
C H A P T E R

10

Fuzzy Adaptive Management of
Coupled Natural and Human Systems

T. Prato
Professor Emeritus, Department of Agricultural and Applied Economics,

University of Missouri, Columbia, MO, United States

E-mail: pratoa@missouri.edu

O U T L I N E

10.1 Introduction 212

10.2 Methods 213
10.2.1 FLAM Model for CNP 213
10.2.2 Attributes 214
10.2.3 Adaptive Management 215
10.2.4 Estimating Attributes 216
10.2.5 Determining Preferred

Management Actions 216
10.2.5.1 Determining

Preferred

Management

Action for Climate

Change Scenarios 217

10.2.5.2 Example of

Preferred

Management

Action for a

Climate Change

Scenario 219

10.2.5.3 Determining

Preferred

Management

Actions for Time

Periods 221

10.2.5.4 Determining Best

Adaptive

Management

Strategy 222

10.3 Discussion 222

10.4 Conclusions 224

References 224

211
Ecological Model Types, Volume 28

http://dx.doi.org/10.1016/B978-0-444-63623-2.00010-4

� 2016 Elsevier B.V.

All rights reserved.

http://dx.doi.org/10.1016/B978-0-444-63623-2.00010-4


10.1 INTRODUCTION

Coupled natural and human systems are systems for which natural and human elements
interact (Liu et al., 2007). Three kinds of rules can be used to make management decisions for
coupled systems: crisp, stochastic, and fuzzy (Prato, 2009). Crisp decision rules assume that a
manager can make unambiguous assessments regarding the state of a coupled system based
on measured or forecasted values for system attributes. An example of a crisp decision rule is
that the system is strongly sustainable if Xi � X�

i for positive attributes and Xj � X�
j for

negative attributes, where Xi and Xj are measured values and X�
i and X�

j are threshold values
of attributes, respectively. Crisp decision rules do not account for sampling andmeasurement
errors in attribute data and stochastic variability in attributes both of which can result in
decision errors regarding the state of a coupled system. Stochastic decision rules account
for stochastic variability in system attributes, and thereby reduce the likelihood of decision
errors. An example of a stochastic decision rule is that a coupled system is strongly
sustainable if pfXi � X�

i g � ai for positive attributes and pfXj � X�
j g � bj for negative attrib-

utes of the system, where p stands for probability, 0 � ai � 1, and 0 � bj � 1. Most stochastic
decision rules require managers to specify probability distributions for system attributes,
which is not possible when there is uncertainty about changes over time in those attributes.
Fuzzy decision rules allow for sampling and measurement errors in the data used to estimate
attributes and stochastic variability in system responses to drivers and do not require
managers to specify probability distributions for system drivers or attributes.

Managing coupled systems for climate change and human impacts is challenging as
evidenced by remarks by Ann Rodman of the Yellowstone Resources Center. She described
the challenge of managing Yellowstone National Parkda coupled systemdwith respect to
climate change as follows: “Knowing this [warming of climate systems] is true does not
necessarily help us understand how these changes are affecting Yellowstone National Park
and the surrounding area. . It is even harder to go out on a limb and say how complex
natural systems, with all their fuzzy feedback mechanisms, might react to a changing
climate” (Rodman, 2015). Rodman’s statement is apropos to all coupled systems, not just
Yellowstone National Park. In general, managers of coupled systems and scientists whose
research informs management decisions for coupled systems face the daunting task of
understanding how coupled systems are likely to respond to management actions and uncer-
tain future changes in climate and human use. Examples of management actions for allevi-
ating potential adverse impacts of climate change on coupled systems include assisted
migration, preserving genetic diversity for foundation species, and conserving nature’s stage
(Carswell, 2015).

Fuzzy decision rules are based on fuzzy logic, which is a mathematical way of represent-
ing the imprecise or approximate nature of decision-making under uncertainty (Zadeh, 1965;
Bellman and Zadeh, 1970; Bass and Kwakernaak, 1977; Barrett and Pattanaik, 1989; Klir and
Yuan, 1995; Carlsson and Fuller, 1996; Phillis and Andriantiatsaholiniaina, 2001;
Andriantiatsaholiniaina et al., 2004; Prato, 2007). Fuzzy logic is well suited to formulating
decision rules for managing coupled systems when there is uncertainty about future changes
in system driver(s) (e.g., Chen, 2003; Adriaenssens, 2004; Svoray, 2004; Prato, 2009, 2012).
Most fuzzy logic-based decision rules involve the use of complex mathematical operations
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(e.g., Prato, 2005, 2009) that are difficult for managers of coupled systems to understand and
apply. In contrast, the fuzzy logic-based decision rules proposed here can be understood by
coupled system managers.

