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3.1 A DEFINITION OF A POPULATION MODEL

By a population we mean the number of alive organisms in a given area. We are interested
in predicting how this number will change in future. For this purpose we create models
which include processes that are responsible for a population change. For example, if
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organisms reproduce in the area of study, the process of reproduction should be included in
the population model because it results in population change.

A model which expresses population processes mathematically is called a mathematical
model. Usually, mathematical models we are interested in result in population conservation equa-
tions. A common characteristic of these equations is to express mathematically the following:

Population at the time instant tþ Dt ¼ population at time instant t

þ sum of processes which cause population to increase in the unit time Dt

� sum of processes which cause population to decrease in the unit time Dt:

If we can express all the encompassed processes as a function of the existing population or
of a past value of the population which we presently know, we have a predictive model.

For example:

Nðtþ DtÞ ¼ NðtÞ þ �
SfiðNðtÞ; tÞ � SgjðNðtÞ; tÞ� � Dt (3.1)

where N(t) stands for the population in a time instant, t (known); N(t þ Dt) is the population
in the time instant t þ Dt (unknown), fi is the i-th contribution to population growth and gj is
the j-th contribution to population decline (known) in the time interval Dt (known).

Once, N(t þ Dt) is computed we substitute this value to the right side instead of N(t) and
compute N(t þ 2Dt). Continuing this process as long as we wish, we are predicting popula-
tion value into the future.

The above example is of a mathematical model in discrete form, as opposed to a continu-
ous form which will be seen in examples that follow.

3.2 THE FIRST LAW (MODEL) OF POPULATION DYNAMICS:
MALTHUS LAW

Let us start with a very simple model and turn it into a mathematical model.
Assume that at the time, t, which we set to be zero, we have N(t ¼ 0) ¼ No organisms. The

number is known because we can count or estimate the number of organisms.
We ask the following question:
What will be the number of organisms at time t ¼ 1 which we denote by N(t ¼ 1) ¼ N1?
Here, the timeunit is arbitrary; itmaybe1 h, one day, onemonth, or whateverwe find useful.
We write:
N1 ¼ No (i.e., the no. of organisms with which we started) þ the number of organisms

which were born (between t ¼ 0 and t ¼ 1) � the number of organisms which died (between
t ¼ 0 and t ¼ 1) þ the number of immigrated organisms (between t ¼ 0 and t ¼ 1) � the num-
ber of emigrated organisms (between t ¼ 0 and t ¼ 1).

For simplicity, let us close our area of study so that immigration and emigration are not
possible.

Then, we are left with:
N1 ¼ No (i.e., the no. of organisms with which we started) þ the number of organisms

which were born (between t ¼ 0 and t ¼ 1) � the number of organisms which died (between
t ¼ 0 and t ¼ 1).
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Now we need ecologists to tell us how many organisms are born and how many die per
capita in a unit of time. Let us denote by a the number of organisms that are normally born for
each existing individual of our population in a unit of time. Similarly, let us denote by b the
number of organisms that normally die per existing individual. Hence the number of born
individuals in a unit of time will is a * No. Similarly, the number of died individuals in a
unit of time will be b * No. Now we can put these numbers into the above equation:

N1 ¼ No þ a �No � b �No: (3.2)

To further simplify this equation, we denote by r the difference between a and b.
Hence:

N1 ¼ No þ r �No ¼ ð1þ rÞNo: (3.3)

Here r is called the biotic potential. If the biotic potential is zero (i.e., the number of born is
equal to the number of died organisms in a unit of time), then obviously:

N1 ¼ No

That is, the number in the next time instant will be the same as the number we started
with.

Let us nowmake one key assumption which will enable us to predict the population num-
ber far into the future: assume that the biotic potential r is constant for all time instants in the
future. Then, after the second time instant we have:

N2 ¼ N1 þ r �N1 ¼ ð1þ rÞN1 (3.4)

Now insert N1 from Eq. (3.3) into Eq. (3.4) and get:

N2 ¼ ð1þ rÞð1þ rÞNo ¼ ð1þ rÞ2No:

We can generalize the population after any time instant t into the future:

Nt ¼ ð1þ rÞtNo where t ¼ 1; 2; 3;. (3.5)

Furthermore, by using our key assumption, note from Eqs. (3.3) and (3.4) we can
generalize:

Ntþ1 ¼ ð1þ rÞNt: (3.6)

Eq. (3.6) is our first mathematical model.
This model is called the first law of population growth or the Malthus law.
The expression Eq. (3.5) is called the solution to Eq. (3.6) given the initial value No.
Namely, to arrive at Eq. (3.5) from Eq. (3.6) we needed to know what was the value of a

population at the time t ¼ 0.
In mathematics Eq. (3.6) is called a difference equation.
Note also that Eq. (3.6) assumes a jump from t to t þ 1 and that we do not know anything

about the population between t and t þ 1. For this reason Eq. (3.6) is called discrete as
opposed to continuous equation.

To see the difference between discrete and continuous equation let us turn Eq. (3.6) into a
continuous equation.
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First rewrite Eq. (3.6):

Ntþ1 �Nt ¼ rNt (3.7)

Now assume that we are not going to jump from t to t þ 1 but from t to t þ Dt where Dt is
much smaller than 1. Eq. (3.7) becomes:

NtþDt �Nt ¼ rDtNtDt (3.8)

Now two things must be explained.

1. Why we wrote r�Dt instead of r. This is because r was a number which denoted the
difference between born and dead per individual in one unit of time while r�Dt denotes the
difference which occurred in Dt which is smaller than 1, and hence r�Dt is smaller than r.

2. Why did we put Dt on the right side? In Eq. (3.7) it did not need to be there because Dtwas
equal to 1. Eq. (3.8) reads as follows: on the left side is the number of organisms and so it
must be on the right side. But the right side reads:

½ðno: of born� no: of deadÞ=ðone organism � DtÞ� � no: of organisms � Dt
Hence, no. of organisms * Dt cancels out and what remains is the number of born � number
of dead for the whole population. So, the left side has the same units as the right side.

