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2.1. Introduction

This chapter covers the topic of modelling theory and its application in

the development of models. After the definitions of model components

and modelling steps are presented, a tentative modelling procedure is

given. The steps in the modelling procedure are discussed in detail

and they include: model conceptualization, mathematical formulation,

parameter estimation and calibration, sensitivity analysis, and valida-

tion. This chapter focuses on model selection or the selection of model

components, processes, equations, and in particular, model complexity.

Various methods to select “close to the right” complexity of the model

are presented. Several model formulations are always available, and to

choose among these will require that sound scientific constraints are

imposed on the model. Many different model types with different

advantages and disadvantages are available. The selection of the best

model type for a well-defined ecological or environmental management

problem will be discussed in Chapter 3, where an overview of the avail-

able model types will be presented. A mathematical model usually

requires the use of a computer and a computer language. The selection
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20 FUNDAMENTALS OF ECOLOGICAL MODELLING
of a computer language is not discussed here, because there are many

possibilities and new languages emerge from time to time. In the mod-

els used as illustrative examples, STELLA (c) (High Performance Sys-

tems) software is applied.

2.2. Modelling Elements

In its mathematical formulation, an ecological model has five

components:

1. Forcing functions or external variables: Functions or variables of an

external nature that influence the state of the ecosystem. In a

management context, the problem to be solved can often be

reformulated. If certain forcing functions are varied, then howwill this

influence the state of the ecosystem?Themodel is used to predict what

will change in the ecosystem when forcing functions are varied with

time. The forcing functions, due to the human impact on ecosystems,

are called control functions, because it is in our hands to change them.

The control function in ecotoxicological models is, for instance, the

discharge of toxic substances to the ecosystems; in eutrophication

models it is discharge of nutrients. Other forcing functions of interest

could be climatic and natural external variables, which influence the

biotic and abiotic components and the process rates. In contrast to the

control functions, they are not controllable by humans. By using

models we will be able to address the crucial question: Which changes

in the control functions are needed to obtain well-defined conditions

for a considered ecosystem?

2. State variables: Describe, as the name indicates, the state or the

conditions of the ecosystem. The selection of state variables is crucial

to themodel structure, but often the choice is obvious. If, for instance,

we want to model the bioaccumulation of a toxic substance, then the

state variables should be the organisms in the most important food

chains and concentrations of the toxic substance in the organisms. In

eutrophication models, the state variables are the concentrations of

nutrients and phytoplankton. When the model is used in a

management context, the values of the state variables simulated by

changing the controllable forcing functions providemodel results that

contain the direct and indirect relations between the forcing functions

and the state variables.
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3. Mathematical equations: Used to represent the biological, chemical,

and physical processes. They describe the relationship between the

forcing functions and state variables. The same type of process may

be found in many different environmental contexts, which implies

that the same equations can be used in different models. However,

this does not imply that the same process is always formulated using

the same equation. First, the considered process may be better

described by another equation because of the influence of other

factors. Second, the number of details needed or desired to be

included in the model may be different from case-to-case due to a

difference in complexity of the system and/or the problem. Some

modellers refer to the description and mathematical formulation of

processes as submodels. The most applied process formulations are

presented by a short overview in Section 2.3.

4. Parameters: Coefficients in the mathematical representation of

processes. They may be considered constant for a specific ecosystem

or part of an ecosystem for a certain time, but they may also be a

function of time or vary spatially. In causal models, the parameter

will have a scientific definition and a well-defined unit, for instance,

the excretion rate of cadmium from a fish — the unit could be

mgCd/(24h * kg of fish). Many parameters are indicated in the

literature as ranges not constants, but even that is of great value in

the parameter estimation as will be discussed further in the following

text. In J�rgensen et al. (2000), a comprehensive collection of

parameters in environmental sciences and ecology can be found.

Our limited knowledge of parameters is one of the weakest points in

modelling, a point that will be touched on often throughout this

book. Furthermore, the applications of parameters as constants in

our models are unrealistic due to the many feedback systems in real

ecosystems. The flexibility and adaptability of ecosystems is

inconsistent with the application of constant parameters in the

models. A new generation of models that attempts to use varying

parameters according to ecological principles seems a possible

solution to the problem, but further development in this direction is

absolutely necessary before we can achieve an improved modelling

procedure that reflects the processes in real ecosystems. This topic

will be further discussed in Chapter 10.
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5. Universal constants: Such as the gas constant and atomic weights

are also used in most models.

Models can be defined as formal expressions of the essential ele-

ments of a problem in mathematical terms. The first recognition of

the problem is often verbal. This may be recognized as an essential pre-

liminary step in the modelling procedure, which will be treated in more

detail in the next section. The verbal model is, however, difficult to

visualize so it is translated into a more convenient conceptual diagram,

which contains the state variables, the forcing functions, and how these

components are interrelated by mathematical formulations of processes.

The conceptual diagram shows how the previous modelling elements 1

through 3 are related and connected.

Figure 2.1 illustrates a conceptual diagram of the nitrogen cycle in a

lake. The state variables are nitrate, ammonium (which is toxic to fish in

the un-ionized form of ammonia), nitrogen in phytoplankton, nitrogen

in zooplankton, nitrogen in fish, nitrogen in sediment, and nitrogen in

detritus. The state variables in this conceptual diagram are indicated

as boxes connected by processes (indicated as arrows).

The forcing functions are outflows and inflows, concentrations of

nitrogen components in the inflows and outflows, solar radiation, and

the temperature (not shown in the diagram), which influence all of the

process rates. The processes are formulated using quantitative expres-

sions in the mathematical part of the model. Three significant steps in

the modelling procedure need to be defined in this section before we

go into the modelling procedure in detail. These are verification, calibra-

tion, and validation.

1. Verification is a test of the internal logic of the model. Typical

questions in the verification phase include: Does the model

behave as expected and intended? Is the model long-term stable,

as one should expect in an ecosystem? Does the model follow

the law of mass conservation, which is often used as the basis

for the differential equations of the model (as discussed in the

next section)? Is the use of units consistent? Verification is, to

some extent, a subjective assessment of the model behavior

and will continue during the model use before the calibration

phase.
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FIGURE 2.1 The conceptual diagram of a nitrogen cycle in an aquatic ecosystem. The processes are

(1) uptake of nitrate and ammonium by algae; (2) photosynthesis; (3) nitrogen fixation; (4) grazing with

loss of undigested matter; (5), (6), and (7) predation and loss of undigested matter; (8) settling of algae;

(9) mineralization; (10) fishery; (11) settling of detritus; (12) excretion of ammonium from zooplankton;

(13) release of nitrogen from the sediment; (14) nitrification; (15), (16), (17), and (18) inputs/outputs;

(19) denitrification; and (20), (21), and (22) mortality of phytoplankton, zooplankton, and fish.
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2. Calibration is an attempt to find the best agreement between the

computed and observed data by variation of some selected

parameters. It may be carried out by trial and error or by using

software developed to find the parameters that best fit between

observed and computed values. In some static and simple models,

which contain only a few well-defined or directly measured

parameters, calibration may not be required, but it is generally

recommended to calibrate the model if observations of a proper

quality and quantity are available.

3. Validation must be distinguished from verification. Validation

consists of an objective test to show how well the model output fits

the data. We distinguish between a structural (qualitative) validity

and a predictive (quantitative) validity. A model is said to be

structurally valid if the model structure reasonably and accurately
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represents the cause-effect relationship of the real system. The

model exhibits predictive validity if its predictions of the system

behavior reasonably align with observations of the real system. The

selection of possible objective tests will be dependent on the

purposes of the model, but the standard deviations between model

predictions and observations and a comparison of observed and

predicted minimum or maximum values of a particularly important

state variable are frequently used. If several state variables are

included in the validation, then they may be given different weights.

Further detail on these three important steps in modelling will be

given in the next section where the entire modelling procedure is pre-

sented as well as additional information given in Sections 2.4–2.7.

2.3. The Modelling Procedure

A tentative modelling procedure is presented in this section. The authors

have successfully used this procedure numerous times and strongly rec-

ommend that all steps of the procedure are used very carefully. To make

shortcuts in modelling is not recommended. Other scientists in the field

have published other slightly different procedures, but detailed examina-

tion reveals that the differences are only minor. The most important steps

of modelling are included in all the recommended modelling procedures.

Always, the initial focus of research is the definition of the problem.

This is the only way in which the limited research resources can be cor-

rectly allocated.

The first modelling step is therefore a definition of the problem. This

will need to be bound by the constituents of space, time, and subsystems.

The bounding of the problem in space and time is usually easy, and con-

sequently more explicit, than the identification of the subsystems to be

incorporated in the model.

Systems thinking is important in this phase. You must try to grasp the

big picture. The focal system behavior must be interpreted as a product

of dynamic processes, preferably described by causal relationships.

Figure 2.2 shows the procedure proposed by the authors, but it is

important to emphasize that this procedure is unlikely to be correct in

the first attempt, so there is no need to aim for perfection in one step.

The procedure should be considered as an iterative process and the

main requirement is to get started (Jeffers, 1978).



Definition of problem
and system

Adjacency matrix

Conceptual diagram

Mathematical formulation 
of processes

Transfer to computer
and verification

1. Sensitivity analysis

2. Senstivity analysis

Calibration, followed
by validation

Application of the model
 in management and to

formulate prognoses

Validation of
prognoses

Measurements with a
very high frequency

Examinations of
submodels

Additional data
collection

Available observations

Management

Modelling

Observations

Brain storming

FIGURE 2.2 A tentative

modelling procedure is

shown. Ideally, as

mentioned in the text, one

should determine the data

collection based on the

model, not the other way

around. Both possibilities

are shown because models

in practice have often been

developed from available

data, supplemented by

additional observations. This

diagram shows that

examinations of submodels

and intensive measurements

should follow the first

sensitivity analysis.

Unfortunately, many

modellers do not have the

resources to do so and

instead have bypassed these

two steps and even the

second sensitivity analysis. It

is strongly recommended to

follow the sequence of first

sensitivity analysis,

examinations of submodels

and intensive

measurements, and second

sensitivity analysis. Notice

that there are feedback

arrows from calibration and

validation to the conceptual

diagram. The diagram

shows that modelling

should be considered an

iterative process.
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It is difficult, at least in the first instance, to determine the optimum

number of subsystems to be included in the model for an acceptable leve

of accuracy defined by the scope of the model. Due to lack of data, it wil

often become necessary at a later stage to accept a lower number than

intended at the start or to provide additional data for improvement of the
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model. It has oftenbeenargued that amore complexmodel should account

more accurately for the behavior of a real system, but this is not necessarily

true. Additional factors are involved, but a more complex model has more

parameters and increases the level of uncertainty because parameters have

to be estimated either by field observations, laboratory experiments, or

calibrations, which again are based on field measurements. Parameter

estimations are never completely without errors, and the errors are carried

through into the model contributing to its uncertainty. The problem of

selecting the right model complexity will be further discussed in Section

2.8. This is a problemofparticular interest formodelling in ecology because

ecosystems are very complex, but it does not imply that an ecological

model to be used in research or environmental management should be

very complex. It depends on the ecosystem and the problem.

A first approach to the data requirement can be made at this stage, but

it is most likely to be changed later once experience with the verification,

calibration, sensitivity analysis, and validation has been gained. Develop-

ment of an ecological model should be considered an iterative process.

In principle, data for all the selected state variables should be avail-

able; in only a few cases would it be acceptable to omit measurements

of selected state variables, as the success of the calibration and valida-

tion is closely linked to the data quality and quantity.

It is helpful at this stage to list the state variables and attempt to get

an overview of the most relevant processes by setting up an adjacency

matrix. The state variables are listed vertically and horizontally. A 1 is

used to indicate that a direct link exists between the two state variables,

while 0 indicates that there is no link between the two components. The

conceptual diagram in Figure 2.1 can be used to illustrate the applica-

tion of an adjacency matrix in modelling:
Adjacency matrix for the model in Figure 2.1

From Nitrate Ammonium Phyt-N Zoopl-N Fish N Detritus-N Sediment-N

To

Nitrate – 1 0 0 0 0 0

Ammonium 0 – 0 1 0 1 1

Phyt-N 1 1 – 0 0 0 0

Zoopl-N 0 0 1 – 0 0 0

Fish N 0 0 0 1 – 0 0

Detritus-N 0 0 1 1 1 – 0

Sediment-N 0 0 1 0 0 1 –
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In this example, the adjacency matrix is made from the conceptua

diagram for illustrative purposes, but in practice it is recommended to

set up the adjacency matrix before the conceptual diagram. The mod-

eller should ask for each of the possible links: Is this link possible? If

yes, is it sufficiently significant to be included in the model? If yes

write 1, if no write 0. The adjacency matrix shown above may not be

correct for all lakes. If resuspension is important, then there should

be a link between sediment-N and detritus-N. If the lake is shallow

then resuspension may be significant, while the process is without

any effect in deep lakes. This example clearly illustrates the idea

behind the application of an adjacency matrix, which is to get the

very first overview of the state variables and their interactions. The

adjacency matrix can be considered as a checklist to assess which pro-

cesses of all the possible linkages actually realized should be included

in the model.

Once the model complexity, at least at the first attempt, has been

selected, it is possible to conceptualize the model, for instance, in the

form of a diagram as shown from Figure 2.1. This diagram will provide

information on which state variables, forcing functions, and processes

are required in the model.

Ideally, one should determine which data are needed to develop a

model according to a conceptual diagram; that is, to let the conceptua

model or even some first more primitive mathematical models deter-

mine the data at least within some given economic limitation. In rea

life, most models have been developed after the data collection as a

compromise between model scope and available data. There are devel-

oped methods to determine the ideal data set needed for a given mode

to minimize the uncertainty of the model, but unfortunately the appli-

cation of these methods is limited.

The conceptual diagram in Figure 2.1 indicates the state variables as

boxes; for instance, nitrate, and the processes as arrows between boxes

The forcing functions are symbolized by arrows to or from a state vari-

able like 15 and 16. It is possible to use other symbols for the modelling

components.

The STELLA software will be used to illustrate the development ofmod-

els throughout this book. It uses boxes for state variables (compartments)

thick arrows with a symbol of a valve for the processes (connections), thick

arrows coming or going to a cloud for the forcing functions (which require
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a constant, an equation, a table, or a graph), and a thin arrow to indicate

the transfer of information or variables (controls such as forcing function,

parameter, and/or a state variable calculated by an algebraic expression

from another state variable and so on). See Figure 2.3.