This paper describes a fuzzy logic-based, adaptive management (FLAM) model for adapt-
ing coupled systems to future climate change when there is uncertainty about the extent of
that change and the efficacy of management actions in achieving desired outcomes. The
FLAM model provides three kinds of results: (1) the preferred management action for
each climate change scenario and time period determined by applying the fuzzy Technique
for Order Preference by Similarity of Ideal Solution (fuzzy TOPSIS) to a manager’s ratings of
the estimated attributes of system responses to climate change and management actions (or
attributes for short) and the relative importance of those attributes; (2) the preferred manage-
ment action for each time period determined by applying the minimax regret criterion to the
first result; and (3) the best strategy for adapting management actions to future climate
change across time periods determined based on the second result.

10.2 METHODS

This section describes a FLAMmodel for managing the backcountry of Cascadia National
Park (CNP), a hypothetical coupled system. A hypothetical coupled system is used because
the FLAM model has not been applied to a real coupled system. In addition, using a hypo-
thetical coupled system makes the description of the model less abstract.

10.2.1 FLAM Model for CNP
CNP’s backcountry contains environmentally sensitive alpine and subalpine areas that are

vulnerable to natural resource degradation and loss of biodiversity from human use and cli-
mate change. In recent years, the demand for backcountry camping permits has increased.
For that reason, park managers want to determine preferred management actions over
time for increasing the number of backcountry campsites while minimizing degradation of
backcountry areas from increased human use and climate change. Increasing the number
of backcountry campsites would allow CNP managers to issue more backcountry camping
permits thereby increasing the number of backcountry campers.

An overview of the FLAM model for CNP is illustrated in Fig. 10.1. The model assumes
that, in each of four, five-year time periods, a different climate change scenario can occur,
a different management action can be implemented, and different system responses can
result. The hypothetical FLAM model for CNP contains four climate change scenarios (C1,
C2, C3, and C4), four management actions (A1, A2, A3, and A4), and four system responses
to climate change and management actions (R1, R2, R3, and R4). Climate change scenarios
are equivalent to the Intergovernmental Panel on Climate Change’s (IPCC’s) four represen-
tative concentration pathways (RCPs), namely RCP2.6, RCP4.5, RCP6, and RCP8.5 (IPCC,
2014). The number associated with each RCP (e.g., 2.6) refers to radiative forcing in the
tropopause measured in watts per square meter of the Earth’s surface. The higher the radi-
ative forcing, the greater the climate change.
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The four management actions correspond to four percentage increases in the number of
backcountry campsites chosen by CNP managers: 0% increase for A1; 5% increase for A2;
10% increase for A3; and 15% increase for A4. System responses are discussed in the next
section.

Preferred management actions for the CNP are determined taking into account two kinds
of uncertainty. First, there is uncertainty about future climate change, which implies the
probabilities of the climate change scenarios are unknown in all time periods. Climate change
uncertainty is realistic because the IPCC’s Fifth Assessment Report does not assign probabil-
ities to the RCPs.

Second, there is uncertainty about system responses to climate change scenarios and
management actions, which implies the probabilities of R1 through R4 are unknown. Conse-
quently, risk-based decision frameworks that require knowledge of the probabilities of differ-
ent responses to system drivers cannot be used to determine the preferred management
actions and best adaptive management strategy for CNP. Examples of such frameworks
include maximizing the expected value of responses and Bayesian belief networks, both of
which require knowledge of the p(Rj)s, and Monte Carlo simulation that requires knowledge
of the probability distributions for climate variables (i.e., precipitation and temperature) for
each climate change scenario. The FLAM model does not require knowledge of p(Ci)s and
p(Rj)s, or the probability distributions for climate variables.

