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11.1. Introduction

Ecology is a spatial science (Tilman & Kareiva, 1997). Therefore, it is

important to be able to model the distribution, movement, and dis-

persal of species and individuals across a varied and variable land-

scape. The methods and techniques introduced in Chapter 9 for

individual-based models (IBMs) are similar to those used in spatial

modelling. This chapter gives an overview, with examples from early

methods, for spatial modelling in ecology leading to the state-of-the-

art models with current applications.

Compartment models are zero-dimensional models, because all of the

processes occur in one place without distinguishing any spatial relations

between the compartments. This simplifies the system for ease of finding

mathematical solutions, but also obscures the complex reality of ecologi-

cal systems. The assumption is more reasonable in lake models where

one can assume the system represents a continuously stirred tank reactor

(CSTR), but even that has severe limitations, as lakes can have vertical

(stratification) and horizontal (spatial) variation. Approaches have been

developed to overcome this constraint by specifically adding spatial

dimensions to the interactions of the ecological components. The rise

of Geographical Information Systems (GIS) and remote sensing has
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contributed greatly to the tools available for explicitly representing ecolog-

ical space. Landscape ecology and spatial modelling are two of the most

common tools to benefit from this contribution (Turner and Gardner,

1991). As a general rule, these models are more complex because they

add the additional spatial dimensions and require additional knowledge

about how movement occurs on the landscape.

As with all models, their application to ecology helps formalize our

understanding and develop theory about how ecological processes

interact across spatial patterns. According to Turner, Gardner, and

O’Neill (2001), there are three general conditions for which spatial mod-

els are important:

1. When spatial pattern may be one of the independent variables in the

analysis

2. When predicting spatial variation of an attribute through time

3. When the question involves biotic interactions that generate patterns

The first condition refers to questions such as: How do species forage

differentially across a landscape of variable resources? How do nutrient

inputs respond to vegetation variation across a watershed? The second

condition deals specifically with the change in time of the landscape,

such as questions of succession or following disturbance. The third often

deals with homogeneous space and varying organism traits resulting in

the emergence of heterogeneous distributions across the landscape and

are generally modelled using cellular automata. Landscape models cover

a broad diversity of types and applications; the most frequent subject

includes single species metapopulation dynamics influenced by factors

such as fragmentation, corridors, dispersal, and invasion. Models that

represent disturbance and vegetation dynamics are also common. An

area that has seen recent attention and is still in need of more is the

integrated models of ecological and socioeconomic processes. The rap-

idly increasing availability of GIS tools and software has greatly aided

the development of spatial models, but one must not let the technologi-

cal advances outpace the ecological understanding or what is left will

be a technically advanced, but unreliable model. One key for successful

spatial models is that the model equations should include ecological pro-

cesses, rather than just correlations, so that the individuals can change

over time given different environmental conditions. In this manner, with
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a dynamic spatial model, the interactions of the ecological species can

lead to unexpected or emergent behavior as is often observed in nature.

In the next section, we review the early contributions to spatial models

in ecology.
11.1.1. Concepts and Terms

A key concept in the area of spatial modelling is scale, which refers to

the spatial extent of the ecological processes. It is important to choose

an appropriate scale related to the specific question at hand, because

the processes that affect the different organisms may influence them

differently depending on the scale. In fact, many processes operate at

multiple scales.

The presence of spatial patterns is a key feature of organisms

distributed on a landscape. The patterns arise as a result of the ecologi-

cal processes and the behavioral response of the organisms. Patterns

can be classified into three broad distribution categories: (1) gradients,

which show a smooth directional change over space; (2) patches, which

show clusters of homogeneous features separated by gaps; and (3) noise,

which are the random fluctuations not explained by the model. Identi-

fication of the pattern can be accomplished with two methods, point

pattern and surface pattern analyses. The first category describes the

type of distribution and what processes may have caused the pattern.

Nearest neighbor method is a common approach to implement this.