Now dividing with Dt we have:

ðNtþDt �NtÞ=Dt ¼ rDtNt

We can further shrink Dt into the infinitesimal increment dt and we have:

ðNtþdt �NtÞ=dt ¼ rdtNt

The left side is the derivative dN/dt which denotes the rate of change of the population at
the time instant t. Let us denote rdt by rc, and we have:

dN=dt ¼ rcN (3.9)

where rc is the instantaneous difference between per capita birth and death. Also, the
subscript c stands for the continuous case.

Eq. (3.9) is called the continuous form (as opposed to the discrete form given by Eq. (3.6))
of the Malthus law of population growth. Of course, the word “growth” refers to our
expectation that r and rc are positive because if they are zero the law should be called the first
law of population stagnation and if they are negative the law should be called the first law of
population decline.

In mathematics, Eq. (3.9) is called a differential equation.
Given N(t ¼ 0) ¼ No the solution to Eq. (3.9) is:

NðtÞ ¼ Noe
rct (3.10)

Hence, the solution to Eq. (3.6) is a geometric growth (Eq. (3.6)) and the solution to Eq. (3.9)
is an exponential growth (Eq. (3.10)).

By equating Eq. (3.5) to Eq. (3.10) we see that in the case that rc ¼ ln (1 þ r) the two dynam-
ics coincide in the points of geometric growth.
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When do we expect that Eqs. (3.5) and (3.10) will adequately represent population dynam-
ics in nature?

There are two hypotheses that need to be satisfied. First is that population reproduction
and death must not be influenced by a finite environment. However, if r and rc are positive,
the population will grow and sooner or later the population will start to deviate from the
first law.

Hence, we expect that the first law will apply as long as the population is much smaller
than limitations in food supply or space.

The second assumption is that the population must be large enough so that individual dif-
ferences in organism reproduction and death do not matter. When the population falls below a
certain number, individual-based models are more appropriate (Gourney and Nisbet, 1998).

3.3 THE SECOND LAW OF POPULATION DYNAMICS:
VERHULST LAW

The first law of population dynamics does not account for the finite environment in which
food supply and space are limited. Verhulst (1838) modified Eq. (3.9) by assuming that pop-
ulation growth, besides the Malthus term needs to be multiplied by a linearly decreasing
term of N, resulting in the equation:

dN=dt ¼ rcð1�N=KÞN (3.11)

where K is the largest population that food sources in the environment can support.
K is called the carrying capacity of the environment.
It is clear that Eq. (3.11) is close to Eq. (3.9) when N � K (because N/K does not differ

much from zero). As N approaches K, the right side of Eq. (3.11) approaches zero and the
population becomes constant. If N > K the right side of Eq. (3.11) is negative, which means
that the population decreases to K.

Given the initial population N(t ¼ 0) ¼ No, the solution to Eq. (3.11) is:

NðtÞ ¼ K

1�
�
1� K

N0

�
e�rct

(3.12)

A population whose dynamics is described by Eq. (3.11) and function (3.12) is said to fol-
low the second law of population dynamics or Verhulst law. The population is called logistic.

A graph of the function (3.12) for three initial values is given in Fig. 3.1.
Carrying capacity of the environment is K ¼ 200. For all three populations: rc ¼ 0.1.
The logistic population is often taken when constructing models of populations that inter-

act with each other and thus forming multipopulation models.
Let us consider harvesting the logistic population which is proportional to N so that the

dynamics is given by (Schaefer, 1954):

dN=dt ¼ rNð1�N=KÞ � eN (3.13)

where e is a harvesting effort (proportional to the number of fishing days and number of fish-
ing tools). The effort which leads to the maximum sustainable yield (MSY) is given by
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eopt ¼ r/2 and the corresponding stationary value of N is N* ¼ K/2. The maximum sustain-
able yield is given by:

MSY ¼ rK=4: (3.14)

The resulting value N* ¼ K/2 is stable and the strategy is termed a stable harvesting strat-
egy. This means that as long as e is set approximately equal to eopt no monitoring is needed.

On the other side, if one uses a harvesting quota, i.e., a constant value in Eq. (3.13) instead
of eN, the MSY is also given by Eq. (3.14) but nowN* ¼ K/2 is unstable in the sense that if the
population drops below K/2 and due to existing uncertainties in the environment this will
certainly happen, the population tends to extinction. Hence, to use this strategy and save
the population from extinction, first the adequate monitoring must be put into place.

In case we do have an appropriate monitoring in place, the dynamic control (bangebang
theory) states that the optimum harvesting procedure is:

If N > K/2 harvest the population to K/2;
If N ¼ K/2 harvest rK/4;
If N < K/2 do not harvest.

The above result is understandable because being at the N ¼ K/2 gives the maximum
yield. Hence, when N is above that point, it is most advantageous to harvest until K/2 is
reached. On the other side, when N < K/2 the population should recover at the maximum
rate, i.e., it should not be harvested at all.

3.4 A LOGISTIC POPULATION IN PERIODIC ENVIRONMENT

In the second law of population dynamics rc and K are taken to be constant. On the other
side, it is clear that food supply changes daily, seasonally, or from one year to the other.
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FIGURE 3.1 Dynamics of three logistic populations. N1 ¼ 300, N2 ¼ 200, N3 ¼ 2.

3. DYNAMIC POPULATION MODELS44



Let us take the carrying capacity to be a periodic function of time. In the simplest case we
may assume that:

KðtÞ ¼ K0 þ K1sinut (3.15)

where K0 is the average value of the carrying capacity, K1 is the amplitude of periodic varia-
tion, and u is the circular frequency: u ¼ 2p/Twhere T is the period.