10.2.2 Attributes
Coupled systems are typically managed for multiple attributes. Consequently, the FLAM

model evaluates system responses to climate change and management actions in terms of
multiple attributes. Other studies have used multiple attributes to characterize system
responses. For example, Mackinson (2000) developed an adaptive fuzzy expert system for
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FIGURE 10.1 Diagram of FLAM model for CNP.
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predicting structure, dynamics, and distribution (responses) of herring shoals. Responses
were evaluated in terms of 26 attributes. Prato (2005) developed a FLAM model for
determining whether or not management of an ecosystem is strongly sustainable based on
three attributes: regional income, biodiversity, and water quality.

The FLAM model for CNP evaluates system responses in terms of four attributes: two
attributes for backcountry campers’ satisfaction and two attributes for resource protection.
Camper satisfaction attributes are the percent of backcountry camping permittees that
believe: (1) the number of parties encountered on backcountry trails is excessive (PT);
and the number of backcountry campsites is sufficient (PC). Conservation attributes are
the percent of backcountry areas with favorable habitat for threatened and endangered
species (PF) and the percent of backcountry trails with unacceptable soil erosion rates
(SE).

10.2.3 Adaptive Management
Adaptive management (AM) has been proposed and/or used to adapt management

actions over time in response to changes in system drivers (Holling, 1978; Walters, 1996;
Parma, 1998; Prato, 2007). AM is a form of integrated learning that acknowledges and
accounts for the surprising and unpredictable nature of system responses due to uncertainty
about the temporal changes in drivers. Kohm and Franklin state that “adaptive management
is the only logical approach under the circumstances of uncertainty” (Kohm and Franklin,
1997). Baron et al. (2009) assert that AM is the best way to manage natural protected areas
for future climate change and variability.

Adaptive management can be active or passive. There are different opinions about the
distinction between active and passive AM (Bormann et al., 1996; Schreiber et al., 2004).
Based on Walters (1996), Williams (2011) defines active AM as an approach that evaluates
management alternatives for reducing uncertainty about ecological processes and how those
processes are influenced by management actions, and passive AM as an approach that focu-
ses on resource management objectives with less emphasis on learning about the efficacy of
management actions on ecological processes. Nyberg (1998) and Prato (2012) define active
AM as a management approach that designs and conducts experiments to test hypotheses
about the efficacy of management alternatives and adapts management alternatives over
time when warranted based on test results, and passive AM as a management approach
that does not involve experiments and hypothesis testing. For the results of active AM to
be statistically reliable, the experiments must incorporate replicated, randomized, and inde-
pendent treatments and controls; the latter refer to management actions.

For the hypothetical coupled system, active AM experiments are conducted on the four
management actions to generate experimental data on the attributes of system responses
to those actions and climate change. Experiments are based on the following experimental
design. The backcountry region of CNP is divided into several biophysical zones having
dissimilar biophysical characteristics. Each biophysical zone is divided into several areas
that serve as experimental units. At the beginning of the first time period, the four manage-
ment actions are randomly assigned to the areas within each zone, such that the number of
areas treated with the same management action (i.e., number of replications per zone) is
approximately the same.
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Fig. 10.2 illustrates a random allocation of management actions to areas within a single
zone. For simplicity, the figure illustrates a square zone containing square areas. In reality,
zones and areas are not square. At the end of each time period, backcountry satisfaction
attributes are measured for each zone using data obtained from backcountry camping
surveys and conservation attributes are measured using field surveys. If the backcountry
area of CNP is divided into m biophysical zones and each zone has five replications of
management actions, then there are 5m data points per attribute per time period for each
management action.

10.2.4 Estimating Attributes
The FLAMmodel estimates the attributes using one of twomethods. First, the attributes of

responses to experimental combinations of climate change scenarios and management
actions (i.e., combinations for which experiments have been performed) are estimated using
the experimental data. For example, if climate change scenario C2 occurs during the first time
period, then the attributes under C2 are estimated using the experimental data for the four
management actions under C2. Valid experimental data are available for estimating attributes
when the experiments have replicated, randomized, and independent treatments and
controls (i.e., management actions). Second, the attributes of responses to nonexperimental
combinations of climate change scenarios and management actions (i.e., combinations for
which experimental data are not available) are estimated using expert judgment (Linstone
and Turoff, 2002) and/or simulation models. For example, it would be necessary to use
the second method to estimate the attributes of responses under C1, C3, and C4 if climate
change scenario C2 occurs during the first time period. The combined effect of climate change
and management actions on PF can be estimated using habitat suitability models (e.g., Store
and Jokimäki, 2003) and on SE can be estimated using the Variable Cross-Sectional Area
method (Olive and Marion, 2009).