The second category deals with spatially continuous data and statistical

techniques such as correlograms or variograms, which can be used to

quantify the magnitude and intensity of the spatial correlation in the

data. Spatial autocorrelation is an important concept because it identi-

fies the likelihood that samples taken close to each other are more sim-

ilar than would have occurred by random chance. Positive spatial

autocorrelation occurs when the values of samples are more similar

than expected by chance and they are negatively spatially correlated

otherwise. Most ecological data show some spatial autocorrelation. This

tends to decrease with distance. Closer objects tend to have more posi-

tive autocorrelation than those further apart since the phenomena that

shape species behavior — environmental factors, communication, or

interactions — are more similar with proximity.
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Acquisition and handling of spatial data are necessary when dealing

with spatial models. The availability of spatial data has exploded, thanks

to the development of advanced satellite remote sensing. The first Earth

observation satellite, the Television and Infrared Observation Satellite

(TIROS), was launched in 1960 and used mainly for television signal

transmission and weather monitoring. Now, such satellites are used

for identifying land cover, crop management, forest management, water

management, ice cover analysis, national security, and so forth. Some of

the most common satellites are from the United States (Landsat),

France (SPOT), and India (IKONOS). Prior to the advent of this technol-

ogy, aerial photographs served as the source for spatial data, and is still

used today for gathering information about a specific time and place

when a specific resolution is needed, such as for ground truthing satel-

lite data.

In 1972, the U.S. government launched the first in a series of Landsat

satellites. The program began at National Aeronautics Space Adminis-

tration (NASA), but was transferred to the National Oceanic and Atmo-

spheric Association (NOAA) and is now managed by the United States

Geological Society (USGS). Since the first launch, there have been six

additional satellites (Table 11.1), although the latest was over a decade

ago and has had some technical problems. Only two remain active —

Landsat 5 and 7. Landsat 5, intended for a 3-year mission, has been

sending data for over 25 years at a maximum transmission bandwidth

of 85 Mbit/s. It was developed as a backup to Landsat 4 and carries a

Thematic Mapper (TM) and Multi-Spectral Scanner (MSS). It orbits at
Table 11.1 Satellite Chronology of the U.S. Landsat Program

Satellite Launch date Status

Landsat 1 July 23, 1972 Terminated January 6, 1978

Landsat 2 January 22, 1975 Terminated January 22, 1981

Landsat 3 March 5, 1978 Terminated March 31, 1983

Landsat 4 July 16, 1982 Terminated 1993

Landsat 5 March 1, 1984 Still functioning

Landsat 6 October 5, 1993 Failed to reach orbit

Landsat 7 April 15, 1999 Still functioning, but with faulty scan line corrector



Table 11.2 Spectral Bands of the MSS Sensor

Band Wavelength (mm)

1 0.45–0.52

2 0.52–0.60

3 0.63–0.69

4 0.76–0.90
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an altitude of 705 km and takes 16 days to scan the entire Earth. The

MSS has four bands (Table 11.2) and scans at a resolution of about

76 m. This scanner was placed on the first four Landsat satellites, but

has been phased out due to the improved TM sensor. TM sensors have

seven bands of image data (Table 11.3) with resolution of about 30 m. It

is a useful tool for identifying ground cover types as well as albedo and

its relation to global climate change. In Landsat 7, the TM was upgraded

to what was called an Enhanced Thematic Mapper Plus (ETMþ). Land-

sat 7 also orbits at 705 km and takes 16 days to scan the entire Earth’s

surface. Resolution of the ETMþ is 15 m in the panchromatic band

and 60 m in one thermal infrared channel. Images from the Landsat

satellites are in false color (e.g., Figures 11.1 and 11.2) and must be man-

aged and classified according to the user’s interest. Data from these

satellites are available from the USGS at http://landsat.gsfc.nasa.gov/

data/where.html. Much of the archived ETMþ, TM, and MSS data are

available for free. These data are used in applications such as Google

Earth and NASA World Wind.
Table 11.3 Thematic Mapper Bands

Band Wavelength (mm) Resolution (m)

1 0.45–0.52 30

2 0.52–0.60 30

3 0.63–0.69 30

4 0.76–0.90 30

5 1.55–1.75 30

6 10.4–12.5 120

7 2.08–2.35 30

http://www.landsat.gsfc.nasa.gov/data/where.html
http://www.landsat.gsfc.nasa.gov/data/where.html


FIGURE 11.1 False infrared color image of Washington DC (15 m resolution) taken from Landsat 7.

