
Boundary layer equations

• We consider steady, two-dimensional flow in the xy-plane in Cartesian
coordinates. The methodology can be extended to axisymmetric boundary layers
or to three-dimensional boundary layers in any coordinate system. 

• We neglect gravity since we are not dealing with free surfaces or with buoyancy-
driven flows (free convection flows), where gravitational effects dominate. 

• We consider laminar boundary layers; turbulent boundary layer equations are 
beyond the scope of this course. 

• For a boundary layer along a solid wall, we adopt a coordinate system in which x 
is everywhere parallel to the wall and y is everywhere normal to the wall.

• When we solve the boundary layer equations, we do so at one x-location at a 
time, using this coordinate system locally, and it is locally orthogonal.
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The nondimensionalized Navier–Stokes equation is

• The Euler number is of order 1, since pressure differences outside the boundary layer are 

determined by the Bernoulli equation and ∆P ~𝜌𝑉2.
• V is a characteristic velocity of the outer flow, typically the free-stream velocity for bodies 

immersed in a uniform flow. 

• The characteristic length is L, some characteristic size of the body. For boundary layers, x 

is of order o L, and Reynolds number is Rex, usuallly very high.

Redo the nondimensionalization of the equations based on appropriate

scales within the boundary layer. 

• Since x ~ L, we use L as the scale for distances in the streamwise

direction and for derivatives with respect to x. However, this scale is

too large for derivatives with respect to y. We use 𝛿 for distances in 

the direction normal to the streamwise direction and for derivatives

with respect to y. 

• Similarly, we use U as the characteristic velocity, where U is the

magnitude of the velocity component parallel to the wall at a location

just above the boundary layer. U is in general a function of x. 



• Thus, within the boundary layer at some value of x, the orders of magnitude are

• The order of magnitude of velocity component v is obtained from the continuity
equation

• Since the two terms have to balance each other, they must be of the same order of

magnitude. Thus we obtain the order of magnitude of velocity component v,

• Since δ/L << 1 in a boundary layer, we conclude that v << u, and the adimensional 
variables are
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We now consider the x- and y-components of the Navier–Stokes equation. We substitute

these nondimensional variables into the y-momentum equation, giving

After some algebra

The middle term on the r.h.s. is clearly smaller than any other term since ReL = UL/𝜐 ≫1. 

For the same reason, the last term on the right is much smaller than the first term on the

right. Neglecting these two terms leaves the two terms on the left and the first term on the

right. However, since L≫ 𝛿 , the pressure gradient is orders of magnitude greater than the

advective terms on the left of the equation. Thus, the only term left is the pressure term. 

Since no other term in the equation can balance that term, we have no choice but to set it

to zero. Thus, the nondimensional y-momentum equation is

The pressure across a boundary layer ( y-direction) is

nearly constant.
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Since P is not a function of y, we replace 𝜕P/𝜕x by dP/dx, where P is the pressure

calculated from the outer flow approximation (using either continuity plus Euler, or the

potential flow equations plus Bernoulli). The x-component of the Navier–Stokes 

equation becomes

or

The middle term on the right side is orders of magnitude smaller than the terms on the

left. What about the last term on the right? If we neglect this term, we throw out all the

viscous terms and are back to the Euler equation. Clearly this term must remain. 

Furthermore, since all the remaining terms are of order unity, the combination of

parameters in parentheses in the last term on the right side must also be of order 1,
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Finally, since we know from the y-momentum equation analysis that the pressure

across the boundary layer is the same as that outside the boundary layer, we apply

the Bernoulli equation to the outer flow region. Differentiating with respect to x we get

Substitution yields



• For a typical boundary layer 
problem along a wall, we 
specify the no-slip condition 
at the wall (u = v = 0 at y = 0), 
the outer flow condition at 
the edge of the boundary 
layer and beyond [u = U(x) as 
y → ∞], and a starting profile 
at some upstream location [u 
= ustarting(y) at x = xstarting, 
where xstarting may or may not 
be zero]. With these 
boundary conditions, we 
simply march downstream in 
the x-direction, solving the 
boundary layer equations as 
we go.
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Example: Flat plate

36

No convenient analytical solution is available. 

However, a series solution was obtained in 1908 

by Blasius.



Blasius similarity solution
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Blasius
solution

Non-linear 
third order
ODE. 

Solved
numerically or
by a series 
expansion.
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• Discussion: The Blasius boundary 
layer solution is valid only for flow 
over a flat plate perfectly aligned 
with the flow. 

• However, it is often used as a 
quick approximation for the 
boundary layer developing along 
solid walls that are not necessarily 
flat nor exactly parallel to the flow, 
as in a car hood.
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