# Licenciatura em Engenharia Geográfica

# ArcGis 10.1

## CookBook

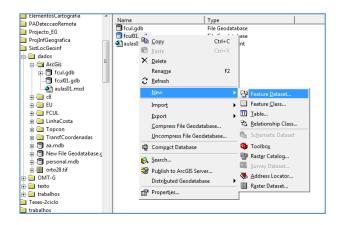
## **Abril 2014**

#### Nota:

Para evitar problemas no transporte dos ficheiros do projecto deverá activar-se a opção "store relative path names"

Document properties> Data source options> store relative .."

# 1.MODELAÇÃO DE UMA GEODATABASE


#### 1.1 Criar a Geodatabase

#### **No ArcCatalog**

File> Connect Folder > (escolher um directório para alojar a geodatabase) New > File Geodatabase > fcul-2012.gdb

#### 1.2 Criar uma Feature Dataset (Superclasse)

New > Feature Dataset > Espaços Verdes



## 2. IMPORTAÇÃO DE FICHEIROS CAD

As entidades geográficas de um ficheiro CAD podem ser importadas para ambiente SIG de diversas formas, dependendo da forma como estão estruturadas as entidades geográficas e não geográficas na *geodatabase*. Também está dependente da geometria das entidades (ponto, linha ou polígono) e das características geométricas das entidades da *geodatabase*. Por exemplo, as linhas que definem um edifício não poderão ser importadas directamente para uma entidade "edifício" do tipo polígono (na *geodatabase*). Deverá ser primeiramente importada para uma entidade linear, editada condicionalmente à sua posterior geometria (polígono), a que corresponde a construção e validação de regras topológicas, e posterior conversão para a entidade polígono. Veremos seguidamente duas formas de atingir este objectivo. O primeiro, mais simples, de importação de símbolos (células em MicroStation) para elementos pontuais e o segundo de importação de elementos lineares (polylines) e a sua conversão para elementos areais (poligonos)

A forma mais correcta de importar dados para o ArcGIS consiste na construção da *geodatabase* completa, com todas as suas *FeatureDataSets, FeatureClasses* e *Tabelas*, e posteriormente usar o comando "LOAD" para importar os dados (tudo em ambiente ArcCatalog)

#### 2.1 Importação de Pontos (arvores, postes, etc)

#### No arccatalog

- a) Criar a entidade "Arvore" (Feature Class) com uma atributo "especie"
- b) Load > Load Data > Input Data (fcul\_norte.dgn)
- c) Point >

Target Field (especie) == RefName
Load only features that satisfy a query > Query builder
Select \* from Point where "level" = 26

## No arcMap

Representar as árvores com simbologia > Representar por tipos definidos pelo atributo "especie"

#### 2.2 Importação de Linhas (Para posterior conversão em polígonos)

#### No arccatalog

- a) Criar a entidade "limite\_canteiro" com uma atributo "especie"
- b) Load > Load data > Input Data (fcul norte.dgn)
- c) Polyline> Add

Target Field (especie) == RefName Load only features that satisfy a query > Query builder Select \* from Polyline where "level" = 28 (canteiros)

#### d) Criar regras topológicas

Na feature dataset "espaços\_verdes" > New > Topology

- > Topologia\_canteiros
- > limite canteiro
- > Number of ranks = 1
- > Add Rule:
  - > Must not have dangles
  - > Must not have pseudos
  - > Must not self intersect
  - > Must not self overlap

#### No ArcMap

- a) adicionar a entidade "topologia\_canteiros" para corrigir os erros de topologia
- b) Editor > Start Editing > limite\_canteiro
- c) Topology > topologia\_canteiros
- > Validate Topology
- > Fix Topology errors (posicionar o cursos sobre o erro e pressionar o botão direito do rato, escolher a operação)
- > Abrir a janela do "Error Inspector" seleccionar por categoria e aplicar a regra a todos os elementos geográficos. No caso dos "dangles" tem de se inserir manualmente segmentos de recta.
- d) Após a edição do ficheiro podemos transformar as linhas em polígonos
  - Arctoolbox > Data Management Tools
    - > Feature > Feature to polygon
    - > Output Feature Classe : canteiros (fcul\_2012\espacos\_verdes\)
    - > Label Features > seleccionar a feature que tem os labels (esta ultima opção consiste em usar o label interior a um polígono a um campo da base de dados, por exemplo o nome do edifício)