Upon inserting Eq. (3.15) into Eq. (3.11) and integrating, one gets a complicated expression
which describes the dynamics of logistic population in the periodic environment. The
dynamics has roughly two parts: a transient starting withN0 that continues toward a periodic
behavior.

Two limiting cases have been identified (May, 1976):

1. rcT [ 1. This case means that the population reacts quickly because rc is large while the
carrying capacity changes slowly because the period is large.The population has plenty of
time to adapt to changing environment and hence it follows it closely. The asymptotic
dynamics is given approximately with:

NðtÞzK0 þ K1sinut (3.16)

2. rcT � 1. In this case the environment changes rapidly and the population is
averaging changes in carrying capacity. The asymptotic dynamics is approximately
constant:

NðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
0 � K2

1

q
(3.17)

It is interesting that in case (1) the average value of the population is K0 while in case (2) it
is smaller. In case (2) as K1 increases to K0, the population N(t) decreases to 0.

Fig. 3.2 shows dynamics of a population in cases (1) and (2).
If one were to harvest a logistic population in the periodic environment given by expres-

sion (3.16) according to proportional harvesting strategy (Legovi�c and Peri�c, 1984) so that the
dynamics of the population is given by

dN=dt ¼ rN½1�N=KðtÞ� � eN

then the optimum harvesting effort which produces the maximum sustainable
average yield (MSAY) is again eopt ¼ r/2. In case the population follows the periodic
change in K(t) then the MSAY is the same as in the peaceful environment, i.e.,
MSAY ¼ rKo/4. But if the population is unable to track changes in K(t), then MSAY is
smaller and is given by:

NðtÞzr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
0 � K2

1

q �	
4 (3.18)

Since populations in nature are all in between the two considered extremes, we conclude
that in the periodic environment, MSAY will be smaller than MSY in the peaceful
environment.
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3.5 A LOGISTIC POPULATION IN A RANDOM ENVIRONMENT

Environment may be constant for a while, it may have a periodic component but it may
also have a random component. This means that some environmental parameters may
vary by chance, hence their extent and timing cannot be predicted. We are interested to
find out the population dynamics in such an environment.

If we consider a logistic population immersed in a random environment, it is clear that
both r and K may vary in an unpredictable fashion.

Consider a simpler case (Beddington and May, 1977):

dN=dt ¼ rðtÞN� < r > N2


K (3.19)

where r(t) ¼ <r> þ g(t). <r> is the mean and g(t) is the uncorrelated white noise with the
mean equal to 0 and variance s2. Such a white noise is denoted by:

gðtÞ ¼ �
0; s2

�
: (3.20)

With the above white noise, the effect of random environment on the biotic potential of the
population of organisms is defined (Fig. 3.3). The case is not general because a random varia-
tion is included only in the linear term of Eq. (3.19) and not in the nonlinear term. The solution
to Eq. (3.19) will be a distribution which will have a transient part and later it will have a sta-
tionary phase. We are interested to find out the mean value thatNwill attain after a long time.

The mean value is:

< N >¼ K
�
r� s2



2
�


r (3.21)
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FIGURE 3.2 Dynamics of two logistic populations with periodic carrying capacity K(t) ¼ 100 þ 50 sin (t). rc ¼ 1,
rc ¼ 0.1 (black line).
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We see that the mean value ofN is not K but smaller by a factor of Ks2/2r so that in case the
variance s2 ¼ 2r, the mean value is zero. Of course, the population will reach extinction for
values of s2 which are smaller than 2r.

In case we were to harvest the population with a proportional harvesting rate eN, after a
long time (asymptotically) the population mean value will reach:

< N >¼ K
�
r� e� s2



2
�


r (3.22)

The optimum harvesting effort which will produce the maximum sustainable average
yield (MSAY) is:

eopt ¼ r=2� s2


4 (3.23)

while the corresponding MSAY is:

MSAY ¼ ðK=4rÞ�r� s2


2
�2
: (3.24)

The mean value of N during the optimum harvesting will reach:

< Neopt >¼ �
r� s2



2
�
K


2r (3.25)

We see that eopt, MSAY, andNeopt will be smaller in the random environment than in peace-
ful environment.
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FIGURE 3.3 Dynamics of two simulations are shown: <r> ¼ 0.01 (black), 0.1 (red (gray in print versions)) with
g(t) ¼ [0,0.01], K ¼ 100.
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We see that in all simulations regardless of whether the population reacts faster (with
larger r) or slower (with smaller r), the average value <N> is smaller than K.

The message is that the expected average value of N will be smaller in a random environ-
ment than in the peaceful environment and that a decrease will grow with the variance of
environmental fluctuation.

3.6 PREYePREDATOR MODELS

The interaction most often found in ecosystems is the one in which predator feeds on prey.
The first model of this type was formulated by Lotka (1925). Volterra (1926) independently
published the same model in connection to the question by D’Ancona of why the number
of predatory fishes rose during the First World War. The model is:

dN=dt ¼ rN � bNP (3.26)

dP=dt ¼ cNP�mP (3.27)

In the absence of predator, prey population is assumed to follow Malthus law. Predator
population is assumed to feed on prey proportionally to prey population N and predator
population P. This interaction is called bilinear collision in an analogy to a collision among
two kind of particles.

Given the initial values N(t ¼ 0) ¼ No and P(t ¼ 0) ¼ Po the solution is a pair of periodic
functions (Fig. 3.4). A characteristic of these periodic functions is that the peak of prey
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FIGURE 3.4 Prey (black)epredator (red (gray in print versions)) dynamics in the LotkaeVolterra model. r ¼ 1,
b ¼ 0.1, c ¼ 0.05, m ¼ 0.5.
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precedes the peak of predator in such a way that when the prey population peaks, the pred-
ator population grows with the maximum rate, and when the predator population is at the
maximum, the prey population decreases maximally.

