CLP

Lecture 8




Homework: no lecture next week

9.1-Sara
9.2 — Catia
9.4 — Diogo
9.6 — Florian
9.7 —Jason
9.9 — Maria

9.16 — Mariana
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Representing the evolution of temperature in a profile of soil, with thermal
conductivity y, given the initial and spatial boundary conditions (at z =

10, L.

The solution requires numerical methods.




The simplest approach does not work...

Making ¥ = const, A = e (thermal diffusivity), the explicit solution
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(where T,?’+1 is the temperature in position k, instant n+1)

Is numerically unstable: its error grows exponentially in time...




We can rewrite in a way that imposes the mean
value theorem
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with @ = > (if @ = 0 we go back to the explicit method. Rewriting:
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M T+l = gn

This is an iterative algorithm to compute the distribution of temperature in
successive time steps.

If & = 0, the system is explcit, an unstable.

If @ = 1, the system is fully implicit.

1
If @ = > if imposes the mean value theorem, it is semi-implicit, and is

named as the Crank-Nicholson method.




Spatial boundary conditions
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Can only be applied in interior grid points: k € [1, N, — 2]

At the boundaries (Tn+1 Tn+1 ) temperature is computed according with the boundary
conditions: a la Dirichlet:

e =Ty ((n + 1)A¢)
or a la von Neumann:
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Boundary condition at z = 0 7, =T(0,%)
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MTN+L = pn

The implicit solution is stable for all At, but accuracy will be better for small
At.

Crank-Nicholson (@ = 0.5) is more accurate.

Note a problem in the implicit method: information propagates throughout
the domain instantaneously...




T@z=0

Python

import numpy as np

import matplotlib.pyplot as plt 2851
alpha=0.5 #Crank-Nicholson g 280
Nz=500;Lz=5. ;dz=Lz/Nz; #dz=1lcm " s
z=np.arange (dz,Lz,dz) 270

TimeSpan=365*24*3600. #1 ano

dt=3600. ; tempo=np.arange (0. ,TimeSpai ,
ddia=24*3600;dano=365*ddia
lam=0.25/1600/890 #difusividade térmica
Tmed=288 ; AmpD=10 ; AmpA=10

Tz=np.ones ( (nt,nlev) ) *Tmed

o
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=
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lev=np.array([0,2,4,9,19,29,39,59],int) ;nlev=len(lev)

TO=Tmed+AmpD*np.sin (2*np.pi*tempo/ddia+np.pi) \
+AmpA*np.sin (2*np.pi*tempo/dano-np.pi*3./5);
plt.subplot(2,1,1) ;plt.plot(tempo/3600/24,TO0)
plt.ylabel ('T (K)'),plt.xlabel('dia juliano')
plt.subplot(2,1,2) ;plt.plot(tempo[:24]/3600,T0[:24])

plt.ylabel ('T (K)'),plt.xlabel('hora')
plt.suptitle('T@z=0")
plt. figure ()



Calculos preliminares: a matriz M é constante!

Tmin=np.min (TO0) ; Tmax=np.max (TO) ;
zmin=-np.max(z) ; zmax=0;
T=Tmed*np.ones ((Nz)) #perfil inicial de T
beta=alpha*lam*dt/dz**2
zeta=(l-alpha) *lam*dt/dz**2
M=np.zeros ((Nz,Nz) ,float) ;b=np.zeros ((Nz) ,float)
M[0,0]=1+2*beta;M[0,1]=-beta
for k in range(1,Nz-1):
M[k,k-1]=-beta
M[k,k]=1+2*beta
M[k,k+1l]=-beta
M[Nz-1,Nz-2]=-beta
M[Nz-1,Nz-1]=1+beta
Minv=np.linalg.inv (M)




Integration

for it in range(l,nt):
b[0]=T[0]+zeta* (TO[it-1]-2*T[0]+T[1])+beta*TO[it]
for iz in range(1l,Nz-1):
b[iz]=T[iz]+zeta* (T[iz-1]-2*T[iz]+T[iz+1])
b[Nz-1]=T[Nz-1]+zeta* (T[Nz-2]-T[Nz-1])
T=np.matmul (Minv,kb)
for klev in range(nlev):
Tz[it,klev]=T[lev[klev]]
plt.subplot(nlev+2,1,1)
tempoh=tempo/3600/24;plt.plot (tempoh,T0,color="red')
plt.grid() ;plt.ylabel ('TO0"')
for klev in range(nlev):
ax=plt.subplot(nlev+2,1,klev+2)
plt.plot (tempoh,Tz[: ,klev]); plt.grid()
ax2=ax.twinx () ; ax2.set yticks([])
ax2.set ylabel('z=%3.2f' % (z[lev[klev]]) , rotation=0)
plt.suptitle(r'$\partial T /\partial t = \lambda \nabla“2 T,

\lambda=%4.2e$' % (lam))



Diurnal cycle
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At the surface (z=1cm) the soil
temperature is close the the
air’s.