10.2.5 Determining Preferred Management Actions
Apreferredmanagement action is determined at the beginning of each time period using a

two-step procedure. In the first step, fuzzy TOPSIS is used to rank the four management
actions for each climate change scenario. The preferred management action for each climate
change scenario is the top-ranked action for that scenario. In the second step, the preferred

A1 A4 A3 A2 A4

A1 A2 A4 A3 A1

A4 A3 A1 A2 A4

A2 A1 A3 A2 A3

FIGURE 10.2 Example of random allocation of management actions to areas of a biophysical zone.
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management action for each time period is determined by applying the minimax regret
criterion to maximum loss indices for the preferredmanagement actions identified in the first
step. This section explains both steps.

10.2.5.1 Determining Preferred Management Action for Climate Change Scenarios

The preferred management action for each climate change scenario within time periods is
determined by applying fuzzy TOPSIS to the estimated attributes of responses for each com-
bination of management action and climate change scenario. For example, at the beginning of
the first time period, fuzzy TOPSIS is applied to the estimated attributes of responses to C1

and A1, C1 and A2, C1 and A3, and C1 and A4 to determine which of the four management
actions is preferred under C1. This procedure is repeated to determine the preferred manage-
ment actions under C2, C3, and C4.

As an example, consider using fuzzy TOPSIS to calculate the distances of the estimated
attributes of responses to C1 and A1, C1 and A2, C1 and A3, and C1 and A4 from the fuzzy
positive-ideal solution ðdi

þÞ and the fuzzy negative-ideal solution ðdi
�Þ for the attributes

and the closeness coefficient (Ei) for each attribute. These metrics are calculated as follows:

di
þ ¼

X
j

d
�
wjrij;vj

þ
�

(10.1)

di
� ¼

X
j

d
�
wjrij;vj

�
�

(10.2)

Ei ¼ di
���di

þ þ di
�� ð0 � Ei � 1Þ (10.3)

where:

i ¼ C1 and A1, C1 and A2, C1 and A3, and C1 and A4;
j ¼ PT, PC, PF, and SE;
wj ¼ normalized triangular fuzzy number corresponding to the linguistic variable chosen
by managers to rate the relative importance of attribute j;
rij ¼ normalized triangular fuzzy number corresponding to the linguistic variable chosen
by managers to rate the estimated effect of C1 and Ai on attribute j;
dðwjrij; vj

þÞ ¼ vertex distance between the weighted normalized fuzzy effect of
management action i and climate change scenario C1 on attribute j and the positive-ideal
solution for attribute j; and
dðwjrij; vj

�Þ ¼ vertex distance between the weighted normalized fuzzy effect of
management action i and climate change scenario C1 on attribute j and the negative-ideal
solution for attribute j.

Various linguistic variables can be used to rate the estimated attributes and their relative
importance. An example of linguistic variables and corresponding triangular fuzzy numbers
is given in Table 10.1. Each triangular fuzzy number (a, b, c) defines a triangular probability
distribution like the one illustrated in Fig. 10.3. The triangular probability distribution for a
random variable x is T(a, b, c) ¼ [2(x � a)/(c � a)(b � a)] for a � x � b and
T(a, b, c)¼ [2(c� x)/(c� a)(c� b)] for b< x� c, where a is the minimum value, b is the modal
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value, and c is the maximum value of x. Fuzzy numbers can be defined based on other
probability distributions besides the triangular.

The vertex distance between two triangular fuzzy numbers z1¼ (e1, e2, e3) and z2 ¼ (k1, k2,
k3) is d(z1, z2) ¼ {0.33[(e1 � k1)

2 þ (e2 � k2)
2 þ (e3 � k3)

2]}0.5, where, for Eqs. (10.1) and (10.2),
z1 ¼ wjrij and z2 ¼ vj

þ or vj
�.