(As a work of the United States Government, the image is in the public domain.)
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FIGURE 11.2 False infrared color image from Landsat 7 of the Mississippi Delta showing the oil spill

following the explosion of the Deepwater Horizon Offshore drilling rigs taken on May 1, 2010.

(As a work of the United States Government, the image is in the public domain.)
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With such abundant data, it is necessary to have platforms in which to

import, store, manipulate, and present them. As stated previously, the rise

of GIS has met this challenge. Essentially, it is the computational merging

of cartography and database technology. A GIS is any tool that allows the

user to integrate, store, edit, analyze, share, and display spatial data. The

boundaries and specifics depend on the application, but in all cases it

provides for the analysis of the spatial information. There are many types

of image processing software, such as IDRISI, EASI/PACE, ENVI, LCCS,

ER Mapper, ERDAS Imagine, and GRASS GIS. One purpose of this soft-

ware is to convert the “raw” data from satellite images into specific land

use classifications. There has been a number of different land cover clas-

sification systems used, such as the “Global Land Cover Classification

Collection 1988.” This classification system distinguishes 14 land cover

classes: 0) water, 1) evergreen needleleaf forest, 2) evergreen broadleaf

forest, 3) deciduous needleleaf forest, 4) deciduous broadleaf forest,

5) mixed forest, 6) woodland, 7) wooded grassland, 8) closed shrubland,

9) open shrubland, 10) grassland, 11) cropland, 12) bare ground, and

13) urban and built. An unsupervised or supervised process can be used

to classify data. The unsupervised process group’s structure is based on

similar signals and is useful when previous knowledge of the area is not

available and it minimizes the opportunity for human error. The dis-

advantage is the lack of control over the classification process, which

may result in groups that do not correspond to physical real-world data.

A supervised process uses known samples to “train” the identification

process of unknown pixels. This approach is more time-consuming and

assumes a good working knowledge of the area, but gives greater control

over the classification process.

The combination of remote sense data and GIS has greatly contribu-

ted to the development and implementation of spatial models in ecol-

ogy. Next we discuss some of the early pioneer applications, as well as

the current state-of-the art technology.
11.2. Spatial Ecological Models: The Early Days

One of the main questions addressed through spatial models is the dis-

tribution and movement of material or energy across the landscape. To

model this movement, there must be a spatial grid over which the
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movement occurs, as well as a set of rules for the movement to follow.

In the absence of such rules, it is assumed that the movement is ran-

dom across the landscape. This approach is used to generate neutral

models for comparison (Caswell, 1976). The neutral model generates

random patterns, assuming that species do not interact or react differ-

ently to differences in abiotic factors. In reality, the movement is con-

strained by physical and biological processes as described in the

following section. Therefore, the utility of a neutral model is to compare

how far from this unrealistic situation is the actual system at hand. The

further from this baseline, the more articulated or organized the system,

which can then be used as a measure of distance from “equilibrium.”

One alternative to the zero-dimensional model was to apply reaction

diffusion theory to the distribution of movement along a spatial gradient.

This approach uses mathematical models to explain how species disperse

across a landscape based on the concentration gradient, which causes

the organisms to spread out across the landscape from areas of high pop-

ulation to areas of low population. This provided a mechanism for spatial

distribution, but did not capture relevant ecological processes in which

organisms more actively make choices about moving across the land-

scape. Therefore, it was unable to explain observed patchiness and ade-

quately represent the behavior of discrete individuals.

One of the first attempts to combine process-based compartmental

modelling with spatial considerations was by Sklar, Costanza, and Day

(1985), when they studied the habitat succession of the Atchafalaya

delta/Terrebonne marsh area in Louisiana. They divided the area in

fixed, equal-sized, square cells (today hexagonal grids are common).