In depth the cycle has less
amplitude and lags in phase.

Note that the temperature in
depth is still drifting because it
started with an unbalanced
initial state.
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In depth we only see an annual cycle with a phase
lag
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Similarity theory

For a number of boundary layer situations, our knowledge of the
governing physics is insufficient to derive laws based on first
principles. Nevertheless, boundary layer observations frequently
show consistent and repeatable characteristics, suggesting that
we could develop empirical relationships for the variables of
interest.

Similarity theory provides a way to organize and group the
variables to our maximum advantage, and in turn provides
guidelines on how to design experiments to gain the most
information.



The mathematical basis of similarity theory:
dimensional analysis

The equations of Physics must be independent of the system of
units.

In other words, they must be invariant under a change in such
system.

This imposes some restrictions on the equations, and allows us
to get some generic results when we cannot do better.

This invariance reminds us of relativity theory which is also
based in a requirement of invariance of the laws under a change
of the coordinate frame.



Buckingham Pl theorem

Similarity theory is based on the organization of variables into dimensionless
groups. Fortunately, there is a dimensional-analysis procedure called
Buckingham Pi theory that aids us in forming dimensionless groups from selected
variables. It is hoped that the proper choice of groups will allow empirical relationships
between these groups that are "universal" — namely, that work everywhere all the time
for the situation studied.

The four steps in developing a similarity theory are:

(1) select (guess) which variables are relevant to the situation,

(2) organize the variables into dimensionless groups,

(3) perform an experiment, or gather the relevant data from previous
experiments, to determine the values of the dimensionless groups,

(4) fit an empirical curve or regress an equation to the data in order to
describe the relationship between groups.



The result of this four-step process is an empirical equation or a set of curves which
show the same shape — in other words the curves look self similar. Hence, the name
similarity theory. If this empirical result is indeed universal, then we can use it on
days and locations other than those of the experiment itself. Such expectations should be
tested with an independent data set, before the results are disseminated to the rest of the
scientific community.

If we selected in step (1) more variables than were necessary, the data will "tell us" of
our mistake by indicating no change of the other dimensionless groups with respect to the
group that is irrelevant. If we selected too few variables, or excluded an important
variable, the data will also indicate our error by showing a large scatter or no repeatable
patterns between the dimensionless groups.



Similarity theory does not tell us the form of the equation or the relationship between
the dimensionless groups. Instead, we must use trial and error, physical insight, or
automated techniques to select the form that qualitatively "looks the best". For example,
we might express one group as a power law function of another group, as a logarithmic
relationship, or as a constant that is not a function of other groups. The chosen equation

usually contains unknown coefficients, which can then be solved by regression against the
observed data.

Similarity relationships are usually designed to apply to equilibrium (steady-state)
situations. They are frequently used to yield equilibrium profiles of mean variables and
turbulence statistics as a function of height or position. Rarely is time included as one of
the relevant variables. Some variables, such as depth of the boundary layer, are so
strongly dependent on time that no successful similarity expressions have been found to
diagnose them. Instead, boundary layer depth must be calculated or measured using other

techniques. This depth is used as input into dimensionless groups to diagnose other
variables that do reach a quasi-steady state.



Problem. Find a similarity relationship for the buoyancy flux, w'0 ', as a function

of height in the convective mixed layer.

Solution. First (step 1), guess the relevant variables. Based on the problem

statement, we already know that two of the variables of interest are w'6 ' and z. The

depth of the mixed layer, z;, and the strength of the heat flux near the surface, w'9 ',

might also influence the flux within the interior of the mixed layer. Thus, we will use
four variables for this analysis.

Step (2), group these four variables into dimensionless groups. By inspection, we

can easily produce two dimensionless groups: [z/z]] and [w'0 '/w'0 ']. We have thus

reduced our degrees of freedom from four to two.
In performing our experiment for step (3), dimensional analysis tells us that we need

not measure all combinations of z, z; ,w'Bv' , and w'ev's. Instead, we need only

measure various combinations of the two groups: [z/z;] and [w'0 '/ w'0 ']. This

greatly simplifies the design and conduct of our experiment.
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Fig. 9.1 Raw heat flux data from a simulation of Wangara Day 33 (a) replotted
in a dimensionless framework (b). The empirical straight line estimate
from similarity theory is also shown in (b).



Buckingham Pi Dimensional Analysis Methods

The example is that of fluid flow through a pipe, and involves the
guestion: "How does the shear stress, T, vary?"



Buckingham Pi Dimensional Analysis Methods

Step 1. Hypothesize which variables could be important to the flow.
Example: stress, density, viscosity, velocity, pipe diameter, pipe roughness

Step 2. Find the dimensions of each of the variables in terms of the
fundamental dimensions. The fundamental dimensions are:

= length
M = mass
T = time
K = temperature
A = electric current

I = luminous intensity

The dimensions of any variable can be broken into these fundamental

dimensions.
Example: variable name fundamen imensions

P fluid density ML?3
U dynamic viscosity ML1T!
U velocity L T!
1 shear stress ML T2
D pipe diameter L
Z, pipe roughness length L

The first two variables describe fluid characteristics, the next two describe flow

characteristics, and the last two describe pipe characteristics.



