important traits that should be considered

in the model?

5. Adaptability is more likely to lead to emergent system properties.

Explain why and how this could be modelled.

6. Results from IBMs are often most useful when analyzed at a higher

scale of observation. Explain how POM is used to identify these

structures. Give an example of how it could lead to estimation of

model parameters.

7. What role do Geographical Information Systems (GISs) play in the

development and implementation of IBMs?

8. Explain the difference between a metapopulation model and an IBM.

Which circumstances would each one be best used?
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