The choice to use a finite element method with a fixed grid is appropri-

ate for systems with fixed hydrologic structure. Variable sized mesh grid

is used in some hydrodynamic modelling, whereas the grid approach is

used in global atmospheric circulation models. Within each cell was a

two-compartment, dynamic, nonlinear simulation model representing

suspended sediment and bottom sediments with exchanges between

them. Furthermore, to make it spatially dynamic, each cell was

connected to each adjacent cell by exchange of water and materials.

In this first version of the model, there was allowable exchange of salt,

sediment, and water across the grids, but not movement of organisms.

The spatial extent includes 1,162,641 grid cells representing 50 m2 each.

Initial conditions and parameter values were taken from data and high



Table 11.4 Range of Values for Variable to Classify Habitat Types

Habitat Type Variable Range

Upland Water

Salt

Bottom sediments

0 –8000 m3

0– 30%
<510 cm3

Fresh marsh Water

Salt

Bottom sediments

20–10000 m3

0–5%
<480– 510 cm3

Brackish marsh Water

Salt

Bottom sediments

20–10000 m3

5–15%
<480–510 cm3

Salt marsh Water

Salt

Bottom sediments

20–10000 m3

10–30%
<480–510 cm3

Open water Water

Salt

Bottom sediments

<1000 m3

0–30%
<480 cm3
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altitude photographs from 1956. They classified the habitat types into

five categories: upland, fresh marsh, brackish marsh, salt marsh, or

open water depending on the values of the three main variables

(Table 11.4). The model simulation was run until the model condition

was stable. Constant inputs and a series of IF-THEN statements were

used to determine if the cell had switched to a new habitat type based

on the water level, salinity, and depth of bottom sediments. The model

was validated using photographic data from 1978 (later 1983).

Building on this simple water exchange model, the authors added eco-

logical processes of primary production and decomposition (Costanza

et al., 1990). The improvedmodel, called CELSS (short for Coastal Ecologi-

cal Landscape Spatial Simulation), consisted of seven state variables: water

volume, salt, susseds, nitrogen, biomass, detritus, and elevation. The cell

size was adjusted to 1 km2 and themodel consisted of 2479 interconnected

cells. Simulation results showed a strong similarity to photographic data.

Themodel was then used to consider five different climate scenariosmod-

elled out to the year 2033. All runs showed amarked decrease in all classifi-

cation types except “open water,” which dominated the future landscape

due to the sea level rise as a result of increasing climate. This example

provided a powerful new approach to combining process-based ecological

models linked together across a landscape.
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11.3. Spatial Ecological Models: State-of-the-Art

The generalized grid approach introduced by Sklar and Costanza has

been adopted and modified for many other studies. The journal Ecolog-

ical Modelling recently published a special issue titled: Spatially Explicit

Landscape Modelling: Current Practices and Challenges (Volume 220,

Issue 24, 2009). It contained a review article and 17 research papers

describing the current state-of-the art methodologies, models, and

applications. Three examples from that issue, plus one additional one,

are provided in the following sections — forest succession, savanna

succession, agricultural succession, and fish habitat suitability along

a river corridor.

11.3.1. Example 1: Forest Succession After Blowdown

Rammig, Fahse, Bugmann, and Bebi (2006) developed a spatially explicit

model to simulate forest succession of Norway spruce in the Swiss Alps

following a windstorm blowdown that occurred in 1990. Significant dam-

age was done to the spruce, flattening an area of approximately 128 ha.

Following the blowdown, a monitoring program went into place to track

the changes in vegetation within the affected area. The spatially explicit

model was developed according to the ODD protocol (see Chapter 9).

The area within the model was divided into 100 � 100 grid cells each

with a cell size of 1 m2. Within each cell was an individual based tree-

regeneration model. Cells were classified according to 1 of 12 micro-site

types, depending on the site characteristics at time t ¼ 0. The sites were

defined by factors such as disturbed soil, fallen logs, decaying wood, and

different herbaceous vegetation layers. The condition of the micro-site

influences the ability for spruce establishment and growth. The model

state variables are the number and height of Norway spruce in each cell.