If one uses a proportional fishing eN of prey and eP of predator, where e is a common har-
vesting effort, one easily shows that the nonextinction equilibrium value (i.e.,N* s 0, P* s 0
when dN/dt ¼ 0 and dP/dt ¼ 0) is:

N� ¼ ðmþ eÞ=c; P� ¼ ðr� eÞ=b
It turns out that N* is the same as the average value <N> of the corresponding periodic

function and so is P* ¼ <P>.
From the above expressions we see that: if e decreases, N* decreases and P* increases.
The above statement constitutes the Volterra principle and represents the answer to the

D’Ancona question: Predatory fishes increased and prey fishes decreased because the fishing
effort in the Adriatic Sea decreased during the First World War, i.e., most of the fisherman
were drafted and sent to battlefields.

Although the above preyepredator model was successful in explaining the D’Ancona
question, it is used today mostly as a didactical tool because in the absence of predators
we would expect that the prey population is governed by the second law of population
growth. When the first term in the right side of Eq. (3.26) is replaced with the right side of
Eq. (3.11) we get:

dN=dt ¼ rNð1�N=KÞ � bNP (3.28)

dP=dt ¼ cNP�mP (3.29)

The dynamics of the model is shown in Fig. 3.5. The dynamics of both prey and predator
tends to an equilibrium point in a form of damped oscillations.

It is easy to show that for this model too the Volterra principle is valid.
The above model can be made more realistic by allowing the predator to show saturation

in the presence of plenty of prey. One way of taking saturation into account leads to the
Rosenzweig and MacArthur (1963) model:

dN=dt ¼ rNð1�N=KÞ � VmaxNP=ðhþNÞ (3.30)

dP=dt ¼ cVmaxNP=ðhþNÞ �mP (3.31)

In this model VmaxN/(h þ N) is the Michaelis and Menten (1913) term, familiar in enzyme
kinetics (Wiki, 2016). The term is nearly proportional to N when h � N and then the
preyepredator interaction does not differ significantly from bNP. But when N[ h then
the term is nearly constant and then the prey-predator interaction is proportional to P.

The model has three equilibrium states:

(0,0)dwhen both prey and predator disappear. This equilibrium is always unstable.
(K,0)dwhen predator becomes extinct. This equilibrium will be stable if the predator is
too inefficient to catch prey or if its mortality is too high, i.e., if cVmaxK/(h þ K) < m.
(N* ¼ mh/(cVmax � m), P* ¼ (r/Vmax) (h þ N*) (1 � N*/K))dwhen both prey and predator
coexist. For this equilibrium to be stable the following condition must hold:
m/(cVmax � m) � K/h � (cVmax þ m)/(cVmax � m) (Gurney and Nisbet, 1998).
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If K is too small, the predator cannot maintain itself and it goes to extinction, while if K is
too high, the predator cannot control the prey sufficiently quickly and the solution tends to a
periodic behavior of both prey and predator. In between these two extremes, the equilibrium
is stable.

The fact that when K increases the equilibrium is destabilized is termed the paradox of
enrichment. When we are dealing with aquatic systems, this phenomenon can also be termed
the paradox of eutrophication.

Fig. 3.6 shows a dynamics when the nonextinction equilibrium is stable. The behavior is
qualitatively the same as the damped oscillations in Fig. 3.5, except that Fig. 3.6 shows the
plot in (N,P) space.

Fig. 3.7 shows a dynamics when the equilibrium is unstable. The prey and predator pop-
ulations tend to a periodic behavior when the paradox of enrichment occurs.

Proportional harvesting of predator only or prey and predator with a common harvesting
effort may stabilize an otherwise unstable equilibrium point.

This means that with harvesting one may control the paradox of enrichment and it is pos-
sible to prevent it from occurring. However, too intensive harvesting of prey and predator
will result in the extinction of predator.

We conclude with the following laws regarding a preyepredator community:

1. If predator is inefficient in catching the prey, it will tend to extinction and the prey will
tend to its carrying capacity.

2. If the prey does not have too high carrying capacity and the predator is efficient in catching
the prey, a stable equilibrium will occur in which both prey and predator will coexist.

FIGURE 3.5 Prey (black)epredator (red (gray in print versions)) dynamics with r ¼ 1.5, K ¼ 100, b ¼ c ¼ 0.05,
m ¼ 0.5, and No ¼ 10, Po ¼ 2.
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FIGURE 3.6 Dynamics of RozenzweigeMcArthur model for r ¼ 1.5, K ¼ 100, Vmax ¼ 1.2, h ¼ 50, c ¼ 1, m ¼ 0.5.

FIGURE 3.7 Dynamics of RozenzweigeMcArthur model for r ¼ 1.5, K ¼ 150, Vmax ¼ 1.2, h ¼ 50, c ¼ 1, m ¼ 0.5.
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3. If prey has a high carrying capacity and the predator is sufficiently efficient to persist, a
periodic behavior of both prey and predator will occur and we have the paradox of
enrichment.

4. If one applies harvesting of predators only, its population will decrease or it may go
to extinction depending on the intensity of harvesting, while the prey population
will increase to a stable equilibrium point. The paradox of enrichment will not occur.

5. If both prey and predators are harvested with the same harvesting effort, an otherwise
unstable preyepredator system may be stabilized and the paradox of enrichment will not
occur. If harvesting is too high, the predator will tend to extinction.

3.7 MODELS OF COMPETITION

In nature, one often observes a competition between populations for nesting space or the
source of food (Begon et al., 2006). This competition is called interspecific as opposed to
intraspecific which gave the quadratic term in the right hand side of the logistic equation
(i.e., rN2/K).

To consider a simple competition model, assume first the existence of two logistic popu-
lations in a finite environment. Each population has its own carrying capacity and biotic
potential. Assume further that each population affects the dynamics of the other by drawing
on its resources, i.e., both populations are amensals to each other. This can be modeled in
such a way that in the nonlinear term of the logistic equation for the first population instead
of N1/K one writes (N1 þ aN2)/K where a stands for the intensity of amensalism that popu-
lation N2 exerts on N1. In the similar way one can modify the equation for the second
population.