There are other symbolic languages for development of conceptual dia-

grams, for instance, Odum’s energy circuit language. It has more symbols

than STELLA, so it is more informative but also more time-consuming to

develop. For an overview of the most used symbolic languages including

Odum’s energy circuit language, see J�rgensen and Bendoricchio (2001).

For each state variable, a differential equation is constructed: accumu-

lation ¼ inputs � outputs. For detritus-N in Figure 2.1, the inputs are the

processes 20 þ 5 þ21 þ 7 þ 22 þ18 (in) and the outputs are the processes

11 þ 9 þ 18 (out). The differential equations are solved analytically in

mathematics, but it is rarely possible withmost ecological models because

they are too complex. The differential equations are therefore solved
State variable

N2

Forcing function

Variable
Graph 1 Table 1

Information transfer by a thin arrow. STELLA
requires that the variable is used in the
mathematical formulation of the forcing
function

N1

Process between
two state variables

FIGURE 2.3 The symbols applied to erect a conceptual diagram using STELLA. State variables are boxes

for which differential equations are erected as accumulation ¼ inputs � outputs. Processes are thick

arrows with the valve symbol. Forcing functions are thick arrows starting or ending as a cloud. Circles are

variables in general. Graph 1 and Table 1 indicate that the results can be presented as graphs or as tables.
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numerically within the computer software. A time step is selected for the

model calculations. The shorter the time step, the closer the computer cal-

culations come to the real-time variations of inputs and outputs, but the

shorter the time step, the longer the simulation takes to run. It is recom-

mended to test different time steps and use the longest time step that does

not significantly change the model results by decreasing the time step

further. The term “significant changes” is evaluated relative to the accu-

racy of the observations used as basis for the development of the model.

The STELLA software develops the differential equations directly

from the conceptual diagram, which is input on the main user interface.

The time derivative of the state variables will be equal to all the inputs ¼
all process arrows going into the state variables minus all outputs ¼ all

process arrows going out from the state variables. The processes must,

however, be formulated as an algebraic equation.

The next step is formulating the processes as mathematical equations.

Many processes may be described by more than one equation, and it

may be of great importance for the results of the final model that the

right one is selected for the case under consideration. The ecological liter-

ature contains mathematical formulations of most ecological processes,

but a short overview of the most applied mathematical equations is pre-

sented here. More than 95% of all ecologically relevant processes can be

formulated mathematically by one of the following six equations:

1. A constant flow rate, also denoted zero order expression:

dC

dt
¼ k1 ð2:1Þ

2. A first-order rate expression, where the rate is proportional to a
variable such as a concentration of a state variable:

dC

dt
¼ k1C ð2:2aÞ

This expression corresponds to exponential growth and the following
solution can be obtained by integration:

CðtÞ ¼ C0e
k1t ð2:2bÞ

This is often used to for modelling population growth (see Chapter 5).
Decomposition processes and radioactive decay can also be approxi-

mated as first order reactions, in which the rate is negative.
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3. A second-order rate expression occurs when the rate is proportional

to two state variables simultaneously, for instance:

dC1

dt
¼ k2C1C2 ð2:3Þ

4. This is a first-order rate expression with a regulation due to
environmental constraints, for instance, space or resources.

dC

dt
¼ k4C 1� C

K

� �
ð2:4Þ

where K is the carrying capacity. When the concentration reaches the
carrying capacity the factor becomes zero and the growth stops. This

process rate expression is denoted logistic growth and it is illustrated

in more detail in Chapter 5. These two growth expressions are both

extensively applied in population dynamic models.

5. A Michaelis-Menten expression or Monod kinetics known from

enzymatic processes in biochemistry is given by:

dC

dt
¼ k3C

ðC þ kmÞ ð2:5Þ

Where k3 is the maximum reaction rate and km is the Michaelis con-
stant. At small concentrations of the substrate, this process rate is pro-

portional to the substrate concentration, while the process rate is at

maximum and constant at high substrate concentrations where the

enzymes are fully utilized. The same expression is used when the

growth rate of plants is determined by a limiting nutrient according to

Liebig’s minimum law. The Michaelis-Menten’s constant, km, or the half

saturation constant, corresponds to the concentration that gives half the

maximum rate. At small concentrations of substrate or nutrients, the

rate is very close to a first-order rate expression, whereas it is close to

a zero order rate expression at high concentrations. Notice, that the rate

is regulated from a first-order to a zero order expression more and more

as the concentration increases.

6. A rate governed by diffusion often uses a concentration gradient to

determine the rate as it is expressed in Fick’s First Law:

dC

dt
¼ k5

dC

dx
ð2:6Þ
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There are several modifications of these six expressions. For instance,

a threshold concentration tr, is often used in the Michaelis-Menten

expression. The concentration (state variable) is replaced by the

concentration –tr. The concentration therefore has to exceed tr to generate

any rate. For grazing and predation processes, the Michaelis-Menten’s

expression is often multiplied by (1 � concentration/carrying capacity)

similar to what is used in the logistic growth expression. It implies that

when food is abundant (concentration is high) another factor determines

and limits the growth such as space or nesting area. These modifications

will be used in Chapter 7 for development of a eutrophication model.

Once the system of mathematical equations is available, model veri-

fication can be carried out. As pointed out in Section 2.2, this is an

important step, which unfortunately is omitted by some modellers.

The next section presents the details of this modelling step.
2.4. Verification

The next step of the modelling procedure includes verification, which is

a test of the internal model logic. Crucial questions about the model are

asked and answered by the modeller. Verification is to some extent a

subjective assessment of the behavior of the model.

Findeisen et al. (1978) gave the following definition of verification:

“A model is said to be verified if it behaves in the way the model

builder wanted it to behave.” This definition implies that there is a

model to be verified, which means that not only the model equations

have been set up, but also that the parameters have been given reason-

able realistic values. Consequently, the sequence verification, sensitiv-

ity analysis, and calibration must not be considered a rigid step-by-

step procedure, but rather as an iterative operation, which must be

repeated a few times. The model is first given realistic parameters from

the literature, then it is calibrated coarsely, and finally the model can

be verified followed by a sensitivity analysis and a finer calibration.

The model builder will have to go through this procedure several times

before the verification and the model output in the calibration phase

will be satisfactory.

It is recommended at this step that answers to the following ques-

tions are provided:
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1. Is the model stable in the long term? The model is run for a long

period with the same annual variations in the forcing functions to

observe whether the state variable values remain at approximately the

same levels. During the first period, state variables are dependent on

the initial values for these, and it is recommended that themodel is also

run with initial values corresponding to the long-term values of the

state variables. The procedure also can be recommended for finding

the initial values if they are not measured or known by other means.

This question presumes that real ecosystems are long-term stable,

which is not necessarily the case.The model is run for a long period

using a certain pattern in the fluctuations of the forcing functions. It

should then be expected that the state variables, too, show a certain

pattern in their fluctuations. The simulation period should be long

enough to allow the model to demonstrate any possible instability.

2. Does the model react as expected? For example, if the input of toxic

substances is increased, then we should expect a higher

concentration of the toxic substance in the top carnivores. If this is

not so, then it shows that some formulations may be wrong and

these should be corrected. This question assumes that we actually

know at least some behavior of the ecosystem, which is not always

the case. In general, playing with the model is recommended at this

phase. Through such exercises the modeller gets acquainted with

the model and its reactions to perturbations. Models should

generally be considered an experimental tool. The experiments are

carried out to compare model results with observations, and changes

of the model are made according to the modeller’s intuition and

knowledge of the model’s behavior. If the modeller is satisfied with

the accordance between model and observations, then the model is

accepted as a useful description of the real ecosystem — at least

within the framework of the observations. This part of the

verification is based upon more subjective criteria. Typically, the

model builder formulates several questions about the model

behavior and tests the model response by provoking changes in

forcing functions or initial conditions. If the responses are not as

expected, then the model structure or equations will have to be

changed, provided that the parameter space is approved. Examples
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of typical questions will illustrate this operation: Will increased

BOD5-loading in a stream model imply decreased oxygen

concentration? Will increased temperature in the same model imply

decreased oxygen concentration? Will the oxygen concentration be at

a minimum at sunrise when photosynthesis is included in the

model? Will decreased predator concentration in a prey-predator

model imply increased prey concentration? Will increased nutrient

loadings in a eutrophication model give increased concentration of

phytoplankton? Numerous other questions can be asked.

3. It is also recommended to check all the units at this phase of

model development. Check all equations for consistency of units.

Are the units the same on both sides of the equation sign? Are the

parameters used in the model consistent for the type of equations

used and do the units match with the available data?

4. Investigate the statistical properties of the noise in the model. To

conform to the properties of white noise, any error sequence should

broadly satisfy the following constraints: that its mean value is zero,

that it is not correlated with any other error sequence, and that it is

not correlated with the sequences of measured input forcing

functions. Evaluation of the error sequences in this fashion can

therefore essentially provide a check on whether the final model

invalidates some of the assumptions inherent in the model. If the

error sequences do not conform to their desired properties, then this

suggests that the model does not adequately characterize all of the

more deterministic features of the observed dynamic behavior.

Consequently, the model structure should be modified to

accommodate additional relationships. To summarize this part of the

verification the errors:
1. (Comparison model output/observations) must have mean values

of approximately zero

2. Are not mutually cross-related

3. Are not correlated with the measured input forcing functions
Results of this kind of analysis are illustrated in detail in Beck (1987).

Notice that this analysis requires good estimates of standard deviations

in sampling and analysis (observations).
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Notice finally that during verification it is possible to perform

multiple scenario analyses or “Gedanken Experiments.” For example,

we can test a eutrophication model by its response to the following

test. We rent a helicopter and buy 100,000 kg of phosphorus fertilizer

and drop it instantly to the lake. The experiment could be made at

no cost using the model, while it would be very expensive to rent a

helicopter and buy 100,000 kg of fertilizer. A major advantage of mod-

els is how easy it is to assess the system behavior under a wide array of

scenarios.

Model verification may seem very cumbersome, but it is a very nec-

essary step for the model development process. Through the verifica-

tion one learns the model through its behavior, and the verification

becomes an important checkpoint in the construction of a workable

model. This also emphasizes the importance of good ecological knowl-

edge of the ecosystem without which the right questions as to the inter-

nal logic of the model cannot be posed.

Unfortunately, many models have not been verified properly due to

lack of time, but the experience shows that what might seem to be a

shortcut will lead to an unreliable model, which at a later stage might

require more time to compensate for the lack of verification. It must

therefore be strongly recommended to invest enough time in the verifi-

cation and to plan for the necessary allocation of resources in this

important phase of the modelling procedure.
2.5. Sensitivity Analysis

Sensitivity analysis follows verification. Through this analysis the model-

ler gets a good overview of the most sensitive components of the model.

Thus, sensitivity analysis attempts to provide a measure of the sensitiv-

ity of parameters, forcing functions, or submodels to the state variables

of greatest interest in the model. If a modeller wants to simulate a toxic

substance concentration in carnivorous insects as a result of the use of

insecticides, then one will choose this state variable as the most impor-

tant one for a sensitivity analysis along with the concentration of the

toxic substance concentration in plants and herbivorous insects.

In practical modelling, the sensitivity analysis is carried out by

changing the parameters, the forcing functions, or the submodels.
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The corresponding response on the selected state variables is observed.

Thus, the sensitivity, S, of a parameter, P, is defined as follows:

S ¼ ½@x=x�=½@P=P� ð2:7Þ
where x is the state variable under consideration.
The relative change in the parameter value is chosen based on our

knowledge of the certainty of the parameters. If the modeller estimates

the uncertainty to be about 50%, then a change in the parameters at

�10% and �50% is chosen and the corresponding change in the state

variable(s) recorded. It is often necessary to find the sensitivity at two or

more levels of parameter changes as the relationship between a parameter

and a state variable is rarely linear.

A sensitivity analysis makes it possible to distinguish between high-

leverage variables, whose values have a significant impact on the system

behavior and low-leverage variables, whose values have minimal impact

on the system. Obviously, the modeller must concentrate the effort on

improvements of the parameters and the submodels associated with

the high-leverage variables. The result of a sensitivity analysis of a eutro-

phication model with 18 state variables, presented in Chapter 7, is shown

in Table 2.1. The sensitivity of the examined parameters by a 10% increase

to phytoplankton, s-phyt; to zooplankton, s-zoo; to soluble nitrogen, s-nit;

and to soluble phosphorus, s-phos, is shown. These results clearly indicate

that the parameters “maximum growth rate of phytoplankton and zoo-

plankton,” “mortality of zooplankton,” and the “settling rate of
Table 2.1 Results of a �10% Sensitivity Analysis of the 18 State Variable
Model in Chapter 7

Parameter s-phyt s-zoo s-nit s-phos

Maximum growth rate of phytoplankton 0.488 0.620 -0.356 -0.392

Maximum growth rate of zooplankton -2.088 -4.002 2.749 4.052

Denitrification rate -0.19 -0.010 -0.579 0.013

Fish concentration 0.008 0.012 -0.011 -0.014

Rate of mineralization 0.003 0.010 0.038 0.001

Mortality zooplankton 2.063 1.949 -3.479 -3.350

Settling rate -1.042 -0.0823 0.321 0.388
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phytoplankton,” are very important parameters to determine accurately

because they all have a sensitivity to the most important state variable,

the phytoplankton, which is more than 0.5 or 50%, meaning that a change

of the parameters by 10% would make a change of the phytoplankton con-

centration of more than 50%. On the other hand, the parameters “maxi-

mum denitrification rate,” the “mortality of fish,” and the “rate of

mineralization” are significantly less important parameters. They all have

a sensitivity of less than 0.1 or 10%. Therefore, they would change the phy-

toplankton less than 1% if the parameters are changed 10%.

The interaction between the sensitivity analysis and the calibration

could consequently work along the following lines:

1. A sensitivity analysis is carried out at two or more levels of parameter

changes. Relatively large changes are applied at this stage.

2. The most sensitive parameters are determined more accurately

either by a calibration or by other means (see Section 2.9).

3. Under all circumstances, great efforts are made to obtain a relatively

well calibrated model.

4. A second sensitivity analysis is then carried out using more narrow

intervals for the parameter changes.

5. Still further improvements of the parameter certainty are attempted.

6. A second or third calibration is then carried out focusing mainly on

the most sensitive parameters.