Step 3: Count the number of fundamental dimensions in our problem.
Example: There are 3 dimensions: L, M, T.

Step 4: Pick a subset of your original variables to become 'key
variables', subject to the following restrictions:
(a) The number of key variables must equal the number of fundamental
dimensions.
(b) All fundamental dimensions must be represented in the key
variables.
(¢c) No dimensionless group must be possible from any combination of
these key variables.

Example: Pick 3 variables: p, D, and U to be the key variables.

Note that there are many other equally valid choices for key variables, such as:
P, 2o, U; or 1, U, D, etc. Itdoes not matter which three are picked, assuming that
all of the above restrictions are satisfied. An invalid set would be U, D, z_, because
D/z, is dimensionless, and also because the fundamental dimension M is not

represented. Another invalid set is T, p, U, because t/(pU2) is dimensionless.



Step 5. Form dimensionless equations of the remaining variables in terms
of the key variables.

Example: T (p)* O)® (U)°
k= @* OF Of
zo = (p)¢ (D) (U)
where a-i are unknown powers.

Step 6. Solve for the powers a, b, c, . . . to yield dimensionally
consistent equations.
Example: Solve each equation independently. For the first equation:

T = (p)* D) (U)F

or MLIT2 = ML32@LP LT
or MLIT2 = M2 L73abe T<
The dimensions on the left hand side must equal the dimensions on the right. Thus:
M: 1l =a
L: -1 =-3a+b+c
T: -2 =-C
These three equations can be solved for the three unknowns, yielding:
a=1 b=0 c=2.

Thus, a dimensionally consistent equationis: T = (p)! (D) (U)?, or t© = p UZ.

Similarly, we find thatd=1, e=1, f=1:yielding p = pUD.
Also: g=0, h=1, i=0: yielding z,=D.



Step 7. For each equation, divide the left hand side by the right hand

side to give dimensionless (Pi) groups. The number of Pi groups will

always equal the number of variables minus the number of dimensions.
Example:

1[1=—$—2- 1t2=—u-— T, =
pU pUD

We started with 6 variables in our example, and reduced our degrees of freedom down
to 3 dimensionless groups.

Step 8. (Optional) If desired, alternative Pi groups can be formed from

the ones derived in the previous step, as long as: the total number of Pi

groups does not change, all variables are represented, and no one Pi

group can be formed from any combination of the remaining groups.
Example: One alternative set of Pi groups might be: m; , 4 (=ny/73), s (=1/73).
This new set is:

‘j'[:—-—-I-—— ;;=__lé__ 1t5=—-]2-
pU pUz, %o

In fact, regardless of which set of primary variables were chosen, we can always
arrive at the same set of Pi groups via this Pi-group manipulation process.



This is the end of the formal cookbook procedure for Buckingham Pi Theory. Of
course, it is really only the second step of the overall similarity procedure. The next step
would be to perform the necessary experiments to discover the relationships between the
Pi groups. An example of laboratory pipe flow data is shown in Fig 9.2.
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Fig. 9.2 Pipe flow drag verses Reynolds number and relative roughness.




Discussion: Several very important facts can be learned from this data. First, the
stress decreases as the Reynolds number increases, until a critical Reynolds number of
about 2100 is reached. This critical Reynolds number marks the transition from laminar to
turbulent flow. At lower Reynolds number (laminar flow), the stress is NOT dependent
on the relative roughness. As suggested in Section 9.1, the data is telling us that pipe
roughness is not relevant for laminar flow.

Second, at Reynolds numbers just larger than critical, the stress increases again.
Third, as Reynold's number increases further, the stress again decreases with Reynolds

number, independent of the pipe roughness. Fourth, this roughness independence fails
when some roughness Reynolds number (given by &) is reached. Fifth, at even
larger Reynolds number, the stress is a constant depending only on relative roughness and
not on the Reynolds number itself.

This last observation is of important consequence for the atmosphere. As previously

discussed, the Reynolds number for the atmosphere is very large, on the order of 10 to

108, even within the boundary layer. Fig 9.2 shows us that large Reynolds number
flow is independent of the Reynolds number! Hence, we can usually ignore molecular
viscosity and the associated Reynolds number in descriptions of the boundary layer.
However, for the very smallest size eddies and in the very thin microlayer near the
surface, molecular viscosity continues to be important for TKE dissipation and transport
across the surface, respectively.



Homework

7.3 — Mariana
/7.5 —Sara

7.6 — Catia
/.7 — Diogo
7.12 —Florian
/.15 —Jason

7.18 — Maria