The model process overview and scheduling is given in Table 11.5. The

first step is to assess the change in the micro-site condition. This is fol-

lowed by the dispersal of seeds to new sites, and then the germination

and establishment of spruce on the new sites. Lastly, the growth and mor-

tality of the spruce is modelled using a vegetation growth model for indi-

vidual trees. The model parameters were taken from the literature and

from a 10-year observation record at the blowdown site. The model time

step was one year. The model was run for 50 years and repeated 100



Table 11.5 Process Overview and Scheduling of Spatial Model Following
the ODD Protocol

Processes (in Order)

1) Changes in micro-sites New micro-sites assigned according to transition probabilities and

neighborhood rules

2) Seed dispersal Random seed distribution, number depends on occurrence of mast years

3) Germination Norway spruce may establish in each cell depending on micro-site specific

germination probabilities

4) Growth Modified Bertalanffy growth equation

5) Mortality Intraspecific competition within spruce and interspecific competition

between spruce and herb layer
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times to gain estimates for mean outputs values. This model was able to

adequately simulate the regeneration dynamics of the spruce forest. Of

particular interest were the management implications regarding actions

such as the clearing of fallen logs and the expectation for the length of

duration for recovery of the forest stands.

In a subsequent study, Rammig and Fahse (2009) modified the origi-

nal model to construct a nonspatial point model from the original one

in order to test and compare the predictions made by the spatial and

nonspatial models. The goal was to determine the added value of using a

spatial model compared to a nonspatial model. Is the extra complexity

worth the effort, or can a nonspatial model give comparable results?

Therefore, this second model can be considered an extended sensitivity

analysis to the firstmodel. Themodel was derived from the originalmodel,

allowing the use of the same parameter values, thus providing a more

direct comparison. The main modification to the model involved using a

randomdraw for determining the nearest neighbors. In the originalmodel,

the influence of each cell was felt from the eight nearest neighbors. In the

revised model, those eight neighbors are drawn randomly form the land-

scape, eliminating a direct role for spatial proximity (Figure 11.3).

Figure 11.3 illustrates that the selection of cells influencing the local

micro-site conditions are spatially selected in the original model and

randomly selected in the follow-up model. This allows the investigation

of the role of space without changing the overall model structure

(Rammig & Fahse, 2009).

The new model produced results that generally overestimated the

number of trees for all of the different height classes (Figure 11.4), in



The state of the center
cell is determined by
the 8 next neighbours

The state of the center
cell is determined by 8
randomly drawn cells

FIGURE 11.3 Selection of cells

that influence the local micro-

site conditions are spatially

selected in the original model

and randomly selected in the

follow-up model. This allows

for the investigation of the

role of space without

changing the overall model

structure. (From Rammig &

Fahse, 2009.)
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FIGURE 11.4 Results from the nonspatial model overestimate the number of trees in each height class.

(From Rammig & Fahse, 2009.)
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which the total number of trees changed from just over 2600 stems in

the spatial model to almost 5000 stems of height 1 to 400 cm in the non-

spatial model. This difference is attributed to the role that favorable

regeneration sites have on the model; spruce recruitment takes place

on favorable sites, such as those dominated by rowan, that tended to
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be clustered together on the landscape and, hence, in the spatial model.

Thus, the spruce regeneration was clustered in these regions in the spa-

tial model, but not constrained by this distribution in the nonspatial

model since the rowan sites could be randomly influencing any cells

in the nonspatial model. The overall chance of selecting a rowan cell

as a neighbor increased and the Norway spruce establishment and

growth benefited from this unrealistic circumstance.

This approach shows the sensitivity of the model to the spatial con-

siderations and has important management implications, because the

non-forested areas in the high mountain regions pose a risk for

increased rockfalls and avalanches. Therefore, it is important to under-

stand the impact of clearing fallen vegetation from the blowdown zone

to maximize the regeneration and the ability of the forest to protect the

surrounding villages from natural disasters.
11.3.2. Example 2: Long-Term Savanna Succession

Savanna ecosystems are heterogeneous environments characterized by

the presence of trees, bushes, and grasses. Nutrient and soil moisture

availability are usually the limiting factors affecting the biomass growth

in savannas, and overall biomass is impacted by competition, fire,

grazing, and harvesting. There is a hypothesis that savannas are naturally

patchy environments due to these constraints. Moustakas et al. (2009)

developed a spatially explicit savanna succession model to better under-

stand long-term savanna dynamics as well as test the patchy landscape

hypothesis. This model is described in detail in the following section.