A sensitivity analysis on submodels (process equations) can also be

carried out. Then the change in a state variable is recorded when the

equation of a submodel is deleted from themodel or changed to an alter-

native expression, for instance, with more details built into the submo-

del. Such results may be used to make structural changes in the model.

For example, if the sensitivity shows that it is crucial for themodel results

to use a more detailed submodel, then this result should be used to

change the model correspondingly.

If it is found that the state variable in focus is very sensitive to a cer-

tain submodel, then it should be considered which alternative submo-

dels could be used and they should be tested and/or examined in

further detail either in vitro or in the laboratory.

It can generally be stated that those submodels, which contain sensitive

parameters, are also submodels that are sensitive to the important state var-

iable. On the other hand, it is not necessary to have a sensitive parameter
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included in a submodel to obtain a sensitive submodel. A modeller with a

certain experience will find that these statements agree with intuition, but

it is also possible to show that they are correct by analytical methods.

A sensitivity analysis of forcing functions gives an impression of the

importance of the various forcing functions and tells us what accuracy

is required of the forcing functions.
2.6. Calibration

The goal of calibration is to improve the parameter estimation. Some

parameters in causal ecological models can be found in the literature,

not necessarily as constants but as approximate values or intervals. To

cover all possible parameters for all possible ecological models includ-

ing ecotoxicological models, we need to know more than one billion

parameters. Therefore, in modelling there is a particular need for

parameter estimation methods. This will be discussed later in this chap-

ter and further in Chapter 8, where methods to estimate ecotoxicologi-

cal parameters based upon the chemical structure of the toxic

compound are presented. In all circumstances, it is a great advantage

to give even approximate values of the parameters before the calibration

gets started as previously mentioned. It is, of course, much easier to

search for a value between 1 and 10 than to search between 0 and þ 1.

Even where all parameters are known within intervals either from the

literature or from estimation methods, it is usually necessary to cali-

brate the model. Several sets of parameters are tested by the calibration

and the various model outputs of state variables are compared with

measured values of the same state variables. The parameter set that

gives the best agreement between model output and measured values

is chosen.

The need for the calibration can be explained by using the following

characteristics of ecological models and their parameters:

1. Most parameters in environmental science and ecology are not

known as exact values. Therefore, all literature values for

parameters (J�rgensen et al., 1991, 2000). Parameter estimation

methods must be used when no literature value can be found,

particularly ecotoxicological models. See, J�rgensen (1991, 1992a)

and Chapter 8. In addition, we must accept that unlike many
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physical parameters, ecological ones are not constant but change in

time or situation (J�rgensen, 1986, 1992b, 2002). This point will be

discussed further in Chapter 10.

2. All models in ecology and environmental sciences are simplifications

of nature. The most important components and processes may

be included, but the model structure does not account for every

detail. To a certain extent the influence of some unimportant

components and processes can be taken into account by the

calibration. This will give slightly different values for the

parameters from the real, but unknown, values in nature, but

the difference may partly account for the influence from the

omitted details.

3. Most models in environmental sciences and ecology are “lumped

models,” which means that one parameter represents the average

values of several species. As each species has its own characteristic

parameter value, the variation in the species composition with time

will inevitably give a corresponding variation in the average

parameter used in the model. Adaptation and shifts in species

composition will require other approaches. This will be discussed in

more detail in Chapter 10.

A calibration cannot be carried out randomly if more than a couple

of parameters have been selected for calibration. If, for instance, 10

parameters have to be calibrated and the uncertainties justify the test-

ing of 10 values for each parameter, the model has to be run 1010 times,

which is an impossible task. Therefore, the modeller must learn the

behavior of the model by varying one or two parameters at a time and

observing the response of the most crucial state variables. In some

(few) cases it is possible to separate the model into several submodels,

which can be calibrated approximately independently. Although the cal-

ibration described is based to some extent on a systematic approach, it

is still a trial-and-error procedure.

However, procedures for automatic calibration are available. This

does not mean that the trial-and-error calibration described earlier is

redundant. If the automatic calibration should give satisfactory results

within a certain frame of time, then it is necessary to calibrate only

6–9 parameters simultaneously. In any circumstances, the narrower
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the ranges of the parameters before the calibration gets started, the eas-

ier it is to find the optimum parameter set.

In the trial-and-error calibration, the modeller has to set up, some-

what intuitively, some calibration criteria. For instance, you may want

to simulate accurately the minimum oxygen concentration for a stream

model and/or the time at which the minimum occurs. When you are

satisfied with these model results, you may then want to simulate the

shape of the oxygen concentration versus time curve properly, and so

on. The model must be calibrated step-by-step to achieve these objec-

tives step-by-step.

If an automatic calibration procedure is applied, then it is necessary

to formulate objective criteria for the calibration. A possible function

could be based on an equation similar to the calculation of the standard

deviation:

Y ¼ ½ðSððXc � XmÞ2=Xm;aÞ=n�1=2 ð2:8Þ
where Xc is the computed value of a state variable, Xm is the
corresponding measured value, Xm,a is the average measured value of

a state variable, and n is the number of measured or computed values.

Y is computed during an automatic calibration with the goal to obtain

the lowest Y value possible.

Often, the modeller is more interested in a good agreement between

model output and observations for one or two state variables and less

interested in a good agreement with other state variables. Therefore,

weights are chosen for the various state variables to account for the

emphasis put on each state variable in the model. For a model of the

fate and effect of an insecticide, emphasis may be put on the toxic sub-

stance concentration of the carnivorous insects while considering the

toxic substance concentrations in plants, herbivorous insects, and soil

to be of less importance. Therefore, a weight of ten is applied for the

first state variable and only one for the subsequent three.

If it is impossible to calibrate a model properly, then it is not neces-

sarily due to an incorrect model. Instead, it may be due to the poor data

quality, which is crucial for calibration. It is also of great importance

that the observations reflect the system dynamics. If the objective of the

model is to give a good description of one or a few state variables, then

it is essential that the data show the dynamics of just these internal
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variables. The frequency of the data collection should therefore reflect

the dynamics of the state variables in focus. This rule has unfortunately

often been violated in modelling.

It is strongly recommended that the dynamics of all state variables

are considered before the data collection program is determined in

detail. Frequently, some state variables have particularly pronounced

dynamics in specific periods — often in spring — and it may be of great

advantage to have a dense data collection in this period in particular.

J�rgensen et al. (1981) showed how a dense data collection program in

a certain period can be applied to provide additional certainty for the

determination of some important parameters. This question will be fur-

ther discussed in Section 2.9.

From these considerations, recommendations can now be drawn

about the feasibility of carrying out a calibration of a model in ecology:

1. Find as many parameters as possible from the literature (see

J�rgensen et al., 1991, 2000). Even a wide range for the parameters

should be considered very valuable, as approximate initial guesses

for all parameters are urgently needed.

2. If some parameters cannot be found in the literature, which is often

the case, then the estimation methods mentioned later in this Section

2.9 and in Chapter 8 may be used. For some crucial parameters it

may be recommended to determine them by experiments in situ or

in the laboratory.

3. A sensitivity analysis should be carried out to determine which

parameters are most important to be known with high certainty. The

estimation methods and the determination of the parameters by

experiments should focus mainly on the most sensitive parameters.

4. An intensive data collection program for the most important state

variables should be used to provide a better estimation for the most

crucial parameters. For further details see Section 2.9.

5. First, at this stage, the calibration should be carried out using the

data not yet applied. The most important parameters are selected

and the calibration is limited to these, or, at the most, to eight to ten

parameters. In the first instance, the calibration is carried out by

using the trial-and-error method to get acquainted with the model
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reaction to changes in the parameters. An automatic calibration

procedure is used subsequently to polish the parameter estimation.

6. These results are used in a second sensitivity analysis, which may give

results different from the first sensitivity analysis.

7. A second calibration is now used on the parameters that are most

important according to the second sensitivity analysis. In this case,

too, both the previous calibration methods may be used. In some

cases, the modeller would repeat steps 6 and 7 one time more and

make a third calibration. After this final calibration the model can be

considered calibrated and we can go to the next step — validation.
2.7. Validation and Assessment of the Model
Uncertainty

The calibration should always be followed by a validation. During this

step the modeller tests the model against an independent data set to

observe how well the model simulations fit these data. It may be possi-

ble, even in a data-rich situation, to force a wrong model by the param-

eter selection to give outputs that fit well with the data. It must,

however, be emphasized that the validation only confirms the model

behavior under the range of conditions represented by the available

data. So, it is preferable to validate the model using data obtained from

a period in which conditions other than those of the period of data col-

lection for the calibration prevail. For instance, when a eutrophication

model is tested, it should preferably have data sets for the calibration

and the validation that differ by the level of eutrophication. This is often

impossible or at least very difficult as it may correspond to a complete

validation of the model predictions, which at best takes place at a later

stage of the model development. However, it may be possible and useful

to obtain data from a certain range of nutrient loadings, for instance,

from a humid and a dry summer. Alternatively, it may be possible to

get data from a similar ecosystem with approximately the same morphol-

ogy, geology, and water chemistry as the modelled ecosystem. Similarly, a

BOD/DO model should be validated under a wide range of BOD-

loadings, a toxic substance model under a wide range of concentrations
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of the considered toxic substances, and a population model by different

levels of the populations, and so forth.

If an ideal validation cannot be obtained, then it is still important to

validate the model as best as possible. The method of validation is

dependent on the model objectives. A comparison between measured

and computed data using an objective function Eq. (2) is an obvious

test. This is, however, often not sufficient, as it may not focus on all

the main objectives of the model, but only on the general ability of

the model to describe correctly the state variables of the ecosystem. It

is necessary, therefore, to translate the main objectives of the model into

a few validation criteria. They cannot be formulated generally, but are

individual for the model and the modeller. For instance, if we are

concerned with the eutrophication in an aquatic ecosystem, it would

be useful to compare the measured and computed maximum concen-

trations of phytoplankton. The validation discussion can be summar-

ized by the following issues:

1. Validation is always required to get a picture of the model reliability.

2. Attempts should be made to get data for the validation that are

entirely different from those used in the calibration. It is important

to have data from a wide range of forcing functions that are defined

by the model objectives.

3. The validation criteria are formulated based on the model objectives

and the quality of the available data. The main purpose of the model

may, however, be an exploratory analysis to understand how the

system responds to the dominating forcing functions. In this case, a

structural validation is probably sufficient.

Validation is a very important modelling step because it gives the

uncertainty of the model results. It attempts to answer the question:

Which model uncertainty should we consider when using the model

to develop strategies for environmental management? If we use the

model as research tool, then the validation will tell us whether the

model results can be used to support or reject a hypothesis. The uncer-

tainty determined by the validation relative to the difference between

the hypothesis and the model results will be decisive. In Chapter 7, a

eutrophication model with 18 state variables will be applied as a case
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study to demonstrate how the validation results can be used to assess

the expected uncertainty of the prognoses developed by the model.

The validation result can also be used to consider the model revisions

that would be needed to reduce the uncertainty. In our effort to improve

the model, we should ask the following pertinent questions:

1. What is the uncertainty of the observations (measurements)? If the

uncertainty of the model is not very different from the uncertainty of

the observations, then it will probably be beneficial to get more

reliable observations with less uncertainty.

2. Do the observations represent the system dynamics? If not, then

more frequent monitoring should be considered for some period to

capture the system dynamics. See the discussion of this question in

Section 2.9.

3. Are some important processes or components missing or described

wrongly in the model? In this context, as previously mentioned, it is

important to set up a mass and/or energy balance to reveal the most

important processes and sources.

It is recommended to give a sufficiently comprehensive answer to

question 3 and eventually use the model experimentally to find the best

answer. It is quite easy in most cases to replace important equations by

other expressions or add new components or processes and so on. Such

experiments are very elucidating for the importance of formulations

and inclusion of processes. Small changes in process equations that

make big changes in the model results uncover the soft points of the

model and may inspire additional experiments or observations in situ

or in the laboratory, and eventually to further changes of the model.

It should be emphasized that the “ideal” model can never be

achieved, but step-by-step by steadily questioning the model and using

these three points again and again, we can improve the model quality

moving asymptotically toward the ideal model. An ideal model is, how-

ever, not necessary to have a useful and powerful tool in environmental

management and ecosystem research. A satisfactory calibration and val-

idation with sufficiently low uncertainties to allow application in a

defined context would be the general requirement for the pragmatic

modeller.



44 FUNDAMENTALS OF ECOLOGICAL MODELLING
2.8. Model Classes

It is useful to distinguish between various model classes and briefly dis-

cuss the selection of model classes.

Pairs of models are shown in Table 2.2. The first division of models is

based on the application scientific and management models. This initial
Table 2.2 Classification of Models (Pairs of Model Types)

Type of Models Characterization

Research models Used as a research tool

Management

models

Used as a management tool

Deterministic

models

The predicted values are computed exactly

Stochastic models The predicted values depend on probability distribution

Compartment

models

The variables defining the system are quantified by means of time-dependent

differential equations

Matrix models Uses matrices in the mathematical formulation

Reductionistic

models

Include as many relevant details as possible

Holistic models Uses general principles

Static models The variables defining the system are not dependent on time

Dynamic models The variables defining the system are a function of time (or perhaps of space)

Distributed models The parameters are considered functions of time and space

Lumped models The parameters are within certain prescribed spatial locations and time,

considered as constants

Linear models First-degree equations are used consecutively

Nonlinear models One or more of the equations are not first degree

Causal models The inputs, states, and the outputs are interrelated by using causal relations

Black-box models The input disturbances effect only the output responses, no causality is required

Autonomous

models

The derivatives are not explicitly dependent on the independent variable (time)

Non-autonomous

models

The derivatives are explicitly dependent on the independent variable (time)
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distinction guides the objectives of the model development toward

either research or application orientation and influences the choice of

which processes and state variables to emphasize.

The next pair is stochastic and deterministic models. A stochastic

model contains stochastic input disturbances and random measure-

ment errors, as shown in Figure 2.4. If they are both assumed to be zero,

then the stochastic model will reduce to a deterministic model provided

the parameters are not estimated in terms of statistical distributions.

A deterministic model assumes that the future response of the system

is completely determined by knowledge of the present state and future

measured inputs. Stochastic models are not frequently applied in

ecology.

The third pair in Table 2.2 is compartment and matrix models. Some

modellers refer to compartment models as models based on the use of

compartments in the conceptual diagram, while other modellers distin-

guish between the two model classes entirely by the mathematical for-

mulation as indicated in Table 2.2. Both model types are applied in

ecological modelling, although the use of compartment models is far

more pronounced.

