Losses in a solar cell

- Optical losses
- Electrical losses:

related to the cell material related to solar cell contacts

PV Technology Losses: Optical

$$n \cdot d = \frac{\lambda}{4}$$

- n_0 is the refractive index of the uppermost layer (air or glass),
- n_1 is the refractive index of the antireflection layer, and
- n_2 is the refractive index of the silicon.

Anti-reflection coatings

The minimum off R occurs for $n_1d_1 = \lambda/4$

PV Technology Optical losses – Surface Texturatization

Instead of 35% only 10% is reflected

Optical losses – Surface Texturatization

SOURCE: IIT Bombay, C.S. Solanki

For
$$n_{si}$$
= 3.5 $\Phi_c = 17^\circ$

Optical confinement

The effective path inside the cell can be strongly augmented by using the concept of light confinement

Recombination areas

- Surface recombination
- Depletion region recombination
- Bulk recombination

Current generation inside the cell

Generated current is reduced due to recombination

• V_{oc} depends on short circuit current (I_L) and saturation current (I_0)

• $\rm I_L$ does not vary much but $\rm I_0$ can vary by several orders of magnitude \rightarrow hence controls the $\rm V_{oc}$

 V_{oc} is a measure of recombination in a solar cell

 $-I_L$

Both R_s and R_{sh} will reduce the available cell current and so they will reduce the overall efficiency

Componentes de Rs:

Resistência do substrato semicondutor

Resistência de contacto entre o metal e o semicondutor

Resistência da metalização

Slope of the I-V curve near V_{oc} gives indication about R_s

Effect of series resistance on the FF and maximum power

$$P_{m,s} = P_0(1-r_s)$$

$$FF_s = FF_0(1 - r_s)$$

$$P_{m,sh} = P_0 \left(1 - \frac{1}{r_{sh}}\right) \qquad FF_{sh} = FF_0$$

$$FF_{sh} = FF_0(1 - \frac{1}{r_{sh}})$$

Quick Technology overview

Passivating Contacts Record Solar Cell

Both-sides contacted cell with front p⁺ emitter and full-area rear contact

J_{sc}	V₀c	FF	η*	Area**
(mA/cm²)	(mV)	(%)	(%)	(cm²)
42.9	724	83.1	25.8	4.0 (da)

Fraunhofer

ISE

Future What is the Limit of Silicon Solar Cells

Shockley, Queisser (1961) Average cell conversion efficiency [%] 30 ~ 29 Limit for Si 33% (AM1.5) 0.6°10 an Hea 28 Limitations by Passivating thermalization and Contacts BJBC 26.0 % 26 transmission Passivating 25.0 % Auger Limit 29.4 %¹ Contacts 24 23.5 % PERC 22 Θ Θ $E_{\rm c}$ AI-BSF Eva 20 -~ 20 % E. 18 Ev \oplus \oplus \oplus 2015 2020 2025 2030 2010 → End of Silicon Solar Cell Technologies?

¹Richter, Hermle, Glunz, IEEE J. Photovolt, (2013) 22

© Fraunhofer ISE, M.Hermle 2017

You have now the needed information to perform the assignment I told you about

PVFactory

It is a virtual factory to simulate production of solar cells

I will put this assignment in fenix