Para adicionarmos campos na tabela dos polígonos

- Arctoolbox > Data Management Tools
  - > Fields > Add Field

Nota: Os labels dos polígonos podem ser entidades do tipo Ponto com uma atributo texto ou numero que é transferido para os atributos da entidade poligono

#### 2.3 Importação de Linhas (Para posterior conversão em polígonos)

Repetir todo o processo anterior para as salas do C8 (piso1\_2d.dgn)

#### No arccatalog

a) Criar uma superclasse

New > Feature Dataset > Edificado

- **b)** Criar a entidade "limite\_sala" (do tipo linha) com uma atributo "numero" (long integer)
- c) Load > Load data > Input Data (piso1 2d.dgn)
- d) Polyline> Add

Target Field (especie) == none

Load only features that satisfy a query > Query builder

Select \* from Polyline where "level" = 4

- e) Criar a entidade "numero\_sala" (do tipo ponto) com um atributo "numero" (text)
- f) Load > Load data > Input Data (piso1\_2d.dgn)
- g) Annotation > Add

Target Field (numero) == Text

Load only features that satisfy a query > Query builder

Select \* from Polyline where "level" = 6

#### h) Criar regras topológicas

Na feature dataset "edificado" > New > Topology

- > Topologia edificado
- > limite sala
- > Number of ranks = 1
- > Add Rule:
  - > Must not have dangles
  - > Must not have pseudos
  - > Must not self intersect
  - > Must not self overlap

## No ArcMap

- a) adicionar a entidade "topologia\_edificado" para corrigir os erros de topologia
- b) Editor > Start Editing > limite sala
- c) Topology > topologia edificado
- > Validate Topology
- > Fix Topology errors (posicionar o cursos sobre o erro e pressionar o botão direito do rato, escolher a operação)

- > Abrir a janela do "Error Inspector" seleccionar por categoria e aplicar a regra a todos os elementos geográficos. No caso dos "dangles" tem de se inserir manualmente segmentos de recta.
- d) Após a edição do ficheiro podemos transformar as linhas em polígonos
  - Arctoolbox > Data Management Tools
    - > Feature > Feature to polygon
    - > Input Feature : limite sala
    - > Output Feature Classe : sala (fcul 2012\edificado\)
    - > Label Features > seleccionar a feature que tem os labels: numero\_sala (esta ultima opção consiste em usar o label interior a um polígono a um campo da base de dados, por exemplo o nome do edifício)

Para adicionarmos campos na tabela dos polígonos

- Arctoolbox > Data Management Tools
  - > Fields > Add Field

Nota: Os labels dos polígonos podem ser entidades do tipo Ponto com uma atributo texto ou numero que é transferido para os atributos da entidade poligono

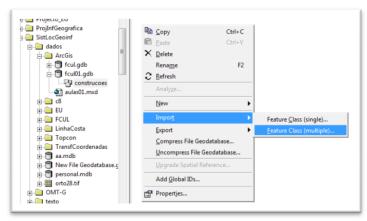
#### Ver os números de sala no arcmap

Label feature

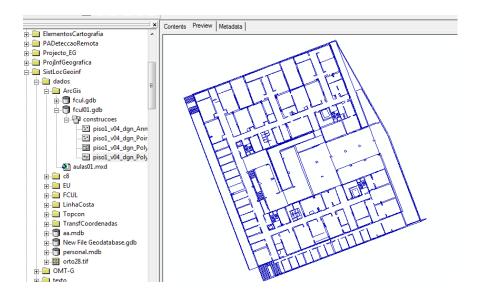
# 2.4 Importação de Linhas (Para posterior conversão em polígonos) (Alternativo ao passo anterior)