Similar to the previous example, the grid lattice is 100 � 100 cells, but

here each cell represents approximately 3 km2 for an overall coverage of

about 90,000 km2. The state variables of the model are the number of

individual trees, bushes, and grass biomass. The vegetation model on

each grid cell includes biotic and abiotic factors. The latter factors

include temperature and soil moisture characteristics. The former covers

the wide range of ecological processes controlling the vegetation biomass

dynamics, such as growth and germination factors, and competition

terms as well as mortality and grazing/harvesting values (Figure 11.5).

Overall, the model has more than 50 parameters initialized from the liter-

ature and from field observations. The authors selected a model with
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FIGURE 11.5 Conceptual diagram of the vegetation dynamics model. Arrows show the influence of the

starting process to the one connected. (From Moustakas et al., 2009.)
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high complexity, but the well-known processes of the plant dynamics

make it possible to have high confidence in the model results. The initi-

alization of state variable values, such as size and age of each tree, was

randomly chosen from within reasonable ecological ranges. Because of

this random initialization, the model took some time to pass through a

transient phase and reach stable conditions. Therefore, while the model

is run for 2100 years, the first 100 years of the simulation were excluded

from the model results as this time period was used to bring the model

to stable conditions. The cells are updated on a daily time step and vege-

tation growth depends on the soil moisture and season.

The authors considered application of the model to two different

regions: an arid savanna (122 mm/year average precipitation and thin

soils) in western Namibia and a mesic savanna (780 mm/year average

precipitation and brown calcerous soils) located on the Serengeti Plains

of Tanzania. They were interested in improving savanna succession to

help with management of the ecosystem.

After the model is initialized, during each daily time step the cell site

characteristics are updated based on temperature and precipitation
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2009.)
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which in turn affects the soil moisture. The vegetation dynamics (growth,

germination, and mortality) then respond to these environmental condi-

tions. Competition, grazing, and fire further influence the overall change

in vegetation biomass (Figure 11.6).

Model results show that total biomass followed a cyclic behavior

with grass for about 3 years, bushes for about 50 years, and trees for

about 200 years. Tree biomass was similar under both precipitation

conditions, but bush biomass doubled in the mesic environment and

grass biomass increased sevenfold due to the greater precipitation

and soil moisture. Over time, the open savannas were encroached by

woody vegetation, which then eventually gave way to a transition back

to open areas again. The long-term period for this dynamic was �230

years for the mesic environment and �300 years for the arid environ-

ment (Figure 11.7). The patchiness of the landscape is affected by fire,

grazing, and harvesting, yet these actions did not prevent the observed

vegetation cycles. Typical management practice is to remove the

woody material through controlled burns or grazing that encroaches

on the open savannas, but these results show that this transition to a
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woody dominated ecosystem is a naturally cyclic process and that

total eradication of the woody material should be avoided unless the

aim is to convert the savanna ecosystem solely into grasslands for pas-

toral reasons.

A model of this type, which incorporates general ecological knowl-

edge with site-specific parameterization, is useful in projecting the

landscape changes over time. The model could be applied to other

savannas, but would need to be reparameterized to local conditions.

More interestingly, this model could be applied to the current locations,

but under the conditions of climate change. In other words, human

changes to the concentration of greenhouse gases result in new tem-

perature and precipitation patterns. While this model was only looking

at the long-term dynamic under current conditions, it would be easy

enough to extend the analysis over a long time period for a changing

climatic regime. Better understanding of these important ecosystems

under the changed climate conditions is important information as the

global community grapples with the issue of reducing greenhouse gas
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emissions. In fact, these models will be called upon to simulate the new

climatic conditions and assess the impacts of these changes on the

global biosphere.
11.3.3. Example 3: Ecosystem Indicators to Assess Agricultural
Landscape Succession