The resulting model is the LotkaeVolterra competition model:

dN1=dt ¼ r1N1ð1� ðN1 þ aN2Þ=K1Þ (3.32)

dN2=dt ¼ r2N2ð1� ðN2 þ bN1Þ=K2Þ (3.33)

Constants a and b determine the intensity of the corresponding amensalisms.
If ecological niches have zero intersection, i.e., if the two populations do not feed on the

same source or do not occupy the same space, they do not compete, and then a ¼ b ¼ 0. In
this case, the above model remains a model of two independent logistic populations N1

and N2. If ecological niches intersect at least partially then a > 0 and b > 0. In case that pop-
ulation N1 releases toxic material that kills members, or disables development, of the second
population, the coefficient b may be large.

There exist four equilibrium solutions. First is the (N�
1, N

�
2) ¼ (0,0)dthe total extinction

when both populations disappear. Then we have two equilibrium solutions when one of
the two populations goes to extinction: (N�

1, N
�
2) ¼ (K1, 0) and (N�

1, N
�
2) ¼ (0, K2). Finally,

one equilibrium solution exists in which both populations are present. Assume N1 > 0 and
N2 > 0. From dN1/dt ¼ 0 and dN2/dt ¼ 0 Eqs. (3.32) and (3.33) give:

K1 �N�
1 � aN�

2 ¼ 0 (3.34)
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K2 �N�
2 � bN�

1 ¼ 0 (3.35)

By solving these equations for N�
1 and N�

2 we get:

N�
1 ¼ ðK1 � aK2Þ=ð1� abÞ (3.36)

N�
2 ¼ ðK2 � bK1Þ=ð1� abÞ: (3.37)

where ab < 1, K1 > aK2 and K2 > bK1.
It turns out that the nonextinction equilibrium is a stable node as long as N�

1 > 0 and
N�

2 > 0. Since a > 0 and b > 0, N�
1 < K1 and N�

2 < K2.
When a and b are very small we can safely neglect ab because it is of a second-order small-

ness and we have approximately

N�
1zK1 � aK2 (3.38)

N�
2zK2 � bK1 (3.39)

Suppose a ¼ b ¼ 1 and K1 is different from K2.
Eqs. (3.34) and (3.35) become:

K1 �N�
1 �N�

2 ¼ 0 (3.40)

K2 �N�
2 �N�

1 ¼ 0 (3.41)

This system cannot be satisfied for any valuesN�
1 > 0 andN�

2 > 0. Therefore the nonextinc-
tion equilibrium does not exist and we have competitive exclusion of one population.

Let us summarize the fate of the two competing populations:

(1/b) < K1/K2 > a The equilibrium is unstable and the first population wins, so we have competitive
exclusion of the second population;

(1/b) < K1/K2 < a The equilibrium is unstable, whether the first or second population wins will be
determined by initial population values but here too we have competitive exclusion of
one population;

(1/b) > K1/K2 < a The equilibrium is unstable and the second population wins so here we have competitive
exclusion of the second population;

(1/b) > K1/K2 > a The equilibrium is stable and we have coexistence of populations.

We see that in three out of four cases, the competition will cause exclusion of one
population.

Let us look at another simple model of species (N1 and N2) competition for food (F).

dF=dt ¼ I � aFN1 � bFN2 (3.42)

dN1=dt ¼ aFN1 �m1N1 (3.43)

dN2=dt ¼ bFN2 �m2N2 (3.44)

where I is the inflow of food into the environment occupied byN1 and N2 populations; a(b) is
the specific efficiency ofN1(N2) to take the existing food F andm1(m2) is the specific mortality
rate of N1(N2).
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Possibly three equilibrium solutions exist. The first is (I/m1, m1/a, 0) and represents the
extinction of N2. The second is (I/m2, 0, m2/b) and represents the extinction of N1.

Let us assume that both N�
1s0 and N�

2s0, then from the second equation we have:

F� ¼ m1=a (3.45)

and from the third:

F� ¼ m2=b (3.46)

This is possible only if the two populations are identical in the efficiency of taking food and
in mortality. Since in general m1 s m2 and a s b, the equilibrium will not exist.

In case m1/a > m2/b, N1 will reach equilibrium but F will continue to decrease toward
m2/b and hence dN1/dt will become negative and N1 will tend to extinction.

The dynamics of the N1 and N2 is given in Fig. 3.8.
This model shows that the exclusion of one population due to competition for food will

happen always, hence the competitive exclusion principle.
In conclusion, we have the following law: competition among participating populations in

a community raises a chance of population extinction. Whether the extinction of less efficient
populations will happen faster or slower or even not at all, will depend on spatial character-
istics of the environment especially shelter and on fluctuating (seasonal) sources of food, both
of which we have not considered here. However, for conservation purposes, where one anal-
yses the chance of survival of a specific population, taking into account natural characteristics
of the environment is crucial.

FIGURE 3.8 Two populations competing for food. I ¼ 10, a ¼ 0.01, b ¼ 0.02,m1 ¼ 0.1,m2 ¼ 0.3. Sincem1/a <m2/b
the first population wins.
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3.8 MODELS OF COOPERATION

Recently, cooperation among populations has been found to be much more frequent than
thought historically (Bronstein, 2016).

In the simplest case the presence of a commensal population increases the carrying
capacity of the other population. The same may be assumed of the other population. Hence
the mutualism is a consequence of two commensal interactions: first population helping the
second and the second helping the first.