**Objectivo**: Importar um ficheiro CAD com polígonos (com um label no seu interior) para ArcGis e ligar automaticamente a uma tabela externa com informação de cada polígono. Exemplo: as salas do C8 (piso1\_v04.dgn) e a tabela espaços.xls

#### 2.3.1 No ArcCatalog


#### a) Importar os elementos do ficheiro CAD

Com base na Feature DataSet "Construcoes"


Import > Feature Class (multiple)

Escolher o ficheiro DGN: piso1\_v04.dgn

Escolher todos os campos: Annotation, Point, polygon, Polyline



Depois da importação confirmar os dados:



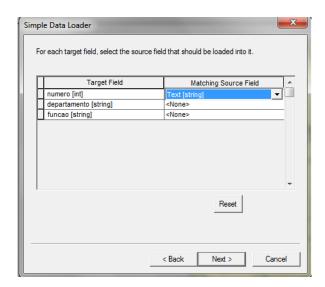
#### b) Transformar em poligonos

No Feature Dataset:

New > PolygonFeatureClassFromLines > "salas\_poligonos"
Esta feature classe é temporária. Verificar os atributos associados à feature class.

Seleccionar: piso1\_v04\_dgn\_polyline

Associar texto ao poligono: piso1\_v04\_annotation




Esta operação também pode ser feita no ArcMap

- Data management Tools
- Features > Features to polygon

#### c) Criar a Feature Classe "Sala"

- > Criar no Feature DataSet uma Feature Class com o nome "sala", do tipo polígono, e definir também os atributos (Numero (LongInt), Departamento (text), Função (text), etc)
- ➤ Load > Load data :
- Input data "sala\_poligonos"
- Associar o atributo "numero" da classe "Sala" ao atributo "Text" da classe "sala\_poligonos".
- Nota: esta operação pode indicar um erro no final por haver valores não inteiros no atributo "Text". Verificar se foram atribuidos os numeros das salas.
- Nota: esta operação não poderia ser efectuada directamente do ficheiro dgn porque os elementos gráficos que definem a sala são linhas e a nossa classe é um polígono e o ArcGis não permnite importar linhas para classes polígonos.



# Modelação do Terreno

(Exemplo carta da Arrabida: 465.shp)

1. Importar a carta no sistema de coordenadas nativo.

## **3D Analyst Tools**

## 2. Data Management

2.1 TIN > Create TIN

Output TIN: arrabida

InputFeature Class: 465.shp

Height Field: COTA

## 3. Symbology

Explorar as várias hipóteses: (triângulos: Edge with the same symbol)

- 4. Conversão para GRID (Conversion)
  - 4.1 From TIN to Raster

Input TIN: arrabida TIN

Output Raster : arrabida\_GRID Sampling distance: CELLSIZE 25 Smbology : stretch: standard

- 5. Curvas de nível
  - 5.1 Raster surface > contour

Input raster: arrabida\_grid

Output features arrabida\_contour

Contour interval: 10

5.2 Curvas de nível a partir da rede TIN

Triangulated surface > surfasse contour

# **Cartographic Design**

## **Layout View**

Configuração da página

File > Page and Print Setup

Printer: Adobe PDF

Paper Size: A1 (Portrait)

Nap Page Size: A1 (portrait) (59.4 x 84.1)

## **Data Frame Properties**

Data Frame: Extent > 1:500

Frame: 1.5 point

Size and Position: size > 50 x 50 cm

Grids > Properties (verificar todos parâmetros)

> Labels (ver tamanhos) e additional properties (casas decimais)

> Intervals (50 m)

> Lines > show as a grid of tics (tamanho = )

#### Insert

- 1. Title
- 2. Scale > When resizing : adjust number of divisons

> Division units : Meters

- 3. North Arrow
- 4. Legend