Müller, Schrautzer, Reiche, and Rinker (2006) introduced an ecosystem-

oriented indicator set and applied it to a landscape level to assess retro-

gressional succession in a wetland ecosystem. The model combines

field-based measurements linked with GIS for the Bornhöved Lakes Dis-

trict of Northern Germany. It runs 30 years to derive the indicator levels

and results of carbon and nitrogen compounds, which demonstrate a shift

of the landscape from a sink function to a source. Overall, the indicator

set is derived to assess ecosystem structure, such as biodiversity and

number of specialized species, as well as ecosystem function measured

in terms of energy balance, water balance, and matter balance. For the

classification, ecosystem types were characterized according to their soil

and vegetation structures. Model results were validated by measurements

in the main research area. The classification focused on ecosystems of

Histosols and mineral soils. The most common ecosystem type was

cultivated fields onmineral soils (64.4%) followed by grasslands and beech

forests on mineral soils (13.6 and 4.1%). Wet and drained alder carrs and

other alder carrs on Histosol accounted for 1.7% and 2.9% of the study

area, respectively, and weakly drained wet grasslands on Histosol made

up the remaining 1.2% of cover (Figure 11.8).

The functional variables were calculated using the Water and Sub-

stance Simulation Model (WAMOD). It describes processes of water

nitrogen and carbon at each location and for lateral transfers of water

and nutrients. Results indicate a decrease in species richness both in

the wetland ecosystems and on the mineral soils. The overall changes

represent a retrogressive succession in loss of specialization. The func-

tional characteristics also show signs of retrogressive succession by a

shift toward greater net primary production but less carbon storage.

Therefore, the system has switched from a carbon sink to a carbon

source as drainage and land use intensity increase (Müller et al.,

2006). Nitrogen leaking is also observed to be higher in the mineral soils



1 Forest (floristic differentiated)
1.1 Alder carr
1.1.1 Wet_mesotrophic
1.1.2 Wet_eutrophic
1.1.3 Drained_mesotrophic
1.1.4 Drained_eutrophic
1.2 Birch carr
1.3 Willow thicket
1.4 Alder-ash forest and hombeam-ash forest
1.5 Beech forest
1.5.1 Fresh-loamy soil
1.5.2 Fresh-sandy soil
1.5.3 Dry
2 Forest (other)
2.1 Forest with deciduous trees and mixed forest
2.2 Forest with coniferous trees
3 Reed swamps and tall sedge reeds
4 Ruderal edges
5 Grassland with groundwater contact
5.1 Weekly drained_mesotrophic
5.2 Weekly drained_eutrophic
5.3 Moderately drained
5.4 Highly drained

6.1 Sandy soil
6.2 Loamy soil
7 Agricultural fields
7.1 Sandy soil
7.2 Loamy soil

8 Lakes and pounds
9 Population and traffic areas

7.3 Peat

6 grassland without groundwater contact

FIGURE 11.8 Spatial distribution of the classified ecosystem types in the watershed of Lake Belau. (From

Müller et al., 2006.)
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than in the Histosol, which contributes to eutrophication of the aquatic

systems. Along the retrogressive successional gradient, the water budget

tendency of decreasing biotic water use with increasing land use inten-

sity is due to lower proportion of transpiration in evapotranspiration.

Results from the study are presented in the amoeba-shaped diagram

showing the differences in indicator values for four wetland types of

ecosystems (Figure 11.9). In the alder carrs, the consequences of eutro-

phication are greater than that of draining. In the wet grasslands,

the differences are higher, because the extensively drained area for

agricultural purposes shows the greater deviation.

11.3.4. Example 4: Fish Habitat Along a River Corridor

A final example in this chapter uses an aquatic model of fish habitat

suitability. The spatial scale of a river could be collapsed to one linear

dimension following the flow along the river, but here the river is wide

compared to cell size in order to better track the fish movement and

habitat preference. Therefore, it is quite common for such aquatic spa-

tial models to be three-dimensional to account for the water depth as
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FIGURE 11.9 An amoeba diagram to compare four different stages of wetland retrogression. On the

top, alder carrs are depicted; the bottom shows two wet grassland ecosystems. The selected ecosystem

types represent the starting points of the retrogressions as well their end points. 100 (%) refers to the