The classification of reductionistic and holistic models is based upon

a difference in the scientific ideas behind the model. The reductionistic

modeller will attempt to incorporate as many details of the system as

possible to capture its behavior, believing that the properties of the sys-

tem are the sum of the details. A holistic modeller will abstract some

detail to capture broader scale patterns. The bridge between these

bottom-up and top-down approaches is spanned by the use of hierarchi-

cal models that include lower level micro-scale interactions constrained

by higher level macro-scale processes.
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Most problems in environmental sciences and ecology may be

described by dynamic models, which use differential or difference equa-

tions to describe the system response to external factors. Differential

equations are used to represent continuous changes of state with time,

while difference equations use discrete time steps. The steady state cor-

responds to the situation when all derivatives equal zero. The oscilla-

tions around the steady state are described by use of a dynamic

model, while the steady state can be described by use of a static model

(see Figure 2.5), which can be reduced to algebraic equations.

Some dynamic systems have no steady state; for instance, systems

that show limit cycles. This situation obviously requires a dynamic

model to describe the system behavior. In this case, the system is always

nonlinear, although there are nonlinear systems that have steady states.

A static model assumes, consequently, that all variables and para-

meters are time independent. The advantage of the static model is its

potential for simplifying subsequent computational effort through the

elimination of one of the independent variables in the model relation-

ship, but static models may give unrealistic results because oscillations

caused by seasonal and diurnal variations may be utilized by the state

variables to obtain higher average values.

A distributed model accounts for variations of variables in time and

space. A typical example would be an advection-diffusion model for

transport of a dissolved substance along a stream. It might include
A

B
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Time

FIGURE 2.5 Y is a state variable

expressed as a function of time. A is

the initial state and B the transient

states. C oscillates around a steady

state. The dotted line corresponds to

the steady state that can be described

by a static model. The transient state

requires the use of a dynamic model.
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variations in the three orthogonal directions. The analyst might decide,

based on prior observations, that gradients of dissolved material along

one or two directions are not sufficiently large to merit inclusion in

the model. The model would then be reduced by that assumption to a

lumped parameter model. Whereas the lumped model is frequently

based upon ordinary differential equations, the distributed model is

usually defined by partial differential equations.

The causal, or internally descriptive, model characterizes the manner

in which inputs are connected to states and how the states are

connected to each other and to the outputs of the system, whereas

the black-box model reflects only what changes in the input will affect

the output response. In other words, the causal model describes the

internal mechanisms of process behavior. The black-box model deals

only with what is measurable at the boundary: the input and the output.

The relationship may be found by a statistical analysis. If, on the other

hand, the processes are described by model equations that represent

the relationships, then the model will be causal.

The modeller may prefer to use black-box descriptions in the cases

where knowledge about the processes is limited. The disadvantage of

the black-box model is that it has limited application to the ecosystem

under consideration or at least to a similar ecosystem, and that it can-

not consider changes of the system.

If general applicability is needed, then it is necessary to set up a

causal model. The latter type is more widely used in environmental

sciences than the black-box model, mainly because the causal model

gives the user deeper understanding about the function of the system,

including the many chemical, physical, and biological reactions.

Autonomous models are not explicitly dependent on time (the inde-

pendent variable):

dy=dt ¼ a�yb þ c�yd þ e ð2:9Þ
Non-autonomous models contain terms, g(t), that make the derivatives
dependent on time, exemplified by the following equation:

dy=dt ¼ a�yb þ c�yd þ eþ gðtÞ ð2:10Þ
The pairs in Table 2.2 may be used to define the type of model that is
most applicable to solve a given problem. It will be further discussed



Table 2.3 Model Identification

Model Types Organization Pattern Measurements

Biodemographic Conservation of genetic

information

Life cycles of

species

Number of species or

individual

Bioenergetic Conservation of energy Energy flow Energy

Biogeochemical Conservation of mass Element cycles Mass of concentrations
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in the next section, where a practical model classification will also be

presented.

Table 2.3 shows another way to classify models. The differences

among the three model types are the choice of components used as

state variables. If the model describes a number of individuals, species,

or classes of species, then it is called biodemographic. A model that

describes the energy flows is bioenergetic and the state variables will

typically be expressed in kJ or kJ per unit of volume or area. Biogeo-

chemical models consider the flow of material and the state variables

are indicated as kg or kg per unit of volume or area. This model type

is mainly used in ecology.

The problem, the ecosystem characteristics, and the available data-

base should be reflected in the choice of model class. The two model

classifications presented earlier are useful for defining the modelling

problem. Is the problem related to a description of populations, energy

flows, or mass flows? The answer determines whether we should develop

a biodemographic, bioenergetic, or biogeochemical model. Biodemo-

graphic models that include a description of age structure can be ele-

gantly developed by a matrix model, provided that first-order processes

can be assumed. This will be demonstrated in Chapter 5, Section 5.4.

If the model is developed on the basis of a database that has limited

quality and/or quantity, then the model should have relatively low com-

plexity. A dynamic model is generally more demanding to calibrate and

validate than a static model. Therefore, the latter type would often be

selected in a data-poor situation, provided that a description of the

steady state is sufficient to solve the problem. Steady-state descriptions

imply that an equation input ¼ output for each state variable can be

applied to find (estimate) one (otherwise unknown) parameter. Chapter

6 shows how a steady-state model can be developed and used to get a
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good overview of an ecological situation, even in a relatively data-poor

situation.

Dynamic models are able to make predictions about the variations of

state variables in time and/or space. Differential equations are used to

express the variation. With reference to Figure 2.6, the following differ-

ential equations are valid:

dPS=dt ¼ PINþ Processð2Þ � Processð1Þ � PS �Q=V ð2:11Þ
dPA=dt ¼ Processð1Þ � PA �Q=V ð2:12Þ

where PIN represents the input (a forcing function), Q the flow rate out
of the system, V the volume of the system and (1) and (2) processes that

can be formulated as mathematical equations with PS and PA as vari-

ables; for instance (1) ¼ kPS/(0.5 þ PS) (a Michaelis-Menten expression)

and (2) ¼ k0*PA, where k and k0 are two parameters.

The corresponding steady-state model gives us two equations:

PINþ k0PA ¼ PSðQ=V þ k=ð0:5þ PSÞÞ and PA �Q=V ¼ kPS=ð0:5þ PSÞ
that can be used to find k and k’, presuming that we know the two state
variables at steady state and the forcing functions.

Many population dynamic, biogeochemical, and ecotoxicological

models apply differential equations because the time variations are

important.

It is known that ecosystems are adaptable. Over time, species can

change their properties to meet changing conditions (i.e., change of

forcing functions or disturbances). If the changes are major, then there
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may even be a shift to other species with properties better fitted to the

emerging conditions. Models that account for the change of properties

of the biological components have variable parameters and are

described by nonstationary, time-varying differential equations. They

are often called structurally dynamic models (SDMs; see J�rgensen,

1986, 1997, 2002), because they are able to predict the changes in prop-

erties of the biological components. Chapter 10 covers this model type

and its application. Structurally dynamic models are distributed models,

because the parameters are considered functions of time and space.

While distributed models in most cases are based on mathematical for-

mulations of these functions when the model is developed, we will only

use the term structurally dynamic models for models that can simulate

change in the structure (shifts in parameter values). Structurally

dynamic models are an important recent development in ecological

modelling because the parameters found on the basis of the observa-

tions in the ecosystem under the present prevailing conditions cannot

be valid when the conditions are changed due to adaptation. Therefore,

models without dynamic structure often give unreliable results, particu-

larly if the forcing functions are significantly changed.

In Chapter 3, an overview of the model types that are available for

the development of ecological models is presented. The choice of

model type for development in a particular situation depends on the

different mathematical methods, different goals, and different applica-

tions and may also use different types of databases. While the model

classes are characterized by a difference in one property only (e.g.,

steady state vs. dynamic state and mass flows vs. energy flows), the

different model types are significantly different. They have been devel-

oped to solve some fundamental modelling problems in ecology dur-

ing the last couple of decades, including: (1) How do we account for

the individuality of organisms? (2) How do we account for adaptation

and shifts in species composition? (3) What model approach is best

when our data set is uncertain (i.e., fuzzy)? (4) How can we make an

effective model from a very heterogeneous database? (5) How can we

improve model parameter estimation? We have solved these problems

by development of several different model types that have expanded

the range and application of ecological models in many different

directions.



Chapter 2 • Concepts of Modelling 51
2.9. Selection of Model Complexity and Structure

The literature of environmental modelling contains several methods that

are applicable to the selection of model complexity. References can be

given to the following papers devoted to this question: Halfon (1983,

1984, 1986), Halfon, Unbehauen, and Schmid (1979), Costanza and Sklar

(1985), Bosserman (1980, 1982) and J�rgensen and Mejer (1977).

It is clear from the previous discussions in this chapter that selection of

the model complexity is a matter of balance. On one hand, it is necessary

to include the state variables and the processes essential for the problem

in focus. On the other hand, it is important not to make the model more

complex than appropriate for the available data set. As Einstein once

quipped, “A scientific theory should be as simple as possible, but no sim-

pler.” The same applies to models. Our knowledge of processes and state

variables together with our data set determine the selection of model

complexity. If our knowledge is poor, then the model will include few

details and will have a relatively high uncertainty. If we have a profound

knowledge of the problem we want to model, then we can construct a

more detailed model with a relatively low uncertainty. Many researchers

claim that a model cannot be developed before one has a certain level

of knowledge, and that it is a flaw to attempt to construct a model in a

data poor situation. This is wrong because a model can always assist

the researcher by synthesizing the present knowledge and by visualizing

the system. But the researcher must always present the shortcomings

and the uncertainties of the model and not try to pretend that the model

is a complete and detailed picture of reality. A model will often be a fruit-

ful instrument to test hypotheses in the hands of the researcher, but only

if the incompleteness of the model is fully acknowledged.

It should not be forgotten in this context that models have always

been applied in science. The difference between present and previous

models is only that today, with modern computer technology, we are able

to work with very complex models. However, it has been a temptation to

construct models that are too complex — it is easy to add more equations

and more state variables to the computer program, but much harder to

get the data needed for calibration and validation of the model.

Even if we have very detailed knowledge about a problem, we will

never be able to develop a model capable of accounting for the com-

plete input-output behavior of a real ecosystem and valid for all frames
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(Zeigler, 1976). This ideal model is named “the base model” by Zeigler,

and it would be very complex and require such a great number of

computational resources that it would be almost impossible to simulate.

The base model of a problem in ecology will never be fully known

because of the complexity of the system and the impossibility to

observe all states. However, given an experimental frame of current

interest, a modeller is likely to find it possible to construct a relatively

simple model that is workable in that frame.

According to this discussion, a model may be made more realistic by

adding more connections. Additions of new parameters up to a point do

not contribute further to improve the simulation; on the contrary, more

parameters imply more uncertainty because of the possible lack of

information about the flows the parameters can quantify. Given a cer-

tain amount of data, the addition of new state variables or parameters

beyond a certain model complexity does not add to our ability to model

the ecosystem; it only adds to unaccountable uncertainty. These ideas

are visualized in Figure 2.7. The relationship between knowledge gained

through a model and its complexity is shown for two levels of data qual-

ity and quantity. The question under discussion can be formulated with
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FIGURE 2.7 Knowledge plotted versus model complexity measured by the number of state variables. The

knowledge increases up to a certain level. Increased complexity beyond this level will not add to the

knowledge gained about the modelled system. At a certain level, the knowledgemight even be decreased

due to uncertainty caused by too high a number of unknown parameters. (2) corresponds to an available

data set, which is more comprehensive or has a better quality than (1). Therefore the knowledge gained

and the optimum complexity is higher for data set (2) than for (1). (Reproduced from J�rgensen, 1988.)
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relation to this figure: How can we select the optimum model complex-

ity and structure for the given understanding for the question at hand?

We will discuss in the following section the methods available to

select a good model structure. If a rather complex model is developed,

then the use of one of the methods presented in the previous references

is recommended, but for simpler models it is often sufficient to select a

model of balanced complexity, as discussed earlier.

Costanza and Sklar (1985) have examined 88 different models, and

showed that more theoretical discussion behind Figure 2.7 is valid in

practice. Their results are summarized in Figure 2.8, where effectiveness

is plotted versus articulation (¼ expression for model complexity).

Effectiveness is understood as a product of model results and confi-

dence (i.e., certainty), while articulation is a measure of the complexity

of the model with respect to number of components, time, and space.

The measures of articulation or complexity and effectiveness are rela-

tive. Some other authors may have applied other measures, but it is
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FIGURE 2.8 Plot of articulation index versus effectiveness ¼ articulation*certainty for the 88 models

reviewed by Costanza and Sklar (1985). As almost 50% of the models were not validated, they had

an effectiveness of 0. These models are not included in the figure, but are represented by the line

effectiveness ¼ 0. Notice that nearly 50% of the models have a relatively low effectiveness due to too

little articulation, and that only one model had an articulation that was too high, which implies that

the uncertainty by drawing the effectiveness frontier as shown in the figure is high at articulations

above 25. (This figure is partly reproduced from Costanza and Sklar, 1985.)
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clearly seen by comparison of Figures 2.7 and 2.8 that they show the

same type of relationship.

Selection of the right complexity is of great importance in environ-

mental and ecological models as already stated. The methods presented

and discussed in the following section provide an objective procedure to

select the correct level of model complexity. However, the model selec-

tion always requires that the application of these methods is combined

with a good knowledge of the system being modelled. The methods

must work hand-in-hand with an intelligent answer to the question:

Which components and processes are most important for the problem

in focus? The conclusion is therefore: Know your system and your prob-

lem before you select your model, including the complexity of the

model. It should not be forgotten that the model will always be an

extreme simplification of nature. This implies that we cannot make a

model of an ecosystem, but we can develop a model of some aspects

of that ecosystem.

A parallel to the application of geographical maps (see Section 1.1)

can be made again: We cannot make a map (model) of a state with all

its details, instead we show some geographic aspects on a certain scale.

Therein lays our limitations, which are due to the immense complexity

of nature. We have to accept these limitations since we cannot produce

a complete model or get a total picture of a natural system. Some kind

of map is always more useful than no map, so some kind of model of an

ecosystem is better than no model at all. As the map quality improves

due to better techniques and knowledge, so does the model of an

ecosystem as we gain more experience in modelling and improve our

ecological knowledge. We do not need a complete set of details to get

a proper overview and a holistic picture; we need some details and we

need to understand how the system works on the system level.

