Sudden motion of an infinite flat plane
(revisited)

Flow above a solid wall at y = 0. Initially, the fuid is at rest. At time t = 0O, the
boundary starts to move with velocity U in the x direction.

> U

The velocity field is
u = {u{y: t:] 3 l]: l]]

and the Navier-Stokes equation

Du
— = -V + .?Eu,
P Dt P+ H :
reduces to 5
i d“u
P =B
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* Boundary conditions:u=Uony=0and U - 0asy — oo,
* We also impose the initial condition: u=0att=0.

* The velocity u(x, t) thus satisfies the 1-D diffusion equation with

diffusivity v = %, where v is the kinematic viscosity.

* Similarity solution is

=0U|1—er J
w(y,t) = U [1 f(ﬁwjﬁ)]

The velocity u(y,t) will be approximately zero wherever y/ 2/t is large. In addition, for a
fixed value of y, the velocity will remain less than 0.01U until a time ¢ such that y ~~ 4+/wt.
Hence, at time ¢, the fluid is only moving within a narrow region of thickness 4/vt. This
narrow region is called the viscous boundary layer. Note that the boundary layer thickness is
mdependent of U.
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SOLUTION OF THE 1D DIFFUSION EQUATION

We seek a similarily solution:
u(y,t) = f(n), where n = yt?,

for some constant a. Using the chain rule:

B_ — tﬂi
gy dn
2 — a,y’t“_ld—
ot dn’

so that equation (4.1) becomes:

a—1 df _ 2ad2f

ayt” " — —vtT ——

dn dn?’

and therefore:
B ey

dn? v dp
For the similarity solution to exist, this equation must only contain y and ¢t in the combination
n = yt* and therefore —a — 1 = a. We get: a = 7%. Solutions thus exasts for the similarity
variable ) = y/V/f and satisfy:
Pfond
dn®  wdn
Substituting v = df /dn we have:
dv n
an W’

which has general solution:

Integrating again, we obtain:

ul 1;,2
_f:A/D- exp (_E) dn + B.

The above integral can be expressed in terms of the error function:

erf(x) = % j: exp {7:1:2) dz.

Substituting =z = 1/24/v, we have:

f = AVrert (2%) +B.
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Start up of shear flow (parallel plates)

y /

r}.yI
= He

Z

Let us now modify the previous problem by considering the start-up of a shear flow between
two parallel plates located at y = 0 and y = h. Once again, we begin to move the lower plate
with velocity U at £ = 0. The problem is the same as that above except that the boundary
condition at infinity is replaced by one at y = h. The velocity now satisfies:

Ou 0%u

— =v—F, 4.3

ot oy (43)
together with the boundary conditions: u(0,t) = U and w(h,t) = 0, and the initial condition
u(y, 0) = 0.
First, we observe that the steady solution us = U (1 — y/h) satisfies the equation at any ¢ # 0
and the boundary conditions. We then write:

u(y, t) = us + v(y, ),
and seek a separable solution of the form:

v(y, 1) =T ()Y (y)-
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Hence, the solution is:

u(y,t)=U (1 — %) — W l exp (— un:;z t) sin (%) .

This flow resembles that of the unbounded plate until the boundary layer grows to the width
of the channel. The solution then approaches the steady state us. Note that the slowest
decaying exponential in the sum corresponds to n = 1. As a result, the flow reaches u; on a
time of order h?/(vn?). For water in a lem channel, this time is about 10s and scales inversely
with » so that in a fluid of lower viscosity it becomes longer.
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SOLUTION OF START UP OF SHEAR FLOW

This gives:
YT =vTY",
so that:
YH' 1 T? k
Y vT

where k is the constant of integration. Since us takes care of the moving boundary, we want
to find solutions satisfying Y (0) = Y (h) = 0. We thus choose solutions of the form:

V() sin (U22).

so that:
yn ’RQ?TQ
Y R
It follows:
T B vnlm?
T

and so we have separable solutions of the form:

vn’n? . [(nTy
U, = exXp _Tt sin (T) :

The general solution for u satisfying the boundary conditions is:

u(y,t)=U (1 — %) + ni:lanexp (—%2;23) sin (%) .

The initial condition at ¢ = 0 requires:

5 e (%2) =0 1-2)

for 0 < y < h. We can determine the a,, using Fourier series properties:

U Ry nwy 2U
= — Z—1)sin(—)dy=——
fin h_/o (h )Sm( h) Y= T
Hence, the solution is:

u(y,t)=U (1 — %) - %i%e@ (—yszer) sin (n—;lw) )
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Diffusion of vorticity from the surface to the
fluid

Let us now return to the case of the flow above a boundary that is set in motion at time ¢ = 0.
Initially, the vorticity is zero everywhere, except at y = 0 where the fluid velocity jumps from
U to 0. At time ¢, the velocity is given by equation (4.2). The vorticity w reads:

Ou U y?
w=——=—= exp| ——].