average values of the whole data set. (From Müller et al., 2006).
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well. Hatten and Parsley (2009) developed a spatial model for white

sturgeon habitat in the Columbia River. The river ecosystem is impacted

by heavy volumes of commerce shipping and the subsequent dredging

necessary to maintain open channels. In particular, there is concern

that white sturgeon — an important ecological, sport, and commercial

fish — mortality is impacted from the material deposition on the stur-

geon habitat. The authors developed a spatial model to test the impact
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of dredging material on sturgeon rearing habitat. They (1) used GIS and

survey data to compile a river bathymetry database; (2) developed a

habitat model for sturgeon using fish location data from 2002; (3) con-

structed a habitat suitability map, verified with fish location data from

2003; and (4) simulated the effects of in-water dredge deposition on

sturgeon habitat by reducing water depths.

Knowledge about sturgeon ecology was taken from earlier studies

showing that the fish are constantly moving with diel migrations prefer-

ring deeper zones in the daytime and shallower during night. They are

benthic foragers and occupy a broad range of conditions as habitat gen-

eralists. However, they are impacted by water depth, bottom slope, and

roughness; all of which are affected by the presence of the dredge fill

material (Figure 11.10).

A 10 m resolution digital elevation map of the riverbed was created

based on a bathymetric survey of the region in 2003. Fish population

numbers were obtained from acoustic telemetry data gathered in 2002

and 2003. They tracked between 19 and 33 sturgeon, recording 74,000

locations in 2002 and 88,000 in 2003. From this, 5000 random values

from 2002 were used to develop the model and 5000 random locations

from 2003 were used to validate the model. The information was com-

piled in a GIS framework to determine the overall habitat suitability

for sturgeon populations under existing conditions and then scenarios

in which the fill increased by levels of 3 m increments (Figure 11.11).

The changes due to the increased fill measurements can be beneficial

or harmful to the habitat rating resulting in four change classes: (1) low

suitability, no change; (2) high suitability becomes low; (3) low suitability
Depth

Water surface

Bedforms

Slope

Simulated fill

FIGURE 11.10 Fill from

dredging affects the water

depth, bedform roughness,

and bottom slope, all of

which impact sturgeon

habitat. (From Hatten &

Parsley, 2009.)
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FIGURE 11.11 Conceptual model of steps and processes for the white sturgeon spatial model and the

impact of fill on sturgeon habitat. (From Hatten & Parsley, 2009.)
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becomes high; and (4) high suitability, no change. Figure 11.12 shows that

many regions experienced no change, but the central channel transi-

tioned mostly from high suitability to low suitability. The model results

showed that there was little change in the area (<1%) of suitable sturgeon

habitat for fill levels up to 9 m. When this was increased to 12 m, there

was a 12% decrease in suitable area and for 15 m fill, sturgeon habitat

decreased by 44%.

This example provides another use for ecological models. Using this

model, researchers were able to get a good estimation of the impact of

fill without having to conduct a full-scale field trial to assess the

changes. This has clear management implications, because the model

indicates that the river has some absorptive buffer capacity to mitigate

against low amounts of fill material (<9 m), but as this value increases,
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FIGURE 11.12 Estimated changes in sturgeon habitat under different dredge fill scenarios. The

largest change is seen in the habitat that transitions high suitability to low suitability. (From Hatten

& Parsley, 2009.)
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the impact on sturgeon habitat increases noticeably, so a good policy

recommendation is to keep fill levels below the critical threshold.

Problems

1. Explain some ecological processes that make it necessary to use

spatially explicit models.

2. When would it be appropriate to use (a) 0-D model, (b) 1-D model

(c) 2-D model, and (d) 3-D model?

3. Management questions often drive the construction of the ecological

models. What are some pros and cons of this approach?

4. Explain how a nearest neighbor grid cell approach represents spatial

distribution on the landscape. What grid cell shape is most

appropriate and why?

5. Explain the difference between gradients, patches, and noise.

6. Does spatial autocorrelation typically increase or decrease with

distance? Why?

7. How are image data from Thematic Mapper Plus converted to

ecological classifications?
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