Therefore, the conclusion is that although we can never know all of the

details needed to make a complete model, we can produce good work-

able models that expand our knowledge of ecosystems, particularly of

their properties as systems. This is completely consistent with Ulanowicz

(1979) who points out that the biological world is a sloppy place. Very

precise predictive models will inevitably be wrong. It would be more

fruitful to build a model that indicates the general trends and take into

account the probabilistic nature of the environment.
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Furthermore, it seems possible in most situations to apply models as

a management tool (J�rgensen et al., 1995). Models should be consid-

ered as tools — tools to overview complex systems, and tools to obtain

a picture of the systems properties on the system level. Already, a few

interactive state variables make it impossible to overview how the sys-

tem reacts to perturbations or other changes. There are only two possi-

bilities to get around this dilemma: Either limit the number of state

variables in the model, or describe the system by use of holistic meth-

ods and models, preferably by using higher level scientific laws. See also

the discussion about holistic and reductionistic approaches in Sections

2.3 and 2.5. The trade-off for the modeller is between knowing a lot

about a little or a little about a lot.

Through a good knowledge of the system, it is possible to set up mass

or energy flow diagrams. This might be considered a conceptual model of

its own, but the idea is to use the diagram to recognize the most impor-

tant flows for the model in question. Let us use an energy flow diagram

for Silver Springs (Figure 2.9). If the goal of the model is to predict the

net primary production for various conditions of temperature and input
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FIGURE 2.9 Energy flow diagram for Silver Springs, Florida. Figures in cal/m2/year. (Adapted from H. T.

Odum, 1957.)
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of fertilizers, then it is important to include plants, herbivores, carnivores,

and decomposers (as they mineralize the organic matter). A model

consisting of these four state variables might be sufficient and the top

carnivores, import, and export can be excluded.

As energy flows are different from ecosystem to ecosystem, the

selected model should also be different. A general model for one type

of ecosystem, for example, a lake, does not exist; on the contrary, it is

necessary to adopt the model to the characteristic features of the eco-

system. Figures 2.10 and 2.11 show the phosphorus flows of two eutro-

phication models for two different lakes: a shallow lake in Denmark and

Lake Victoria in East Africa. From time to time the latter has a thermo-

cline, which implies that the lake should be divided into at least two

horizontal layers, (J�rgensen et al. 1982). The food web is also different
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by algae; (2) photosynthesis; (3) grazing with loss of undigested matter; (4), (5) predation with loss of

undigested material; (6), (7), and (9) settling of phytoplankton; (8) mineralization; (10) fishery; (11)

mineralization of phosphorous organic compounds in the sediment; (12) diffusion of pore water P;

(13), (14), and (15) inputs/outputs; (16), (17), and (18) represent mortalities; and (19) is settling of

detritus.
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in the two lakes: Lake Victoria herbivorous fish graze on phytoplankton,

while in the Danish lake the grazing is entirely by zooplankton. These

differences were also reflected in the models set up for the two

ecosystems.

In many shallow lakes, the physical processes caused by wind play an

important role. In Lake Balaton, the wind stirs up the sediment, which



58 FUNDAMENTALS OF ECOLOGICAL MODELLING
consists almost entirely of calcium compounds with a high adsorption

capacity for phosphorous compounds. Consequently, studies on Lake

Balaton have shown that themass flows of phosphorous compounds from

the water column to the sediment due to this effect are significant. There-

fore, an adequate description of the sediment stirring, the adsorption of

phosphorous compounds on the suspended matter, and sedimentation

must be included in a eutrophication model for this lake.

J�rgensen and Mejer (1977, 1979) examined the inverse sensitivity,

called the ecological buffer capacity, to select the number of state vari-

ables. The concept of ecological buffer capacity is illustrated in Figure 2.12

and is defined as:

b ¼ 1

ð@ðStÞ=@FÞ ð2:13Þ

where St is a state variable and F a forcing function. It is possible to
define many different buffer capacities corresponding to all possible

combinations of state variables and forcing functions. However, the

model scope will often point out which buffer capacity should be in

focus. For a eutrophication model, the most sensitive factor would be

the change in input of phosphorus (or nitrogen) to the concentration

of phytoplankton. Now the modeller examines the relationship between

the buffer capacity in focus and the number of state variables.
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FIGURE 2.12 A relation between a state variable and a forcing function is shown. At points 1 and 3 the

buffer capacity is high; at point 2 it is low.
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FIGURE 2.13 Illustrates the buffer capacity for a eutrophication model of a shallow Danish lake. In this

case, a model with six state variables for each of the important nutrients (C, P, and N) was selected.

Adding a seventh state variable representing an additional zooplankton species and an additional

phytoplankton species produced only minor changes to the buffer capacity. Other possibilities could

also have been tested. In this context it must be pointed out that the buffer capacity does not

necessarily increase with the number of state variables as in Figure 2.12. The change in buffer capacity

only decreases with the number of state variables when their sequence is selected according to

decreasing importance.
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As long as the buffer capacity is changed significantly by adding an

extra state variable, the model complexity should be increased. But if

additional state variables only change the buffer capacity insignificantly,

an increased model complexity will only augment the number of para-

meters, adding to the uncertainty without contributing to a more accu-

rate model.

Figure 2.13 illustrates the buffer capacity for a eutrophication model

of a shallow Danish lake. In this case, a model with six state variables for

each of the important nutrients — carbon, nitrogen, and phosphorus —

was selected. Inclusion of a seventh state variable created only a minor

change to the buffer capacity.

Flather (1992, 1996) recommended using Akaike’s Information Crite-

rion (AIC), to select a best model from the a priori best candidate models:

AIC ¼ n logðRSS=nÞ2 þ 2K, ð2:14Þ
where n is the number of observations, RSS is the residual sum of squares
(model outputs-observations), and K is the number of parameters þ1.
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The model with the lowest AIC is preferable. The application of this equa-

tion is recommended to select submodels. This equation can also be

applied in principle to large models, but not in practice where a compar-

ison of several large models would be too time-consuming.

For other applicable methods used to select the model complexity,

see Halfon (1983) and Bosserman (1980, 1982) where the use of the con-

nectivity is presented. Experience shows some model corrections at a

later stage will be unnecessary if the model has been calibrated and

the validation phase indicates that improvements might be needed.

This does not, however, imply that corrections of the model structure

at a later stage can be omitted. The methods presented for the selection

of model structure are not so rigorous that the very best model is always

selected at the first instance. The methods presented earlier assist the

modeller to exclude some unworkable models, but not necessarily to

choose the very best model. Remember, there is no one right model.

2.10. Parameter Estimation

Many parameters in causal ecological models can be found in the liter-

ature, not necessarily as constants but as approximate values or
FIGURE 2.14 J�rgensen et al.,

(2000) contains about 120,000

parameters of interest for

ecological modellers.
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intervals. J�rgensen et al. (2000) contains about 120,000 parameters of

interest for ecological modellers (see Figure 2.14).

However, even if all parameters are known in a model from the litera-

ture, calibrating the model is usually required because the biological

parameters are only known within ranges. Several sets of parameters

are tested by calibration and the various model outputs of state variables

are compared with measured or observed values of the same state vari-

ables. The parameter set that gives the best agreement between model

outputs and measured state variables is chosen.

A eutrophication model is generally calibrated based on an annual

measurement series with a sampling frequency of once or twice per

month. This sampling frequency is not sufficient to describe the lake

dynamics. If it is the scope of the model to predict maximum values

and related data for phytoplankton concentrations and primary produc-

tion, then it is necessary to have a sampling frequency that gives an esti-

mate of the maximum value in phytoplankton concentration and the

primary production.

Figure. 2.15 shows characteristic algae concentrations plotted versus

time (April 1–May 15) in a hypertrophic lake with a sampling frequency

of (1) twice per month and (2) three times per week (denoted as the

“intensive” measuring program). The two plots are significantly differ-

ent and an attempt to get a realistic calibration based on (1) will fail,

provided it is the aim to model the day-to-day variation in phytoplank-

ton concentration according to (2). This example illustrates that it is
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important not only to have data with low uncertainty, but also data

sampled with a frequency corresponding to the dynamics of the system.

The rule to match appropriate sampling frequency has often been

neglected in modelling eutrophication, probably because limnological

lake data, which are not sampled for modelling purposes, are often col-

lected with a relatively low frequency. On the other hand, the model

then attempts to simulate the annual cycle, and an annual sampling

program with a frequency of three samples per week requires too

many resources. A combination of an annual sampling program with a

frequency of one to three samples per month and an intensive measur-

ing program placed in periods, where different subsystems show maxi-

mum changes, is a good basis for parameter estimations.

The intensive measuring program can, as presented next, be used to

estimate state variables’ derivatives. For comparison of these estima-

tions by low and high sampling frequency, see the slopes of curves

(1) and (2) in Figure 2.15. These estimates can be used to set up an over-

determined set of algebraic equations, making the model parameters

the sole unknown. An outline of the method runs as follows (see

Figure 2.16; for further details, see J�rgensen et al., 1981):

Step 1. Find cubic spline coefficients, Si(tj), that is, second-order time

derivatives at time of observation tj, of the spline function si(tj)

approximating the observed variable ci(t), according to the

cubic spline method. Alternatively, it is possible to find an nth

order polynomium (4th–8th order is most often used)

approximating the observations by an nth order regression

analysis. Several statistical software packages are available to

perform such regression analyses very rapidly.

Step 2. Find @ci(tj)/@t ¼ f(t) by differentiation of the function found in

step 1: c ¼ (c,t,a), where a is a parameter.

Step 3. Solve the model equation of the form:

@cðtjÞ=dt ¼ fðc, @c=@r, @2c=@r2, t, aÞ ð2:15Þ
with the average value of a, regarded as unknown.
Step 4. Evaluate the feasibility of the solution a0 found in step 3. If not

feasible, then modify the part of the model influenced by a0 and

go to step 1.
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Step 5. Choose a significance level, and perform a statistical test on

constancy of a0. If the test fails, then modify appropriate

submodels and go to step 1.

Step 6. Use a0 as an initial guess in a computerized parameter search

algorithm, such as Marquardt, Powell, or steepest descent

algorithms, to minimize a performance index such as the one

proposed in Eq. (2.2).

Although the model in hand may be highly nonlinear regarding the

state variables, it usually turns out that this is not the case regarding

the parameter set a, or the subset of a that is tuned by calibration. Since

the number of differential equations is greater than the number of esti-

mable parameters, Eq. (2.15) is overdetermined. It is easy to smooth the

solution, but it is more important to evaluate the constancy of a0, for

example, by variance analysis, test of normality of white noise, and so

forth. Information on standard deviation of a0 around its average value

may eventually be used as a point of departure for introducing stochas-

ticity into the model, admitting the fact that parameters in real life may

not be as constant as the modellers assume.

As a certain parameter, ak, seldom appears at more than one or two

places in the model equations, an unacceptable value of ak found as

solution to Eq. (2.15) quite accurately locates the inappropriate terms

and constructs in the model. Experience with this method shows it to

be a valuable diagnostic tool to single out unfitted model terms.

Since the method is based on cubic spline approximation, it is essen-

tial that observations are dense, for example, tjþ1 � tj should be small in

the sense that local third-degree polynomials should approximate

observed values well. It is difficult, in general, to test whether this is ful-

filled as the “true” ci(t) function might have microscopic curls that gener-

ate oscillating derivates (ci/dt). However, if the method yields basically

the same result on a random subset of observations, then it may be safe

to assume that {si(tj)/dt} represents the true rates on a daily basis. After

appropriate adjustment of model equations, an acceptable parameter

set ao may eventually be obtained.

With a0 as an initial guess, a better parameter set may be found by

systematic perturbation of the set until some norm (performance index)

has reached a (local) minimum. At each perturbation, the model
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equations are solved. Gradients {dci/dak} are hardly ever known analyti-

cally. All numerical methods currently in use to solve this kind of prob-

lem fail when the number of parameters surpasses four or five unless

the initial guess is very close to a value that minimizes the performance

index. This is why steps 1 and 2 mentioned previously are so important.

The result of the application of intensive measurements to calibrate

the eutrophication model is summarized in Table 2.4, where the differ-

ence in parameter estimation is pronounced. It is important to use the

parameters determined by intensive measurements before the final

calibration.

The illustrated use of intensive measurements for parameter estima-

tion prior to the calibration was based upon determinations of the actual

growth of phytoplankton. By determination of the derivatives, it was pos-

sible to fit the parameters to the unknown in the model equations.

Intensive measurements were used for the 18 state variable eutrophi-

cation model presented in Chapter 7. It was possible to determine the

maximum phytoplankton growth rate by the previous method to be

1.6 day-1 �10% relative. It was also possible to choose between possible

expressions for the temperature influence on the phytoplankton growth.

Measurements and observations in vitro were used in the referred

case to find the derivates. In principle, the same basic idea can be used

either in the laboratory or by construction of a microcosm. In both

cases, the measurements are facilitated by a smaller unit, where disturb-

ing factors or processes might be kept constant. Current record of

important state variables is often possible and provides a high number

of data, which decreases the standard deviation.