A positive attribute is one for whichmore of the attribute is desirable and a negative attrib-
ute is one for which less of the attribute is desirable from the viewpoint of the decision maker.
For CNP managers, PC and PF are positive attributes and PT and SE are negative attributes.
The fuzzy positive- and negative-ideal solutions for the four attributes are:

vj
þ ¼ ð1; 1; 1Þ for j ¼ PC and PF;

vj
� ¼ ð0; 0; 0Þ for j ¼ PC and PF;

vj
þ ¼ ð0; 0; 0Þ for j ¼ PT and SE; and

vj
� ¼ ð1; 1; 1Þ for j ¼ PT and SE:

TABLE 10.1 Linguistic Rating Scale for Estimated Attributes and Relative
Importance of Attributes, and Corresponding Triangular Fuzzy
Numbers

Linguistic Rating

Triangular Fuzzy

Numbera

Very low (0.05, 0.05, 1)b

Low (0.05, 1, 3)

Moderate (3, 5, 7)

High (7, 9, 10)

Very high (9, 10, 10)

aAdapted from Chen (2000) and Prato (2012).
bThe first number is the minimum value, the second number is the mode, and the third number is the

maximum value for a triangular probability distribution.

T(a,b,c)

0       a                b                                c

FIGURE 10.3 Triangular probability distribution.
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Ei approaches 0 (or 1) as the triangular fuzzy numbers for the attributes of the response to
C1 and Ai move farther away from (or closer to) the fuzzy positive-ideal solution and closer to
(or farther away from) the attributes for the fuzzy negative-ideal solution for attributes.
Because the desirability of a response decreases (or increases) as the closeness coefficient
for the attributes of that response approaches zero (or one), the four responses to C1 and
A1, C1 and A2, C1 and A3, and C1 and A4 are ranked based on the values of the closeness
coefficients. The rank order for these four responses implies a rank order for the fourmanage-
ment actions. For example, if the rank order of the responses indicate C1 and A3 is preferred
to C1 and A2 is preferred to C1 and A1 is preferred to C1 and A4, then the rank order of
management actions under C1 is A3 is preferred to A2 is preferred to A1 is preferred to A4.
Therefore, A3 is the preferred management action under C1. This ranking procedure is
repeated for responses involving C2, C3, and C4 and each of the four management actions
to determine the preferred management actions under each of those climate change scenar-
ios. Suppose the preferred management actions under C2, C3, and C4 for the first time period
are A4 under C2 and C3, and A2 under C4.

10.2.5.2 Example of Preferred Management Action for a Climate Change Scenario

This section uses a numerical example to illustrate how fuzzy TOPSIS is used to determine
the preferred management action for one climate change scenario in one time period, namely
climate change scenario C1 in the first time period. Applying fuzzy TOPSIS involves several
steps. In the first step, the manager must linguistically rate the estimated attributes of
responses to combinations of C1 and each of the four management actions and the relative
of importance of the attributes. For the hypothetical example, the CNP managers determine
the linguistic ratings shown in Table 10.2. If there is a management team for CNP and the
team collectively rates the estimated attributes of responses and the relative of importance
of attributes, then the triangular fuzzy numbers corresponding to the collective linguistic
ratings are used. If managers on the team independently rate the estimated attributes of
responses and the relative of importance of attributes, then the triangular fuzzy numbers
corresponding to the linguistic ratingsmade by individual members of the team are averaged
to obtain collective fuzzy numbers. If there are multiple estimated values of an attribute for
the same management action, climate change scenario, and time period, then the triangular

TABLE 10.2 Linguistic Ratings of the Estimated Values and Relative Importance of the Four Attributes of
Responses Under Climate Change Scenario C1 in the First Time Period

Management Action PT PC SE PF

A1 Very low Very low Very low Very high

A2 Low Moderate Moderate High

A3 Moderate High High Moderate

A4 High Very high High Low

Importance Moderate Moderate High Very high
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fuzzy numbers corresponding to the linguistic ratings for the multiple estimated values are
averaged.