Oy Vvt P 4ut
This 1s a Gaussian distribution of standard deviation v2vt. Hence, as times increases, the
vorticity gradually spreads away from the boundary over a distance of order v2uvt.
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Boundary layer equations

* We consider steady, two-dimensional flow in the xy-plane in Cartesian
coordinates. The methodology can be extended to axisymmetric boundary layers
or to three-dimensional boundary layers in any coordinate system.

* We neglect gravity since we are not dealing with free surfaces or with buoyancy-
driven flows (free convection flows), where gravitational effects dominate.

* We consider laminar boundary layers; turbulent boundary layer equations are
beyond the scope of this course.

* For a boundary layer along a solid wall, we adopt a coordinate system in which x
is everywhere parallel to the wall and y is everywhere normal to the wall.

* When we solve the boundary layer equations, we do so at one x-location at a
time, using this coordinate system locally, and it is locally orthogonal.

Boundary layer
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The nondimensionalized Navier—Stokes equation is

R
- | V2=

L

(VE.V*)V* = —[Eu]V*P* +

« The Euler number is of order 1, since pressure differences outside the boundary layer are
determined by the Bernoulli equation and AP ~pV?2,

* Vs a characteristic velocity of the outer flow, typically the free-stream velocity for bodies
immersed in a uniform flow.

« The characteristic length is L, some characteristic size of the body. For boundary layers, x
is of order o L, and Reynolds number is Re,, usuallly very high.

Redo the nondimensionalization of the equations based on appropriate
scales within the boundary layer.

Boundary layer « Since x ~ L, we use L as the scale for distances in the streamwise

| g U=l direction and for derivatives with respect to x. However, this scale is
too large for derivatives with respect to y. We use § for distances in
the direction normal to the streamwise direction and for derivatives

with respect to y.

« Similarly, we use U as the characteristic velocity, where U is the
magnitude of the velocity component parallel to the wall at a location
just above the boundary layer. U is in general a function of x.



* Thus, within the boundary layer at some value of x, the orders of magnitude are

d | d 1
~U P—P_~plU? —~— ———
“ = P ax L ay &

» The order of magnitude of velocity component v is obtained from the continuity
equation

- au Jv U v
J - o o w_y o, U_w
“ ax  ay L &

— =
Tr R
L

« Since the two terms have to balance each other, they must be of the same order of

magnitude. Thus we obtain the order of magnitude of velocity component v,

U8
L

v~

i
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» Since d/L << 1 in a boundary layer, we conclude that v << u, and the adimensional
variables are

LI'
Buundlary layer /
I

g ==54
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We now consider the x- and y-components of the Navier—Stokes equation. We substitute
these nondimensional variables into the y-momentum equation, giving

v v 1 aP v av
w — + v — = B + v + | ——
- ax - @y g ay dx ay-
. N ) E_{__ —— L S —
4 vtUE YL 4 U 1 4 Pople vt F *Us
L iyt LS pay* & Coarvr e e LF
-
After some algebra S L —Red& L i
/\/H M
, v . v (L)2 ap* N ( v )&11,-'3 N ( v )(L)l ¥
w—+vi——= o —+ |\t 5] =
¥ ' &) day* UL/ ax*? ULJ\& /) ay*
—
KC—L

1
The middle term on the r.h.s. is clearly smaller than any gfh'er term since Re, = UL/v > 1.
For the same reason, the last term on the right is much smaller than the first term on the
right. Neglecting these two terms leaves the two terms on the left and the first term on the
right. However, since L> § , the pressure gradient is orders of magnitude greater than the
advective terms on the left of the equation. Thus, the only term left is the pressure term.
Since no other term in the equation can balance that term, we have no choice but to set it
to zero. Thus, the nondimensional y-momentum equation is

i
(=]

ter flow [ apP*
Boundary layer ({U # Py
/ A l:‘l:'r'$

The pressure across a boundary layer ( y-direction) is
nearly constant.
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Since P is not a function of y, we replace dP/dx by dP/dx, where P is the pressure
calculated from the outer flow approximation (using either continuity plus Euler, or the
potential flow equations plus Bernoulli). The x-component of the Navier—Stokes

equation becomes

du i 1 dP u
u — v — = ——— r— +
- dx - ay p dx dx-
it i i S 5 5 L. r
oy Lo 14 Pl R
| Wt B part L I.d"': I
or
au* au* dpP* ( v )a?u* ( v )(
s — + v = — + | — -+ | —
dx* ay* dx® UL/ ax*= UL
—~ N——

L)E au*

43";-‘*1

8

;
The middle term on the right side is orders o?en'ﬁagnitudzé-sm%ﬁla'er than the terms on the
left. What about the last term on the right? If we neglect this term, we throw out all the
viscous terms and are back to the Euler equation. Clearly this term must remain.
Furthermore, since all the remaining terms are of order unity, the combination of
parameters in parentheses in the last term on the right side must also be of order 1,

@)5) - .
UL\ & L \/Re,
. ol du
x-momentum boundary layer equation: | u P + v P =
X ¥

(x) ~Vx

ix)=V
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