As an example fish growth can be described by use of the following

equation:

dW=dt ¼ a�Wb ð2:16Þ
where W is the weight, and a and b are constants. In an aquarium or an
aquaculture farm it is possible to measure the fish weight over time. If

enough data are available, then it is easy by statistical methods to deter-

mine a and b in Eq. (2.16). In this case, the feeding is known to be at the

optimum level, no predator is present, and the water quality, which

influences growth, is maintained constant to assure the very best

growth conditions for the fish. By varying these factors, it is even



Table 2.4 Comparison of Parameter Values

Parameter
Parameter
(Symbol) Unit

Application of
Intensive
Measurements

Glumsø
Lake*

Lyngby
Lake*

Literature
ranges

Settling rate SVS ¼ D � SA m d-1 0.30 þ 0.05 0.2 0.05 0.1–0.6

Max. growth

rate**

CDRmax

(reduced)

d-1 1.33 þ 0.51 2.3 1.8 1–3

Max. growth

rate**

CDRmax

(model)

d-1 4.71 þ 1.8 4.11 3.21 2–6

Max. uptake

rate P**

UPmax d-1 0.0072 þ 0.0007 0.003 0.008 0.003–0.01

Min. C:biomass

Ratio**

FCAmin 0.4 0.15 0.15 0.3–0.7

Min. P: biomass

Ratio**

FPAmin 0.03 0.013 0.013 0.013 0.013l–0.035

Min. N: biomass

ratio

FNAmin 0.120.10 0.10 0.10 0.08–0.12

Max.uptake

rate N**

UNmax d-1 0.023 þ 0.005 0.015 0.012 0.0l–0.035

Michaelis-

Menten**

constant N

KN mg l�1 0.34 þ 0.07 0.2 0.2 0.1–0.5

Denitrification

rate

DENITX g m-3

d-1
0.83 þ l.05

Respiration

rate**

RC d-1 0.088 0.13 0.2 0.05–0.25

Mineralization

rate P

KDPl0 d-1 0.80 þ 0.47 0.40 0.25 0.2–0.8

Mineralization

rate N

KDNl0 d-1 0.21 þ 0.11 0.05 0.15 O.OS–0.3

Max. uptake

rate c**

UCmax d-1 1.21 þ 0.97 0.65 0.40 0.2–1.4

Notes:

*Lyngby and Glums� lakes have approximately the same biogeochemical characteristics and morphology;
**all parameters related to phytoplankton.
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possible to find the influence of the water quality, and the available food

on the growth parameters. The results of such experiments can often be

found in the literature. Still, the modeller might not find the parameter

for the species of interest, nor find the parameters in the literature

under the specific conditions in the ecosystem being modelled. In such

cases, it may be necessary to use experiments to determine important

model parameters. The use of laboratory experiments is advisable also

when the literature values for the crucial parameters are too wide for

the most sensitive parameters.

However, parameters taken from the literature or resulting from such

experiments should be applied with precaution because the discrep-

ancy between the values in the laboratory or even the microcosms

and those in nature is much greater for biological parameters than for

chemical or physical parameters. The reasons for this can be summar-

ized in the following points:

1. Biological parameters are generally more sensitive to environmental

factors than chemical or physical parameters. An illustrative example

would be: A small concentration of a toxic substance could change

growth rates significantly.

2. Biological parameters are influenced by many environmental factors,

of which some are quite variable. For instance, phytoplankton

growth rate is dependent on the nutrient concentration, but the local

nutrient concentration is again very dependent on the water

turbulence, which is dependent on the wind stress, and so forth.

3. The example in point 2 shows that the environmental factors

influencing biological parameters are interactive, which makes it

almost impossible to predict an exact value for a parameter in nature

from measurements in the laboratory where the environmental

factors are all kept constant. On the other hand, if the measurements

are carried out in situ, then it is not possible to interpret under which

circumstances the measurement is valid, because that would require

the simultaneous determination of too many interactive

environmental factors.

4. Often, determinations of biological parameters or variables cannot

be carried out directly, but it is necessary to measure another

quantity that cannot be exactly related to the biological quantity in
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focus. For instance, the phytoplankton biomass cannot be

determined by any direct measurement, but it is possible to obtain

an indirect measurement by using the chlorophyll concentration, the

ATP concentration, the dry matter 1–70m, and so forth. Still, none of

these indirect measurements give an exact value of the

phytoplankton concentration, as the ratio of chlorophyll or ATP to

the biomass is not constant, and the dry matter 1–70m might include

other particles (e.g., clay particles). So, it is recommended in practice

to apply several of these indirect determinations simultaneously to

assure a reasonable estimate. Correspondingly, the phytoplankton

growth rate might be determined by the oxygen method or the C-14-

method. Neither method determines the photosynthesis; instead

they determine the net production of oxygen and the net uptake of

carbon, respectively; that is, the result of the photosynthesis and the

respiration. The results of the two methods are therefore corrected to

account for the respiration, but obviously the correction should be

different in each individual case, which is difficult to do accurately.

5. Biological parameters are influenced by several feedback mechanisms

of a biochemical nature. The past will determine the parameters in

the future. For instance, the phytoplankton growth rate is dependent

on the temperature — a relationship that can easily be included in

ecological models. The maximum growth rate is obtained by the

optimum temperature, but the past temperature pattern determines

the optimum temperature. A cold period will decrease the optimum

temperature. To a certain extent, this can be taken into account by

the introduction of variable parameters (Straskraba, 1980). In other

words, it is an approximation to consider parameters as constants.

An ecosystem is a soft, flexible system, described with

approximations as a rigid system with constant parameters

(J�rgensen, 1981, 1992a,b).

The estimation of the settling velocity as a parameter in ecological

models may be crucial whether the component is suspended matter

or phytoplankton, as it determines the removal rate for a considered

component. The sensitivity of this parameter to the phytoplankton

concentration in a eutrophication model has been determined to be

about -1.0 (see Table 2.3). It means that if the parameter is increased
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1%, the phytoplankton concentration will decrease 1% (J�rgensen et al.,

1978). Let us therefore use the estimation of the settling rate as another

illustration of the needed considerations in our effort to obtain a proper

determination of parameters.

Settling velocity may be determined in three ways:

1. Values from previous models found in the literature can be used to

give a first estimation of the parameter. Tables 2.5 and 2.6 summarize

values found in the literature. As can be seen, these values are

indicated as ranges, therefore, it is necessary to calibrate the

parameters using measured values for the stated variables.
Table 2.5 Phytoplankton Settling Velocities

Algal Type
Settling Velocity
(m/day) References

Total phytoplankton 0.05–0.5 J�rgensen et al. (1991, 2000);Tetra Tech (1980)

0.05– 0.2 Di Toro & Connolly (1980); O’Connor et al. (1981);

Thomann et al. (1974); Thomann & Fitzpatrick (1982)

0.02– 0.05 J�rgensen et al. (1991, 2000)

0.4 Lombardo (1972)

0.03– 0.05 Scavia (1980)

0.05 Bierman (1976)

0.2–0.25 Youngberg (1977)

0.04– 0.6 * J�rgensen et al. (2000)

0.01–4.0 *J�rgensen et al. (2000)

0.1–2.0 * Snape et al. (1995)

0.15–2.0 * J�rgensen et al. (2000)

0.1–0.2 * Brandes (1976)

Diatoms 0.05– 0.4 Bierman (1976); Brandes et al. (1974)

0.1– 0.2 J�rgensen et al. (2000)

0.1– 0.25 Tetra Tech (1980)

0.03– 0.05 Snape et al. (1995)

Diatoms 0.3– 0.5 J�rgensen et al. (2000)

2.5 Lehman et al. (1975)

0.02–14.7 * J�rgensen et al. (2000)

Green algae 0.05– 0.19 J�rgensen et al. (2000)

0.05– 0.4 Bierman (1976)

Green algae 0.02 Snape et al. (1995)

0.8 Lehman et al. (1975)

0.1– 0.25 Tetra Tech (1980)

0.08– 0.18 * J�rgensen et al. (2000)

0.27– 0.89 * J�rgensen et al. (2000)

Continued



Table 2.5 Phytoplankton Settling Velocities—cont’d

Algal Type
Settling Velocity
(m/day) References

Blue-green algae 0.05– 0.15 Bierman (1976)

0.08 Snape et al. (1995)

0.2 Lehman et al. (1975)

0.1 J�rgensen et al. (2000)

0.08–0.2 Tetra Tech (1980)

Flagellates 0.5 Lehman et al. (1975)

0.05 Bierman (1976)

0.09– 0.2 Tetra Tech (1980)

0.07–0.39 ** J�rgensen et al. (2000)

Dinoflagellates 2.8–6.0 ** J�regensen et al. (2000)

Asterionella formosa 0.25– 0.76 ** J�rgensen et al. (2000)

Chaetoceros lauderi 0.46– 1.56 ** J�rgensen et al. (2000)

Chrysophytes 0.5 Lehman et al. (1975)

Coccolithophores 0.25– 13.6 J�rgensen et al. (2000)

0.3– 1.5 ** J�rgensen et al. (2000)

Coscinodiscus lineatus 1.9– 6.8 ** J�rgensen et al. (2000)

Cyclotella

meneghimiana

0.08– 0.31 ** J�rgensen et al. (2000)

Ditylum brightwellii 0.5– 3.1 ** J�rgensen et al. (2000)

Melosira agassizii 0.67– 1.87 ** J�rgensen et al. (2000)

Nitzschia seriata 0.26– 0.50 ** J�rgensen et al. (2000)

Rhizosolenia robusta 1.1– 4.7 ** J�rgensen et al. (2000)

R. setigera 0.22– 1.94 ** J�rgensen et al. (2000)

Scenedesmus

quadracauda

0.04– 0.89 ** J�rgensen et al. (2000)

Skeletonema costatum 0.31– 1.35 ** J�rgensen et al. (2000)

Tabellaria flocculosa 0.22– 1.11 ** J�rgensen et al. (2000)

Thalassiosira nana 0.10– 0.28 ** J�rgensen et al. (2000)

T. pseudonana 0.15– 0.85 ** J�rgensen et al. (2000)

T. rotula 0.39– 17.1 J�rgensen et al. (2000)

Notes: Other values used in models.

*Model documentation values;
**literature values.

Table 2.6 Detritus, Settling Rate

Item Settling Velocity (m/day) References

Detritus 0.1–2.0 J�rgensen et al. (2000)

Nitrogen detritus 0.05– 0.1 J�rgensen et al. (2000)

Fecal pellets (fish) 23– 666 J�rgensen et al. (2000)
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2. Values from calculations based upon knowledge of the size can be

used as first estimations. Due to the influence of the many factors

previously mentioned, a calibration is also required in this case. This

method is hardly applicable for phytoplankton because of their ability

to change the specific gravity, but it may be useful for other particles.

3. Measurements in situ by use of sedimentation traps. It is possible to

determine the distribution of the material in inorganic and organic

matter and partly also in phytoplankton and detritus by analysis of

chlorophyll (fresh material), phosphorus, nitrogen, and ash.

Measurements of phytoplankton settling velocities in the laboratory

will unlikely give a reliable value, as they do not consider the various

factors in situ.

It has been previously pointed out that the calibration is facilitated

significantly if we have good initial estimates of the parameters. Some

estimates might be found in the literature, but it is often only a few

compared with the number of parameters needed if we want to model

all interesting mass flows in all relevant ecosystems. For the nutrient

flows, the parameters known from the literature are the most common

species only. If we turn to flows of toxic substances in ecosystems, then

the number of known parameters is even more limited. The Earth has

millions of species and the number of substances of environmental

interest is about 100,000. If we want to know 10 parameters for each

interaction between substances and species, then the number of para-

meters needed is enormous. For example, if we need the interactions

of only 10,000 species with the 100,000 substances of environmental

interest, the number of needed parameters is 10 � 10,000 � 100,000 ¼
1010 parameters. In J�rgensen et al. (2000; see Figure 2.14) 120,000 para-

meters can be found, and if we estimate that this Handbook covers

about 10% of the parameters, which can be found in the entire litera-

ture, then we know only about 0.012% of the needed parameters. Phys-

ics and chemistry have attempted to solve this problem by setting up

some general relationships between the properties of the chemical

compounds and their composition and structure. This approach is

widely used in ecotoxicological modelling, and will be discussed in

Chapter 8. If needed data cannot be found in the literature, then such

relationships are widely used as the second-best approach to the

problem.
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If we draw a parallel to ecology, then we need some general relation-

ships that give us good first estimations of the needed parameters. In

many ecological models used in an environmental context, the required

accuracy is not very high. In many toxic substance models, we need only

to know whether we are far from or close to the toxic levels. Still, more

experience with the application of general relationships is needed before

a more general use can be recommended. It should be emphasized that

in chemistry such general relationships are used very carefully.

Modern molecular theory provides a sound basis for predicting reli-

able quantitative data on the chemical, physical, and thermodynamic

properties of pure substances and mixtures. The biological sciences

are not based upon a similar comprehensive theory, but it is possible,

to a certain extent, to apply basic biochemical mechanisms laws to ecol-

ogy. Furthermore, the very basic biochemical mechanisms are the same

for all plants and all animals. The spectrum of biochemical compounds

is wide, but considering the number of species and the number of pos-

sible chemical compounds it is very limited. The number of different

protein molecules is significant, but they are all constructed from only

24 different amino acids.

This explains why the elementary composition of all species is quite

similar. All species need, for their fundamental biochemical function, a

certain amount of carbohydrates, proteins, fats, and other compounds,

and as these groups of biochemical substances are constructed from

relatively few simple organic compounds, it is not surprising that the

composition of living organisms varies only a little, (see tables in

J�rgensen et al., 1991, 2000). For example, if we know the uptake rate

of nitrogen for phytoplankton, then we can find the approximate uptake

rate of phosphorus because the uptake rates must result in a nitrogen-

to-phosphorus ratio between 5:1 and 12:1, an average 1:7.

The biochemical reaction pathways are also general, which is

demonstrated in all textbooks on biochemistry. The utilization of the

chemical energy in the food components is basically the same for

microorganisms and mammals. It is, therefore, possible to calculate

approximately the energy, E1, released by digestion of food, when the

composition is known:

E1 ¼ 9 fat%100þ 4ðCarbohydratesþ proteinsÞ%100 ð2:17Þ
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FIGURE 2.17 The principle

of a fish growth model. The

feed is either utilized or not

utilized. The utilized food ¼
the intake is either digested

or assimilate and at steady-

state intake ¼ nondigested

feed (feces) þ the assimilated

feed. The assimilated feed is

used for either growth,

excretion, or respiration

and at steady state

assimilated feed ¼ growth þ
respiration þ excretion (see

J�rgensen, 2000).
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The law of energy conservation is also valid for a biological system (see

Figure 2.17). The chemical energy of the food components is used to

cover the energy needs for respiration, assimilation, growth (increase

of biomass included reproduction), and losses. As it is possible to set

up relations between these needs on the one side with some fundamen-

tal properties of the species on the other, it is possible to put a number

on the items in Figure 2.17 for different species. This is a general but

valid approach to parameter estimation in ecological modelling.

Species surface area is a fundamental property indicating quantita-

tively the size of the boundary to the environment. Loss of heat to the

environment must be proportional to this area and to the temperature

difference, according to the law of heat transfer. The rate of digestion,

the lungs, and hunting ground, are all dependent on the size of the ani-

mal and are determinant for a number of parameters.

Therefore, it is not surprising that many parameters for plants and

animals are highly related to the size of the organism, which implies

that it is possible to get very good first estimates for most parameters

based only upon the size. Naturally, the parameters are also dependent

on several characteristic features of the species, but their influence

is minor compared with the organism size, and the good estimates

provide at least a starting value in the calibration phase.