A model of two logistic populations with a mutualism may be written as:

dN1=dt ¼ r1N1ð1�N1=ðK1 þ aN2ÞÞ (3.47)

dN2=dt ¼ r2N2ð1�N2=ðK2 þ bN1ÞÞ (3.48)

There exist four equilibrium solutions: (0,0), (K1,0), (0, K2), and the nonextinction point
(N�

1s0, N�
2s0):

N�
1 ¼ ðK1 þ aK2Þ=ð1� abÞ (3.49)

N�
2 ¼ ðK2 þ bK1Þ=ð1� abÞ (3.50)

where ab < 1: (3.51)

We see that N�
1 > K1 and N�

2 > K2.
Given that Eq. (3.51) is satisfied, the nonextinction equilibrium is a stable node, i.e., the

populations tend to the equilibrium without oscillations.
If r1 ¼ r2 ¼ r, the characteristic return time (Tc) to the nonextinction equilibrium is:

Tc ¼ 1=r½1� Oab� (3.52)

As ab increases, the return time to the equilibrium will be longer.
We may now formulate the following law:
If two species interact forming a mutualistic community, sooner or later their populations

will exceed carrying capacity of the environment.
In case ab � 1, the above lawwill also hold simply because some other variable in the finite

environment not included in the model will eventually stop the growth of both populations.
Dynamics of two mutualistic populations is shown in Fig. 3.9.
The above model can easily be generalized to a mutualistic community with Ni, i > 2 pop-

ulations. Then the above law will hold for all the participating populations.
In case we harvest all the populations with the same harvesting effort, resulting in the pro-

portional harvesting, we will discover that maximizing the yield (Y):

Y ¼ eðSiNiÞ (3.53)

will lead to a maximum sustainable yield (MSY) and none of the participating populations
will disappear (Legovi�c and Ge�cek, 2012). This is a consequence of obligatory cooperation.
In case some or all populations exist without interaction with the rest of the community
some of them may tend to extinction as a consequence of attempting to reach MSY (Legovi�c
and Ge�cek, 2010).
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In conclusion, we may state the law: mutualism enhances the persistence of participating
populations although the return to the equilibrium may take longer.

3.9 FOOD CHAINS

Food webs that we find in ecosystems are composed of many populations and even a
greater number of interactions. Since they are essentially nonlinear, it is difficult and time-
consuming to construct adequate models and even more difficult to analyze and conse-
quently to understand their dynamics. However, food chains are a class of ecosystems which
are relatively easy to construct and analyze.

A food chain can be represented by the following graph of flow of matter:(Fig. 3.10)
Where S is a food source for the first population, N1, also called the first trophic level. The

first trophic level, N1, is a food source for the second trophic level, N2, and so on until the last
trophic levelNn.Nn is also called the top trophic level or the top predator. Such a food chain is

FIGURE 3.9 Dynamics of two populations with mutualism. R1 ¼ 1.5, K1 ¼ 100, r2 ¼ 1, K2 ¼ 100, a ¼ 0.1, b ¼ 0.2.

FIGURE 3.10 Food chain with n trophic levels.
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said to be composed of n trophic levels. Since the graph in Fig. 3.10 represents a flow of bio-
mass, starting fromN1, one has also to include the export of biomass due to mortality, so that
each of the trophic levels has a direct outflow from the system.

To avoid the spatial effects which would further complicate the issue, we shall place the
food chain into awellmixed biological reactor thatwill represent a lake, a river, or a coastal sea.

Let us consider the food chain corresponding to the graph in Fig. 3.10. Assume that all that
is consumed by one trophic level is turned into biomass of the next trophic level and that we
measure biomass of all trophic levels in the units of S. For example if S represents phosphorus
in water, than we would measure the amount of phosphorus in each trophic level in a unit of
volume. In Eqs. (3.28) and (3.29) this would mean that b ¼ c.

Equations of the food chain of length n are:

dS=dt ¼ DI � b1SN1 �DS (3.54)

dN1=dt ¼ b1SN1 � b2N1N2 �DN1 (3.55)

dN2=dt ¼ b2N1N2 � b3N2N3 �DN2

.
(3.56)

dNn�1=dt ¼ bn�1Nn�1Nn � bnNn�1Nn �DNn�1 (3.57)

dNn=dt ¼ bnNn�1Nn �DNn (3.58)

There are n extinction equilibrium points:

1:
�
S�;N�

1;.;N�
n

� ¼ ðI; 0;.; 0Þ (3.59)

2:
�
S�;N�

1;.;N�
n

� ¼ ðD=b1; I �D=b1; 0;.; 0Þ (3.60)

3:
�
S�;N�

1;.;N�
n

� ¼ ðb2I=ðb1 þ b2Þ;D=b2; b1I=ðb1 þ b2Þ �D=b2; 0;.; 0Þ
.

(3.61)

To find the last, (n þ 1)-th, equilibrium point (the non-extinction equilibrium) we note that
from the last, (n þ 1)-th, equation describing the dynamics of the n-th trophic level, one gets:

N�
n�1 ¼ D=bn ¼ an�1D (3.62)

Inserting into the (n � 1)-th equation:

N�
n�3 ¼ Dðbn þ bn�1Þ=ðbnbn�2Þ ¼ an�3D; etc: (3.63)

where an�1, an�3, an�5, . are functions of bi constants only.
The equilibrium valuesN�

n�1,N
�
n�3,N

�
n�5,. are linear functions of the dilution rate,D but

not of the inflow concentration I. Starting with N�
n�1, whether the series will end with N�

1 or
with N�

2 will depend on whether the number of trophic levels is even or odd.
Assume the food chain has an even number of trophic levels.
Then n ¼ 2k where k is a natural number.
The above series will terminate with N�

1 ¼ a1D:
Now substitute N�

1 into the first equation and get:

S� ¼ I=ð1þ a1b1Þ ¼ b1I (3.64)
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Now substitute S* into the second equilibrium equation and get:

N�
2 ¼ b2I=ðb2 þ an�2b1b2Þ �D=b2 ¼ b2I � g2D (3.65)

Continue in the same manner through all the odd numbers successively until the n-th
equation. The obtained equilibrium values of the even trophic levels are:

N�
2i ¼ b2iI � g2iD where i ¼ 1;.; k: (3.66)

Now assume the food chain has an odd number of trophic levels.
Then n ¼ 2k þ 1. The above series will terminate with N�

2 ¼ a2D:
Substituting this value into the second equation, one obtains:

S� ¼ ð1=b1 þ b2a2=b1ÞD: (3.67)

Now substitute S* into the first equation and get N�
1:

N�
1 ¼ I=ð1þ b2a2Þ �D=b1 ¼ b1I � g1D: (3.68)

Substituting into the third, fifth,. until the last equation successively will lead to the equi-
librium value of odd trophic levels. These equilibrium values will be linear functions of I and
D only:

N�
2iþ1 ¼ b2iþ1I � g2iþ1D; i ¼ 1;.; k: (3.69)

From the above, we have following conclusions:

1. In a food chain with a binary collision among prey and their predator population and an
even number of trophic levels, the equilibrium concentration of the first trophic level and
all other odd trophic levels is independent of an increase in the concentration of the
nutrient in the inflow. They are proportional to the inflow of water.

2. In a food chain with an odd number of trophic levels, the equilibrium concentration of the
first trophic level and all other odd trophic levels increases with increasing inflow
concentration of the limiting nutrient and decreases with the inflow rate of water.

3. From (1) and (2) it follows that the equilibrium concentration of the top trophic level does
not depend on whether the chain is even or odd. The concentration will always increase
with increasing nutrient concentration in the inflow and decrease with increasing water
flow.

4. Increase of nutrient concentration in the inflow will result in more nutrient being trapped
in the food chain which is easily seen from the summation:

I ¼ S� þN�
1 þ.þN�

n (3.70)

The reader is welcome to attempt the analysis of food chains in which instead of bilinear
collision among prey and predator populations, MichaeliseMenten interaction is used.

3.10 CYCLING OF MATTER

Apart from food chains, in food webs of ecosystems one finds that nutrients cycle among
various trophic levels.
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3.10.1 A Model of Nutrient, Phytoplankton, and Dead Matter
Perhaps one of the simplest ecosystems with a nutrient cycle is the one which contains the

source of nutrients, I, nutrient concentration in a lake, S, phytoplankton, N, death of phyto-
plankton mN, dead matter, M, and decomposition of dead matter, rM. By decomposition,
nutrients will be released and will again be available for uptake by phytoplankton. The dilu-
tion rate is D.

A graph denoting transport of nutrient in such an ecosystem is shown in Fig. 3.11.
Equations of the ecosystem immersed in a continuous culture reactor are:

dS=dt ¼ DðI � SÞ � aSN þ rM (3.71)

dN=dt ¼ aSN �mN �DN (3.72)

dM=dt ¼ mN � rM�DM (3.73)

where a, D, m, and r are positive.
In the above formulation, it is assumed that phytoplankton, N, takes up the nutrient, S,

according to the bilinear collision. As we mentioned earlier, this interaction allows us to state
conclusions about a change in parameters if they are not far from original values which lead
the system to steady state.

Furthermore, the death of phytoplankton and the remineralization process follow a first-
order kinetics.

The system (3.71e3.73) has only two equilibrium points.
The extinction of N and M: (S*, N*, M*) ¼ (I, 0, 0) and the nonextinction steady state.
The nonextinction steady state: (S* > 0, N* > 0, M* > 0) is obtained from Eqs 3.71e3.73 as

follows. From (3) in steady state:

M� ¼ mN�=ðrþDÞ (3.74)

From Eq. (3.72) in steady state:

S� ¼ ðmþDÞ=a (3.75)

From Eq. (3.71) in steady state, upon substitution of Eq. (3.74) and Eq. (3.75) and by
rearranging:

N� ¼ D½I � ðmþDÞ=a�=½mþD� rm=ðrþDÞ� (3.76)

In order that S*, N*, and M* be positive, the following condition must be met:

I > ðmþDÞ=a (3.77)

FIGURE 3.11 A graph of nutrient cycling among three components: concentration in water, concentration in the
first trophic level, and dead matter.
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If incoming nutrient concentration is too small, death rate of phytoplankton,m, or dilution
rate, D, are too high, phytoplankton population would be washed out of the reactor. Since
organic matter would have no source, it would be washed out too and eventually the extinc-
tion state will be reached.

We can now predict what will happen asymptotically to an ecosystem for which the mod-
els (3.71) and (3.72) is representative in case characteristics of the environment are changed.
For example:

1. An increase in nutrient concentration in the inflow, I, will cause a linear increase in N* and
M*, but S* will not be changed.

2. An increase in dilution rate, D, means that the ecosystem is progressing from a relatively
stagnant lake to a river. Such a change will increase S* while N* and M* will decrease.

3. An increase in remineralization only, r, will not change S* while N* and M* will decrease.
4. An increase of specific death rate of phytoplankton only, m, will cause S* and M* to

increase and N* to decrease.
5. An increase in the efficiency of phytoplankton uptake only, a, will cause S* to decrease

while N* and M* will increase.

In case we change the bilinear collision interaction with the more realistic Michae-
liseMenten form, the model changes into:

dS=dt ¼ DðI � SÞ � aSN=ðhþ SÞ þ rM (3.78)

dN=dt ¼ aSN=ðhþ SÞ �mN �DN (3.79)

dM=dt ¼ mN � rM�DM (3.80)

In steady state:

S� ¼ ðmþDÞh=½a� ðmþDÞ� (3.81)

N� ¼ ðrþDÞM�=m (3.82)

where a > m þ D and I > (m þ D)h/[a e (m þ D)].
In steady state, substitution into Eq. 3.72, gives M*:

M� ¼ mD½I � S��=½ðmþDÞðrþDÞ � rm� (3.83)

where (m þ D)(r þ D) > rm.
The qualitative conclusion with regard to an increase in I is the same as in the previous

model: S* will not change while M* and N* will increase linearly.
A comparison to the case with no cycling, i.e., whenm and r are zero, shows that cycling of

nutrient increases S* and decreases N*.