In the second step, the fuzzy effects matrix (see Table 10.3) is created by assigning the
triangular fuzzy numbers in Table 10.1 to the corresponding linguistic ratings in Table 10.2.
In the third step, the normalized fuzzy effects matrix is formed (see Table 10.4). Each element
of the normalized fuzzy effects matrix is formed by applying the following formula to the
corresponding element of the fuzzy effects matrix:

Positive attributes : rij ¼
�
aij

.
cj
þ; bij

.
cj
þ; cij

.
cj
þ
�
where cj

þ ¼ max
i

cij ðj ¼ PC; PFÞ; and

Nagative attributes : rij ¼
�
aj
�
.
cij; aj

�
.
bij; aj

�
.
aij

�
where aj

� ¼ min
i

aij ðj ¼ PT; SFÞ:

In the fourth step, the weighted normalized fuzzy effects matrix is determined
(see Table 10.5) by multiplying the normalized weight for an attribute and the correspond-
ing normalized fuzzy effect for that attribute. For example, the weighted normalized fuzzy
effect of A1 on PT is wPT � rA1PT, where wPT is the triangular fuzzy number for the relative
importance of PT and rA1PT is the normalized fuzzy number for the effect of A1 on PT. The
numerical weighted normalized fuzzy effect of A1 on PT is wPT � rA1PT ¼ (0.3, 0.5, 0.7)(0.05,
1, 1) ¼ (0.015, 0.5, 0.7). Other weighted normalized fuzzy effects are calculated in a similar
manner.

TABLE 10.3 Fuzzy Effects Matrix for Climate Change Scenario C1 and Four Management Actions in the First
Time Period and Fuzzy Numbers for Relative Importance of Attributes

Management Action PT PC SE PF

A1 (0.05, 0.05, 1) (0.05, 0.05, 1) (0.05, 0.05, 1) (9, 10, 10)

A2 (0.05, 1, 3) (3, 5, 7) (3, 5, 7) (7, 9, 10)

A3 (3, 5, 7) (7, 9, 10) (7, 9, 10) (3, 5, 7)

A4 (7, 9, 10) (9, 10, 10) (7, 9, 10) (0.05, 1, 3)

Importance (3, 5, 7) (3, 5, 7) (7, 9, 10) (9, 10, 10)

TABLE 10.4 Normalized Fuzzy Effects Matrix for Climate Change Scenario C1 and Four Management Actions
in the First Time Period

Management Action PT PC SE PF

A1 (0.05, 1, 1) (0.9, 1, 1) (0.05, 1, 1) (0.005, 0.005, 0.11)

A2 (0.017, 0.05, 1) (0.7, 0.8, 0.9) (0.007, 0.01, 0.017) (0.33, 0.55, 0.77)

A3 (0.007, 0.01, 0.017) (0.3, 0.5, 0.7) (0.005, 0.006, 1) (0.77, 0.88, 1)

A4 (0.005, 0.006, 0.007) (0.005, 0.1, 0.3) (0.005, 0.005, 0.005) (0.77, 0.88, 1)
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10.2.5.3 Determining Preferred Management Actions for Time Periods

The preferred management action for a time period is determined by applying the mini-
max regret criterion to the preferred management actions for the climate change scenarios for
that time period. With the minimax regret criterion, the preferred management action for a
time period is the one that minimizes the maximum loss index (MLI) over the four preferred
management actions under C1, C2, C3, and C4 for that time period. The MLI for the preferred
management action for a climate change scenario is a weighted average of the expected max-
imum losses in the attributes that would occur if that action was implemented. Expected
maximum loss for a single attribute with the preferred management action for a climate
change scenario is the estimated value of that attribute with that action and no future climate
change minus the estimated value of that attribute with that action and the climate change
scenario for which that action is preferred. Losses in individual attributes without and
with climate change are estimated using biophysical simulation models, visitor surveys,
and/or mental models. Construction of the MLI requires managers to assign weights to
the four attributes, such that the weights sum to one.

The MLIs for the preferred management actions for each climate change scenario in the
first time period are given in Table 10.6. A3 is the preferred management action for the first
time period because it has the lowest MLI across the four climate change scenarios. Therefore,
A3 is implemented at the beginning of the first time period.