The conclusion of these considerations is that many parameters are

related to simple properties, such as size of the organisms, and that



a

c

f

g
i

j
l

h

e

d

b

1 h 1 day 1 week 1 month 1 yr 10 yrs 100 yrs
1mm

10mm

100mm

10 cm

10 m

100 m

1 cm

1 mm

1 m

k
m

FIGURE 2.18 Length

and generation time

plotted on log-log

scale: (a) pseudomonas,

(b) daphnia, (c) bee,

(d) house fly, (e) snail,

(f) mouse, (g) rat,

(h) fox, (i) elk, (j) rhino,

(k) whale, (l) birch,

(m) fir. See also Peters

(1983).

74 FUNDAMENTALS OF ECOLOGICAL MODELLING
such relations are based upon fundamental biochemistry and thermo-

dynamics. Above all, there is a strong positive correlation between size

and generation time, Tg, ranging from bacteria to the biggest mammals

and trees (Bonner, 1965). This relationship is illustrated in Figure 2.18.

This relationship can be explained using the relationship between size

(surface) and total metabolic action per unit of body weight. It implies

that the smaller the organism, the greater the specific metabolic activity

(¼ activity/weight). The per capita rate of increase, r, defined by the

exponential or logistic growth equations:

dN=dt ¼ rN ð2:18Þ
respectively,
dN=dt ¼ rNð1�N=KÞ ð2:19Þ
is inversely proportional to the generation time.
This implies that r is related to the organism size, but, as shown

by Fenchel (1974), it actually falls into three groups of organisms:

unicellular, poikilotherms, and homeotherms (see Figure 2.19). Thus,

the metabolic rate per unit of weight is related to the size. The same

basis is expressed in the following equations, giving the respiration,

feed consumption, and ammonia excretion for fish when the weight,

W, is known:
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Respiration ¼ constant �W0:80 ð2:20Þ
Feed Consumption ¼ constant �W0:65 ð2:21Þ
Ammonia Excretion ¼ constant �W0:72 ð2:22Þ

This is also expressed in Odum’s equation (E. P. Odum, 1969, 1971):

FIGURE 2.19 Intrinsic rate of natural increase against weight for various animals. See also Peters (1983).
m ¼ kW�1=3 ð2:23Þ
where k is roughly a constant for all species, equal to about 5.6 kJ/g2/3
day, and m is the metabolic rate per weight unit.

Similar relationships exist for other animals. The constants in these

equations might be slightly different due to differences in shape, but

the equations are otherwise the same.

All of these examples illustrate the fundamental relationship in

organisms between size (surface) and the biochemical activity. The sur-

face determines the contact with the environment quantitatively along

with the possibility of taking up food and excreting waste substances.

The same relationships are shown in Figures 2.20–2.22, where rates of

biochemical processes involving toxic substances are plotted versus

size. They are reproduced from J�rgensen (1997, 2002). In these figures,

the excretion rate, uptake rate, and concentration factor (for aquatic

organisms) follow the same trends as the growth rate. This is not

surprising, as excretion is strongly dependent on metabolism and the

direct uptake dependent on the surface.
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In spite of all these methods to estimate parameters, it may still be

necessary to accept that a parameter is only known within some unac-

ceptable large range. In such cases, applying a Monte Carlo simulation

of the parameter within the known range should be considered. The

concentration factor indicating concentration in the organism vis-á-vis

concentration in themedium also follows the same lines (see Figure 2.20).

By equilibrium, the concentration factor can be expressed as the ratio

between the uptake rate and the excretion rate, as shown in J�rgensen

(1979). As most concentration factors are determined by the equilibrium,

the relationship found in Figure. 2.20 seems reasonable. Intervals for-

concentration factors are indicated here for some species according to

the literature (J�rgensen et al., 1991, 2000).

The allometric principles, illustrated in Figures2.18–2.22, can be gener-

ally applied to find process rates, provided these parameters are available

for the element or compound under consideration (because the slope is

known). However, it is preferable to know several species to control the

validity of the graph. When plots similar to Figures 2.18–2.22 are con-

structed, it is possible to read unknown parameters when the size of

the organism is known.

It was mentioned earlier that model constraints could be used to esti-

mate unknown parameters. The chemical composition of an organism
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was applied to illustrate this principal method. The topic model con-

straints are covered further in Section 2.12. The Darwinian survival of

the fittest is used in thermodynamic translation as a goal function to

find the change in properties resulting from adaptation and a shift in

species composition presented. This constraint has also been applied

to estimate unknown parameters, as shown in Chapter 10, after the

more basic theory has been presented.

This presentation of parameter estimation methods can be summar-

ized in the following overview and recommendations:

A. Examine the literature to find the range of as many model

parameters as possible. It is recommended to use J�rgensen et al.

(2000), which contains about 120,000 parameters.

B. Examine processes in situ or in the laboratory to assess unknown

parameters.

C. Apply an intensive observation period to reveal the dynamic processes

in themodel. Use themethod described in Figures 2.15 and 2.16 to find

unknown parameters. This method often makes it possible to indicate

parameters within relatively narrow ranges.

D. Apply allometric principles to find unknown parameters for the

organisms included in the model as well as for other organisms. The

allometric principles may also be used as a control of a parameter

that is found by estimations or calibration.

E. Ecotoxicological parameters can be estimated by a network ofmethods

based on a translation of the chemical structure to the properties of the

compound. This method will be presented in detail in Chapter 10,

Section 10.6.

F. Use the model constraints to estimate an unknown parameter or to

control an uncertain parameter (e.g., how exergy can be used to

determine parameters in Chapter 10, Section 10.3).

G. Apply calibration of submodels and/or the entiremodel. The better the

data, the more certain and reliable results the calibration will offer.

2.11. Ecological Modelling and Quantum Theory

How can we describe such complex systems as ecosystems in detail?

The answer is that it is impossible if the description must include all

details, including all interactions between all the components in the
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entire hierarchy, as well all feedbacks, adaptations, regulations, and the

entire evolutionary process.

J�rgensen (1997, 2002) introduced the application of the uncertainty

principle of quantum physics in ecology. In nuclear physics, uncertainty

is caused by the observer of the incredibly small nuclear particles, while

uncertainty in ecology is caused by the enormous complexity of

ecosystems.

For instance, if we take two components and want to know the rela-

tionship between them, we would need at least three observations to

show whether the relation is linear or nonlinear. Correspondingly, the

relations among three components will require 3*3 observations for

the shape of the plane. If we have 18 components we would corre-

spondingly need 317 or approximately 108 observations. At present, this

is probably an approximate practical upper limit to the number of

observations that can be invested in one project aimed at one ecosys-

tem. This could be used to formulate a practical uncertainty relation

in ecology (J�rgensen, 1990):

105 � Dx=
ffiffiffiffiffiffiffiffiffiffi
3n�1

p
� 1 ð2:24Þ

where Dx is the relative accuracy of one relation, and n is the number of
components examined or included in the model.

The 100 million observations could also be used to give a very

exact picture of one relation. Costanza and Sklar (1985) talked about

the choice between the two extremes: knowing “everything” about

“nothing” or “nothing” about “everything” (see Section 2.9). The former

refers to the use of all the observations on one relation to obtain a high

accuracy and certainty, while the latter refers to the use of all observa-

tions on as many relations as possible in an ecosystem. How we can

obtain a balanced complexity in the description will be further

discussed in the next section.

Equation (2.18) formulates a practical uncertainty relation, but, the

possibility that the practical number of observations may be increased

in the future cannot be excluded. More and more automatic analytical

equipment is emerging on the market. This means that the number of

observations invested in one project may be one, two, three, or even

several magnitudes larger in the future. Yet, a theoretical uncertainty

relation can be developed. If we go to the limits given by quantum
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mechanics, then the number of variables will still be low compared to

the number of components in an ecosystem.

One of Heisenberg’s uncertainty relations is formulated as follows:

Ds � Dp � h=2p ð2:25Þ
where Ds is the uncertainty in determining the position, and Dp is the
uncertainty of momentum. According to this relation, Dx of Eq. (2.24)

should be in the order of 10�17 if Ds and Dp are about the same. Another

of Heisenberg’s uncertainty relations may now be used to give the upper

limit of the number of observations:

Dt � DE � h=2p ð2:26Þ
where Dt is the uncertainty in time and DE in energy.
If we use all the energy that Earth has received during its existence of

4.5 billion years, then we get:

173 � 1015 � 4:5 � 109 � 365:3 � 24 � 3600 ¼ 2:5 � 1034J, ð2:27Þ
where 173 *1015 W is the energy flow of solar radiation. Dt would, therefore,
be in the order of 10-69 seconds. Thus, an observation will take 10�69 sec-

onds, even if we use all the energy that has been available on Earth as DE,
whichmust be considered themost extreme case. The hypothetical number

of observations possible during the lifetime of the Earth would therefore be:

4:5 � 109 � 365:3 � 3600=10�69 	 of1085: ð2:28Þ
This implies that we can replace 105 in Eq. (2.24) with 1060 since
10�17=
ffiffiffiffiffiffiffiffiffi
1085

p
	 10�60

If we use Dx ¼ 1 in Eq. (2.28) we get:

ffiffiffiffiffiffiffiffiffiffi
3n�1

p
� 1060 ð2:29Þ

or n � 253.
From these very theoretical considerations, we can clearly conclude

that we will never have enough observations to describe even one ecosys-

tem in complete detail. An ecosystem is a middle number system, which

means that the number of components are not as high as the number of

gas molecules in a room, but that it may be as high as 1015–1020. Unlike

the gas molecules in a room, all of these components are different, while

there may be only 10 to 20 different types of gas molecules in a room.
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These results agree with Niels Bohr’s complementarity theory, which

he expressed as follows: “It is not possible to make one unambiguous

picture (model) of reality, as uncertainty limits our knowledge.” The

uncertainty in nuclear physics is caused by the inevitable influence of

the observer on the nuclear particles; in ecology it is caused by the enor-

mous complexity and variability.

No map of reality is completely correct. There are many maps (mod-

els) of the same area of nature, and the various maps or models reflect

different viewpoints. Accordingly, one model (map) does not give all the

information and far from all the details of an ecosystem. Applying the

theory of complementarity in ecology, we see that it is important to view

the ecosystem from different, complementary angles.

As stated previously, the use of maps in geography is a good parallel to

the use of models in ecology. As we have road maps, airplane maps, geo-

logical maps, maps in different scales for different purposes, we have

many models in ecology of the same ecosystems. We need them all if

we want to get a comprehensive view of ecosystems (see Sections 1.1

and 2.9). Furthermore, a map can give an incomplete picture. We can

always make the scale larger and larger and include more details, but

we cannot get all the details. An ecosystem also has too many dynamic

components to enable us to model all the components simultaneously,

and even if we could, the model would be invalid a few seconds later after

the dynamics of the system have changed the “picture.”

Another good example comes from physics, in which we need a plu-

ralistic view to consider light as waves as well as particles. The situation

in ecology is similar. Because of the immense complexity, we need a

pluralistic view to describe an ecosystem. We need many models cover-

ing different viewpoints. This is consistent with Gödel’s Theorem from

1931 (Gödel, 1986) that the infinite truth can never be condensed in a

finite theory. There are limits to our insight; we cannot produce a map

of the world with every possible detail because that would be the world

itself.

Ecosystems must be considered irreducible systems, because it is not

possible to make observations and then reduce the observations to

more or less complex laws of nature; for instance mechanics. Too many

interacting components force us to consider ecosystems as irreducible
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systems. It is necessary to use what is called experimental mathematics

or modelling to cope with irreducible systems.

Quantum theory may have an even wider application in ecology.

Schrödinger (1944) suggested, that the “jump like changes” you observe

in the properties of species are comparable to the jump-like changes in

energy by nuclear particles. Schrödinger was inclined to call De Vries’

mutation theory (published in 1902) the quantum theory of biology

because the mutations are due to quantum jumps in the gene molecule.

Patten (1982a, 1985) defined an elementary “particle” of the environ-

ment, called an environ — previously Koestler (1967) used the word

holon — as a unit that can transfer an input to an output. Patten sug-

gested that a characteristic feature of ecosystems is the network of con-

nections. Input signals go into the ecosystem components and they are

translated into output signals. Such a “translator unit” is an environmen-

tal quantum according to Patten. The term comes from the Greek “holos”

¼ whole, with the suffix “on” as in proton, electron, and neutron to sug-

gest a particle or part.

Stonier (1990) introduced the term infon for the elementary particle of

information. He envisaged an infon as a photon whose wavelength has

been stretched to infinity. At velocities other than c, its wavelength appears

infinite, its frequency zero. Once an infon is accelerated to the speed of

light, it crosses a threshold, which allows it to be perceived as having

energy. When that happens, the energy becomes a function of its fre-

quency. Conversely at velocities other than c, the particle exhibits neither

energy normomentum, yet it could retain at least two information proper-

ties: its speed and its direction. In other words, at velocities other than c, a

quantum of energy becomes converted into a quantum of information.

This concept has still not found any application in ecological modelling.
2.12. Modelling Constraints

A modeller is very concerned about the application of the right descrip-

tion of the components and processes in his models. The model equa-

tions and their parameters should reflect the properties of the model

components and processes as correctly as possible. The modeller must,

however, also be concerned with the right description of the system
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properties, and too little research has been done in this direction. A con-

tinuous development of models as scientific tools will need to consider

how to apply constraints on models according to the system properties.

Several possible modelling constraints are mentioned next. The

sequence reflects decreasing relations to physical properties and

increasing relations to biological properties of the ecosystems. The eco-

logical modelling constraints will only be mentioned briefly in this con-

text. A further discussion will take place in Chapter 10 where the

application of these constraints is the basis for development of what

may be called next generation models.

The conservation principles are often used as modelling constraints.

Biogeochemical models must follow the conservation of mass, and

bioenergic models must equally obey the laws of energy and momen-

tum conservation.

Energy and matter are conserved according to basic physical con-

cepts that are also valid for ecosystems. This requires that energy and

matter are neither created nor destroyed.