3.10.2 Food Chain With Two Trophic Levels and Cycling of Nutrients
Consider a cycling of nutrient with an ecosystem composed of nutrient, prey, and

predator.(Fig. 3.12)

dS=dt ¼ DðI � SÞ � aSN þ rM (3.84)
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dN=dt ¼ aSN � bNP�m1N �DN (3.85)

dP=dt ¼ bNP�m2P�DP (3.86)

dM=dt ¼ m1N þm2P� rM�DM (3.87)

In steady state:

I ¼ S� þN� þ P� þM� (3.88)

N� ¼ ðm2 þDÞ=b (3.89)

S� ¼ ðDI þ rM�Þ=½Dþ aðm2 þDÞ=b� (3.90)

aS� � bP� ¼ mþD (3.91)

mN� þm2P
� ¼ ðrþDÞM� (3.92)

Concerning an increase in Iwe have the following conclusions: S* andM* will increase, N*

will not change, and P* will increase because it is the top trophic level. In addition, the total
quantity of nutrient captured in the ecosystem will increase.

Using the above model, one can analyze how food chains, with even and odd number of
trophic levels and with cycling of nutrients, differ from the respective food chains where
cycling is negligible.

3.11 CONCLUSIONS

In this chapter we have gradually progressed from the first law of isolated population
dynamics in an infinite environment to the second law, which we expect to hold in a finite
peaceful environment. We then examined the dynamics of an isolated population in periodic
and random environment including its harvesting. From interactions of two populations we
analyzed preyepredator, competition, and mutualism. As examples of simple food webs we
briefly considered food chain and food chain with cycling of a nutrient. The treatment serves
to see how more complicated systems of populations in nature, being nonlinear, will
inevitably lead to unexpected results that could have not been guessed by intuition only.
Furthermore, more complicated models inevitably lead to greater variety of effects that are
not seen in simpler models. One could have also noticed that for all the populations to persist
in progressively more complicated ecosystems, a greater number of conditions must be
satisfied. This is particularly easy to see when analyzing food chains. Consequently, more

FIGURE 3.12 A graph of nutrient cycling among four components: nutrient in water, first trophic level, second
trophic level, and dead matter.
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complicated ecosystems are likely to be more vulnerable to at least one population loss due to
either natural or man-made perturbations.

3.12 A BRIEF HISTORY OF POPULATION MODELING

We do not have reliable historical data on when the process of mathematical modeling of
population dynamics started. The first recordedmodel of population dynamics that we know
of was proposed and solved by Leonardo di Pisa (better known as Fibonacci (1175e1250)) in
1202 in his famous book Liber abaci. The problem he was concerned about is:

“If one puts a pair of rabbits in a place surrounded on all sides by a wall. How many pairs
of rabbits can be produced from that pair in a year if it is assumed that starting with the
second month, each pair becomes productive and every subsequent month, each productive
pair brings to life one new pair?” The model produced a series of numbers for the pairs of
rabbits: 0 (before rabbits were put into the cage), 1 (an instant after the first pair was intro-
duced), 1 (a month later), 2 (two months later), 3, 5, 8, 13, 21, ., 233 (after twelfth month).
The series extended much further in t is known today as the Fibonacci series. Johannes
Kepler (1571e1630) showed that the successive numbers in the series satisfy the following
recursive (difference or iterative) equation:

Ntþ2 ¼ Nt þNtþ1 for t ¼ 0; 1;.

The model is a second-order difference equation and it requires two starting valuesN0 ¼ 0
and N1 ¼ 1 to be solved uniquely. This was done by Daniel Bernoulli who obtained (Bacaër,
2011):

Nt ¼ ð1=O5Þðð1þ O5Þ
2Þt � ð1=O5Þðð1� O5Þ
2Þt
The first law of population dynamics Eq. (3.6) was stated by Leonhard Euler in 1748 (Bacaër,

2011). The law has been unjustly named after Thomas R. Malthus who in 1798 wrote that the
human population in England grows according to the geometrical law. In addition, he
assumed that quantity of food grows linearly (i.e., along the straight line). Since geometric
growth exceeds any linear growth given enough time, he predicted a great starvation and a
catastrophe for human population in future. Subsequent data on human population and
food production showed that Malthus was wrong about both assumptions: neither has human
population grown geometrically until now nor the food production grown linearly. Hence his
fear of a catastrophe for human population was unfounded. To get a feeling about the magni-
tude of his numerical error it suffices to consider present data versus Malthus prediction.
According to his prediction, today’s human population would be about 256 billion while there
would be enough food to feed 9 billion. In fact, human population is about 7.3 billion (as of July
2015) and the present food production is sufficient to feed 57 billion people.

Verhulst (1838) suggested a logistic population model. Given the data on human popula-
tion during 1961 when human population has grown by 2% per year and assuming r ¼ 0.039
one predicts that the carrying capacity for earth is 10 billion. By carefully examining UN data
until 2010, Gonzalo et al. (2013) predicted that the human population on Earth will reach
10 billion by 2050 and will start to decrease.
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First preyepredator model was suggested by Lotka (1925). Volterra (1926) independently
published the same model and used it to determine the cause of predatory fish populations
increase in the Adriatic Sea during the First World War. Volterra subsequently analyzed a
number of properties of food web models. In fact, germination of many ideas on dynamics
of populations of organisms using mathematical models took place between 1923 and 1940
(Scudo and Ziegler, 1978). That development gave rise to expanded interest after the Second
World War and an explosion of activity following the advent of computers which enabled
simulation and numerical analysis of complicated ecosystem models. The development
has been fueled further by a growing need to understand dynamics of populations in ecosys-
tems to protect them better and find ways to reduce human impact.

References
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