The preferred management actions for the second, third, and fourth time periods are
determined using a similar procedure to the one used for the first time period with twomajor
differences. First, the attributes for the second, third, and fourth time periods are measured
using a combination of experimental data (provided active AM is implemented at the

TABLE 10.6 MLIs for Preferred Management Actions Under Four Climate Change Scenarios in the First
Time Period

Climate change scenario C1 C2 C3 C4

Preferred management action A3 A4 A4 A2

MLI 45 58 65 72

TABLE 10.5 Weighted Normalized Fuzzy Effects Matrix for Climate Change Scenario C1 and Four
Management Actions in the First Time Period

Management

Action PT PC SE PF

A1 (0.015, 0.5, 0.7) (0.81, 1, 1) (0.015, 0.5, 0.7) (0.004, 0.004, 0.1)

A2 (0.005, 0.025, 0.7) (0.63, 0.8, 0.9) (0.002, 0.005, 0.012) (0.23, 0.44, 0.7)

A3 (0.002, 0.005, 0.012) (0.27, 0.5, 0.7) (0.002, 0.003, 0.7) (0.54, 0.71, 0.9)

A4 (0.002, 0.003, 0.005) (0.004, 0.1, 0.3) (0.001, 0.002, 0.003) (0.54, 0.71, 0.9)
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beginning of the first time period) and nonexperimental data. Second, if active AM is imple-
mented, then there are multiple observations on the attributes of responses to Cit and A1, Cit

and A2, Cit and A3, and Cit and A4, where Cit is the climate change scenario that occurred
during time period t for t � 2. In this case, distances from the fuzzy positive-ideal solution
ðdi

þÞ and fuzzy negative-ideal solution ðdi
�Þ for those attributes and the closeness coefficient

(Ei) for each management action are estimated for each observation and the average value of
Ei over the multiple observations is used to rank management actions.

10.2.5.4 Determining Best Adaptive Management Strategy

The previous section describes how the minimax regret criterion is used to determine that
A3 is the preferred management action for the first time period. Suppose the minimax regret
criterion indicates that the preferred management actions for the second through fourth time
periods are A3 in the second time period, A2 in the third time period, and A1 in the fourth
time period. Based on these results, the best AM strategy for CNP is to implement A3 at
the beginning of the first time period and continue using it through the end of the second
time period, implement A2 at the beginning of the third time period, and implement A1 at
the beginning of the fourth time period. This strategy assumes it is feasible to change man-
agement actions across time periods. If that is not the case, then the best strategy would have
to be altered to accommodate any limitations on altering management actions across time
periods for CNP.

10.3 DISCUSSION

This section discusses the steps a coupled system manager would have to take in order to
implement the FLAMmodel. Those steps include: (1) selecting the length and number of time
periods for evaluating management actions; (2) picking future climate change scenarios; (3)
choosing management actions; (4) selecting the multiple attributes of system responses; (5) if
active AM is used, designing and conducting AM experiments in each time period to deter-
mine how experimental combinations of climate change scenarios and management actions
influence the attributes; (6) using expert judgment, surveys, and/or simulation models to
estimate how nonexperimental combinations of climate change scenarios and management
actions influence the attributes; (7) using fuzzy TOPSIS to determine the preferred manage-
ment action for each climate change scenario within time periods; (8) applying the minimax
regret criterion to determine the preferred management action for each time period; and (9)
determining the best AM strategy.

The time periods should span a sufficiently enough long period of time to allow climate
change and management actions to fully influence the attributes. The slower the responses
to climate change and management actions, the longer the time periods should be.

The most commonly used climate change scenarios are the ones developed by the IPCC
(see Section 10.2.1). The IPCC scenarios project changes in climate through 2100. The
FLAM model requires climate projections for a portion of or the entire area of a coupled
system. Such projections can be developed using the high-resolution (800-m),
bias-corrected, ensemble climate projections for monthly average maximum temperature,
minimum temperature, and precipitation developed by NASA Earth Exchange (NEX)
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(Thrasher et al., 2013). Such projections should be sufficient to evaluate the responses of a
coupled system to climate change. The choice of management actions and attributes depends
to a large extent on the mission of the agency managing the coupled system and the manage-
ment challenges facing that system. For example, the hypothetical CNP is a national park.
National parks in the United States are managed by the National Park Service whose goal
is “. to conserve the scenery and natural and historic objects and the wildlife therein and
to provide for the enjoyment of the same by such manner and by such means as will leave
them unimpaired for the enjoyment of future generation” (National Park Service Organic
Act of 1914). For the hypothetical CNP, the four management actions and the two camper sat-
isfaction attributes address enhancing visitor enjoyment by increasing the number of
backcountry campsites, and the two conservation attributes address conserving scenery, nat-
ural objects, and wildlife.