The expression “energy and matter” is used, as energy can be trans-

formed into matter and matter into energy. The unification of the two

concepts is possible by Einstein’s law:

E ¼ mc2ðML2T�2Þ, ð2:30Þ
where E is energy, m is mass, and c is the velocity of electromagnetic
radiation in vacuum (¼ 3 *108 m sec-1). The transformation from matter

into energy and vice versa is only of interest for nuclear processes and

does not need to be applied to ecosystems; therefore, we might break

the proposition down to two more useful propositions, when applied

in ecology:

1. Ecosystems conserve matter.

2. Ecosystems conserve energy.

The conservation of matter may mathematically be expressed as

follows:

dm=dt ¼ input� output ðMT�1Þ ð2:31Þ
where m is the total mass of a given system. The increase in mass is
equal to the input minus the output. The practical application of the
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statement requires that a system is defined, which implies that the

boundaries of the system must be indicated.

Concentration, c, is used instead ofmass inmostmodels of ecosystems:

Vdc=dt ¼ input� output ðMT�1Þ ð2:32Þ
where V is the volume of the system under consideration and assumed
constant.

If the law of mass conservation is used for chemical compounds that

can be transformed to other chemical compounds, then Eq. (2.32) must

be changed to:

V � dc=dt ¼ input� output þ formation� transformation ðMT�1Þ ð2:33Þ
The principle of mass conservation is widely used in the class of ecolog-
ical models called biogeochemical models. Equation (2.26) is set up for

the relevant elements, for example, for eutrophication models for C, P, N,

and perhaps Si (see J�rgensen, 1976a,b, 1982; J�rgensen et al., 1978).

For terrestrial ecosystems, mass per unit of area is often applied in

the mass conservation equation:

A � dma=dt ¼ input� output þ formation� transformation ðMT�1Þ ð2:34Þ
here A ¼ area and ma ¼ mass per unit of area.
The Streeter-Phelps model (see Chapter 7) is a classical model of an

aquatic ecosystem that is based upon conservation of matter and first-

order kinetics. The model uses the following central equation:

dD=dtþ Ka �D ¼ Lo � K1 � KTðT� 20Þ � e�K1�tðML�3T�1Þ ð2:35Þ
where D ¼ Cs � C(t)Cs ¼ concentration of oxygen at saturation; C(t)¼

actual concentration of oxygen; t ¼ time; Ka ¼ reaeration coefficient

(dependent on the temperature); Lo ¼ BOD5 at time ¼ 0; K1 ¼ rate con-

stant for decomposition of biodegradable matter; and KT ¼ constant of

temperature dependence.

Equation (2.29) states that change (decrease) in oxygen concentration

þ input from reaeration is equal to the oxygen consumed by decomposi-

tion of biodegradable organic matter according to a first-order reaction

scheme.

Equations according to (2.27) are also used in models describing the

fate of toxic substances in the ecosystem. Examples can be found in

Thomann (1984) and J�rgensen (1991, 2000).
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The mass flow through a food chain is mapped using the mass con-

servation principle. The food taken in by one level in the food chain is

used in respiration, waste food, undigested food, excretion, and growth,

including reproduction (see Figure 2.17). If the growth and reproduction

are considered as the net production, then it can be stated that:

net production ¼ intake of food� respiration� excretion�waste food ð2:36Þ
The ratio of the net production to the intake of food is called the net effi-
ciency; it is dependent on several factors, but is often as low as 10–20%.

Any toxic matter in the food is unlikely to be lost through respiration

and excretions because it is much less biodegradable than the normal

components in the food. Because of this, the net efficiency of toxic matter

is often higher than for normal food components, and as a result some

chemicals, such as chlorinated hydrocarbons including DDT and PCB,

will be magnified in the food chain.

This phenomenon is called biological magnification and is illustrated

for DDT in Table 2.7. DDT and other chlorinated hydrocarbons have an

especially high biological magnification because they have a very low

biodegradability and are excreted from the body very slowly, due to dis-

solution in fatty tissue. These considerations also explain why pesticide

residues observed in fish increase with the increasing weight of the fish

(see Figure 2.23). As humans are the last link of the food chain, relatively

high DDT concentrations have been observed in the human body fat

(see Table 2.8).
Table 2.7 Biological Magnification

Trophic Level Concentration of DDT (mg/kg dry matter) Magnification

Water 0.000003 1

Phytoplankton 0.0005 160

Zooplankton 0.04 
13,000

Small fish 0.5 
167,000

Large fish 2 
667,000

Fish-eating birds2 5 
8,500,000

Source: Data after Woodwell et al., 1967.



50

30

ppb wet weight

10

0
0 400 800

DDE only

Total residues incl. DDT and DDE

1200

Weight of fish in mg

FIGURE 2.23 Increase in pesticide residues in fish as weight of the fish increases. Top line ¼ total

residues; bottom line ¼ DDE only. (After Cox, 1970).
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Understanding the principle of conservation of energy, called the first

law of thermodynamics, was initiated in 1778 by Rumford. He observed a

large quantity of heat appeared when a hole is bored in metal. Rumford

assumed that the mechanical work was converted to heat by friction.

He proposed that heat was a type of energy transformed at the expense

of another form of energy; in his case mechanical energy. It was left to

J.P. Joule in 1843 to develop a mathematical relationship between the

quantity of heat developed and the mechanical energy dissipated.

Two German physicists, Mayer and Helmholtz, working separately,

showed that when a gas expands the internal energy of the gas

decreases in proportion to the amount of work performed. These obser-

vations led to the first law of thermodynamics: energy can neither be

created nor destroyed.

If the concept internal energy, then dU, is introduced:

dQ ¼ dUþ dWðML2T�2Þ ð2:37Þ
where dQ ¼ thermal energy added to the system, dU ¼ increase in inter-
nal energy of the system, and dW¼mechanical work done by the system

on its environment.

Then the principle of energy conservation can be expressed in math-

ematical terms as follows: U is a state variable which means that
R
dU is

independent on the pathway 1 to 2. The internal energy, U, includes

several forms of energy: mechanical, electrical, chemical, magnetic



Table 2.8 Concentration of DDT (mg per kg dry
matter)

Atmosphere 0.000004

Rain water 0.0002

Atmospheric dust 0.04

Cultivated soil 2.0

Fresh water 0.00001

Sea water 0.000001

Grass 0.05

Aquatic macrophytes 0.01

Phytoplankton 0.0003

Invertebrates on land 4.1

Invertebrates in sea 0.001

Fresh-water fish 2.0

Sea fish 0.5

Eagles, falcons 10.0

Swallows 2.0

Herbivorous mammals 0.5

Carnivorous mammals 1.0

Human food, plants 0.02

Human food, meat 0.2

Man 6.0
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energy, and so forth. The transformation of solar energy to chemical

energy by plants conforms to the first law of thermodynamics (see

Figure 2.24):

Solar energy assimilated by plants ¼ chemical energy of plant tissue growth
þ heat energy of respiration ð2:38Þ

For the next level in the food chains, the herbivorous animals, the
energy balance also can be set up as:

F ¼ A þUD ¼ GþHþUD, ðML2T�2Þ ð2:39Þ



Reflection and evaporation
1.95

Sunlight
1.97

Gross prodution (0.024)
= net prodution (0.020) +
respiration (0.004)

FIGURE 2.24 Fate of solar energy incident upon the perennial grass-herb vegetation of an old field

community in Michigan. All values in GJ m-2 y-1.
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where F ¼ the food intake converted to energy (Joule), A ¼ the energy

assimilated by the animals, UD ¼ undigested food or the chemical

energy of feces, G ¼ chemical energy of animal growth, and H ¼ the

heat energy of respiration.

These considerations pursue the same lines as those mentioned in

context with Eq. (2.36) and Figure 2.17, where the mass conservation

principle is applied. The conversion of biomass to chemical energy is

illustrated in Table 2.9. The energy content per g ash-free organic mate-

rial is surprisingly uniform, as is illustrated in Table 2.9. Table 2.9, part D

shows DH, which symbolizes the increase in enthalpy, defined as H¼Uþ
p*V. Biomass can be translated into energy, and this is also true of trans-

formations through food chains. Ecological energy flows are of consider-

able environmental interest as calculations of biological magnifications

are based on energy flows.

Many biogeochemical models are within narrow bands of the chemi-

cal composition of the biomass. Eutrophication models are either based

on a constant stoichiometric ratio of elements in phytoplankton or on

an independent cycling of the nutrients, where the phosphorus content

may vary from 0.4 to 2.5%, the nitrogen content from 4 to 12%, and the

carbon content from 35 to 55%.

Some modellers have used the second law of thermodynamics and the

concept of entropy to impose thermodynamic constraints on models; see

Mauersberger (1985), who has used this constraint to assess process equa-

tions, too. Since the second law of thermodynamics is also valid for ecosys-

tems, it raises the question: How does it apply to ecological processes?



Table 2.9*

A. Combustion Heat of Animal Material

Organism Species Heat of Combustion (kcal/ash-free gm)

Ciliate Tetrahymena pyriformis -5.938

Hydra Hydra littoralis -6.034

Green hydra Chlorohydra viridissima -5.729

Flatworm Dugesia tigrina -6.286

Terrestrial flatworm Bipalium kewense -5.684

Aquatic snail Succinea ovalis -5.415

Brachiipode Gottidia pyramidata -4.397

Brine shrimp Artemia sp.(nauplii) -6.737

Cladocera Leptodora kindtii -5.605

Copepode Calanus helgolandicus -5.400

Copepode Trigriopus californicus -5.515

Caddis fly Pycnopsyche lepido -5.687

P. guttifer -5.706

Spit bug Philenus leucopthalmus -6.962

Mite Tyroglyphus lintneri -5.808

Beetle Tenebrio molitor -6.314

Guppie Lebistes reticulates -5.823

B. Energy Values in an Andropogus virginicus, Old-Field Community in Georgia

Component Energy Value (kcal/ash-free gm)

Green grass -4.373

Standing dead vegetation -4.290

Litter -4.139

Roots -4.167

Green herbs -4.288

Average -4.251

C. Combustion Heat of Migratory and Non-migratory Birds

Sample Ash-Free Material (kcal/gm) Fat Ratio (% dry weight as fat)

Fall birds -8.08 71.7

Spring birds -7.04 44.1

Non-migrants -6.26 21.2

Extracted bird fat -9.03 100.0

Fat extracted: fall birds -5.47 0.0

Fat extracted: spring birds -5.41 0.0

Fat extracted: non-migrants -5.44 0.0.

D. Combustion Heat of Components of Biomass

Material DH Protein (kcal/gm) DH Fat (kcal/gm) DH Carbohydrate (kcal/gm)

Eggs -5.75 -9.50 -3.75

Gelatin -5.27 -9.50

Continued
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D. Combustion Heat of Components of Biomass

Material DH Protein (kcal/gm) DH Fat (kcal/gm) DH Carbohydrate (kcal/gm)

Glycogen -4.19

Meat, fish -5.65 -9.50

Milk -5.65 -9.25 -3.95

Fruits -5.20 -9.30 -4.00

Grain -5.80 -9.30 -4.20

Sucrose -3.95

Glucose -375

Mushroom -5.00 -9.30 -4.10

Yeast -5.00 -9.30 -4.20

*Source: Morowitz, 1968.

Table 2.9*—cont’d
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Ecological models contain many parameters and process descrip-

tions and at least some interacting components, but the parameters

and processes can hardly be given unambiguous values and equations,

even by using the previously mentioned model constraints. It means

that an ecological model in the initial phase of development has many

degrees of freedom. It is necessary to limit the degrees of freedom to

develop a workable model.

Many modellers use a comprehensive data set and calibration to

limit the number of possible models. Nonetheless, this is a cumbersome

method if it is not accompanied by some realistic constraints on the

model. Calibration is therefore often limited to give the parameters real-

istic and literature-based intervals, within which the calibration is car-

ried out, as mentioned in Section 2.10.

But far more would be gained if it were possible to give the models

more ecological properties and/or test the model from an ecological

point of view to exclude those versions of the model that are not ecolo-

gically possible. For example: How could the hierarchy of regulation

mechanisms be accounted for in the models? Straskraba (1979, 1980)

classified models according to the number of levels that the model

includes from this hierarchy. He concluded that we need experience

with the models of the higher levels to develop structural dynamic mod-

els. This is the topic for Chapter 10.

We know that evolution has created very complex ecosystems with

many feedback mechanisms, regulations, and interactions. The coordi-

nated co-evolution means that rules and principles for the cooperation
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FIGURE 2.25 Considerations on using various constraints by development of models. The range of

parameter values is particularly limited by the procedure shown.
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among the biological components have been imposed. These rules and

principles are the governing laws of ecosystems, and our models should

follow these principles and laws.

It also seems possible to limit the number of parameter combina-

tions by using what could be named “ecological” tests. The maximum

growth rates of phytoplankton and zooplankton may have realistic

values in a eutrophication model, but when the two parameters do

not fit to each other because they will create chaos in the ecosystem,

it is inconsistent with the actual or general observations. Such combina-

tions should be excluded at an early stage of the model development.

Figure 2.25 summarizes the considerations of using various con-

straints to limit the number of possible values for parameters, possible

descriptions of processes, and possible submodels to facilitate the

development of a feasible and workable model. The two last steps of

the procedure will be presented in Chapter 10, where the next genera-

tion models are developed.

It requires the introduction of variable parameters, governed by a goal

function (an orientor). Several possible goal functions have to be intro-

duced before a presentation of structural dynamic models can take place.
Problems

1. Which class of models would you select for the following

problems:
a. Protection of a lion population in a national park?

b. Optimization of fishery in marine environment?

c. Construction of a wetland for denitrification of nitrate input

from agriculture?
2. Explain the importance of verification, calibration, and validation.

Can models without these three steps be developed at all?

3. Find the concentration factor of cadmium for a whale, estimated

to have a length of 20 m.

4. The ammonia excretion for a fish of 500 g is 200 mg/24h. Estimate

the ammonia excretion for a fish of 4 kg. What is the excretion rate

of a shark of 2000 kg?

5. Set up an adjacency matrix for the models shown in Figure 2.10

and 2.11.
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6. Improve the model in Figure 2.5 by adding two more state

variables. Which two state variables would probably be most

important to add to the present model focused on

eutrophication?

7. How often would you determine the phytoplankton

concentration, if a model for the diurnal variations of primary

production during a month was supposed to be modelled? Would

the number of observations be dependent on the season? If yes,

why?

8. Set up the equations for a model explaining the accumulation of

DDT in fish according to Figure 2.23.

9. How many state variables could a model have, if all the

relationships are based entirely on 10,000,000 observations?

10. Develop a model for the biomagnification of a toxic substance

through a food chain with primary producers, primary

consumers, and secondary consumers.
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