Designing and conducting AM experiments requires applying the principles of experi-
mental design, a well-established branch of statistics. In some cases, it may not be feasible
for managers to conduct AM experiments due to technical and/or financial reasons. For
example, from a technical viewpoint, if the management actions pertain to alleviating
adverse impacts of climate change on grizzly bears, it is unlikely that the treatments (i.e.,
management actions) applied to biophysical zones will be independent because the home
range for grizzly bears is likely to exceed the size of a biophysical zone. From a financial
viewpoint, managers may not be able to afford long-term AM experiments due to limited
operating budgets.

Using expert judgment, such as the Delphi method, surveys, and/or simulation models, to
estimate how nonexperimental combinations of climate change scenarios and management
actions influence the attributes is likely to be the most difficult step in implementing the
FLAM model. While these estimation methods are commonly used by researchers, they
are not typically used by coupled system managers. Managers can overcome this potential
limitation by enlisting the assistance of technical experts that are knowledgeable about the
application of these methods.

Applying fuzzy TOPSIS requires the coupled system manager to assign linguistic ratings
to the estimated values and relative importance of the attributes, such as the ones shown in
Table 10.2 and perform the fuzzy mathematical operations needed to generate
Tables 10.2e10.5. The hypothetical CNP generates numerous estimated attributes, which
means that managers would have to do a large number of linguistic ratings of estimated
attributes. The number of linguistic ratings can be substantially reduced by developing a
look-up table that indicates which linguistic variables the manager assigns to different per-
centage ranges of the estimated attributes. An example of a look-up table for an attribute
is 0e15% is very low, 16e45% is low, 46e65% is moderate, 66e84% is high, and greater
than 85% is very high. A look-up table is not be needed to rate the relative importance of
the attributes because it only requires one rating per attribute. If the linguistic ratings vary
across time periods, then it would be necessary to develop separate look-up tables for
each time period.

The fuzzy mathematical operations required to generate Tables 10.3e10.5 can be per-
formed using a spreadsheet developed by the author. That spreadsheet requires the user
to create a table, like Table 10.1, that assigns numerical codes (e.g., 1 through 5) to the five
linguistic ratings/triangular fuzzy numbers, and develop a matrix for each climate change
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scenario that contains the corresponding codes for all combinations of management actions
and attributes and the relative importance of the attributes. The spreadsheet automatically
generates Tables 10.3e10.5 based on those codes.

Using the minimax regret criterion is relatively straightforward once the MLIs have been
calculated (i.e., Table 10.6). Defining the MLI requires the manager to estimate the attributes
without future climate change for each time period, which can be done using biophysical
simulation models, visitor surveys, and/or mental models, and assign weights to the
attributes.

Determining the best AM strategy is straightforward once the preferred management
actions have been determined for all time periods.

10.4 CONCLUSIONS

This chapter describes a FLAM model for adaptively managing a hypothetical coupled
system when the manager is uncertain about the extent of future changes in system drivers
and system responses to both climate change and management actions. The FLAM model
demonstrates two advantages of fuzzy decision rules. First, the fuzzy decision rule used in
the FLAMmodel allows for sampling and measurement errors in attribute data and stochas-
tic variability in attributes. Second, the decision rules used in the model do not require man-
agers to specify probability distributions for system attributes. This feature is particularly
advantageous when climate change is one of the drivers of system attributes because prob-
ability distributions for climate change scenarios have not been specified.

In general, the FLAM model can be applied to any coupled system. The mathematical
operations required by most fuzzy logic-based decision rules are complex. In contrast, the
mathematical operations required to implement the FLAM model have been programmed
into a spreadsheet that is relatively easy to use. However, other elements of the model,
notably using expert judgment, surveys, and/or simulation models to estimate how
nonexperimental combinations of climate change scenarios and management actions
influence the attributes, are more challenging to apply. For that reason, managers who
want to use the FLAM model would most likely have to enlist the assistance of individuals
who are familiar with applying those elements.
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