Boundary layer equations

* We consider steady, two-dimensional flow in the xy-plane in Cartesian
coordinates. The methodology can be extended to axisymmetric boundary layers
or to three-dimensional boundary layers in any coordinate system.

* We neglect gravity since we are not dealing with free surfaces or with buoyancy-
driven flows (free convection flows), where gravitational effects dominate.

* We consider laminar boundary layers; turbulent boundary layer equations are
beyond the scope of this course.

* For a boundary layer along a solid wall, we adopt a coordinate system in which x
is everywhere parallel to the wall and y is everywhere normal to the wall.

* When we solve the boundary layer equations, we do so at one x-location at a
time, using this coordinate system locally, and it is locally orthogonal.

Boundary layer
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The nondimensionalized Navier—Stokes equation is
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« The Euler number is of order 1, since pressure differences outside the boundary layer are
determined by the Bernoulli equation and AP ~pV?2,

* Vs a characteristic velocity of the outer flow, typically the free-stream velocity for bodies
immersed in a uniform flow.

« The characteristic length is L, some characteristic size of the body. For boundary layers, x
is of order o L, and Reynolds number is Re,, usuallly very high.

Redo the nondimensionalization of the equations based on appropriate
scales within the boundary layer.

Boundary layer « Since x ~ L, we use L as the scale for distances in the streamwise

| g U=l direction and for derivatives with respect to x. However, this scale is
too large for derivatives with respect to y. We use § for distances in
the direction normal to the streamwise direction and for derivatives

with respect to y.

« Similarly, we use U as the characteristic velocity, where U is the
magnitude of the velocity component parallel to the wall at a location
just above the boundary layer. U is in general a function of x.



* Thus, within the boundary layer at some value of x, the orders of magnitude are
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» The order of magnitude of velocity component v is obtained from the continuity
equation
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« Since the two terms have to balance each other, they must be of the same order of

magnitude. Thus we obtain the order of magnitude of velocity component v,
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» Since d/L << 1 in a boundary layer, we conclude that v << u, and the adimensional
variables are
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We now consider the x- and y-components of the Navier—Stokes equation. We substitute
these nondimensional variables into the y-momentum equation, giving
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The middle term on the r.h.s. is clearly smaller than any gfh'er term since Re, = UL/v > 1.
For the same reason, the last term on the right is much smaller than the first term on the
right. Neglecting these two terms leaves the two terms on the left and the first term on the
right. However, since L> § , the pressure gradient is orders of magnitude greater than the
advective terms on the left of the equation. Thus, the only term left is the pressure term.
Since no other term in the equation can balance that term, we have no choice but to set it
to zero. Thus, the nondimensional y-momentum equation is
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The pressure across a boundary layer ( y-direction) is
nearly constant.
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Since P is not a function of y, we replace dP/dx by dP/dx, where P is the pressure
calculated from the outer flow approximation (using either continuity plus Euler, or the

potential flow equations plus Bernoulli). The x-component of the Navier—Stokes
equation becomes
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The middle term on the right side is orders o? magnltudzé smaller than the terms on the

left. What about the last term on the right? If we neglect this term, we throw out all the
viscous terms and are back to the Euler equation. Clearly this term must remain.
Furthermore, since all the remaining terms are of order unity, the combination of
parameters in parentheses in the last term on the right side must also be of order 1,
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Finally, since we know from the y-momentum equation analysis that the pressure
across the boundary layer is the same as that outside the boundary layer, we apply
the Bernoulli equation to the outer flow region. Differentiating with respect to x we get
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Substitution yields
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No boundary conditions on
downstream edge of flow domain
du av
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Boundary layer equations: :
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e For a typical boundary layer
problem along a wall, we
specify the no-slip condition
at the wall (u=v=0aty=0),
the outer flow condition at
the edge of the boundary
layer and beyond [u = U(x) as
y = ], and a starting profile
at some upstream location [u
= l"starting(y) atx = Xstarting'
where X, i, May or may not
be zero]. With these
boundary conditions, we
simply march downstream in
the x-direction, solving the
boundary layer equations as
we go.

Step 1: Calculate Uix) (outer flow).

'

Step 2: Assume a thin boundary layer.

'

Step 3: Solve boundary layer equations.

|

Step 4: Calculate gquantities of interest.

'

Step 5: Venfy that boundary layer is thin.
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Example: Flat plate
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Ux) = V. " | Boundary
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No convenient analytical solution is available. - N— L
However, a series solution was obtained in 1908 X

by Blasius.
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Blasius similarity solution

R e p—— < ) ) y Magnifying Uix)=V
Blasius introduced a similarity variable n that combines independent Y 5 17 glassor
variables x and y into one nondimensional independent variable, — | poomtool

—
. |U
n=yx x

and he solved for a nondimensionalized form of the x-component of
velocity,

(a)

; Uixy=V
Ly
f= T function of n — —:LH 8(x)
—_—
— -
) L *
I MRe 51
U & 401 e
n =491 =,/—
FX

=

[ 5]

3
g
:
w1\
N
5

| : : . pU?
/d ] : Shear stress in physical variables: T, = 0.332
: ,ﬂ'f Slope at i V' Re,
the wall :

X

a0 02 04 06 08 1
f=ull 37



Blasius
solution

Non-linear
third order
ODE.

Solved
numerically or
by a series
expansion.

Similarity
Variable

Streamfunction

Blasius
Equation

Boundary
Conditions

n=-=—=L
0 \/ vx/Up

174
5UJ \/ vx Up

f(n)=—r

[l =

wall: 1= 0 f:f‘r:

freestream: 1]—00 f‘f: |

U, = Constant
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Boundary layer

* Discussion: The Blasius boundary
layer solution is valid only for flow
over a flat plate perfectly aligned
with the flow.

* However, it is often used as a
quick approximation for the
boundary layer developing along
solid walls that are not necessarily
flat nor exactly parallel to the flow,
as in a car hood.




Summary of expressions for laminar and turbulent boundary layers on a smooth

flat plate aligned parallel to a uniform stream*

(a) (b)
Property Laminar Turbulent! Turbulent®
) ) 491 ) 0.16 ) 0.38
Boundary layer thickness L Ve . = Re)" . = Re )™
Displacement thickness or _ 172 e alal Caymp 0
° x T VRe, * R X Re)”
. 6 _ 0.664 6 _ 0016 6 _ 0.037
Momentum thickness - = Ve x - Re)” T Re)”
NP .. 0.664 _0.027 ~0.059
Local skin friction coefficient  C;, = Ve, C.= Re )" C.= Re )"

* Laminar values are exact and are listed to three significant digits, but turbulent values are listed to only
two significant digits due to the large uncertainty affiliated with all turbulent flow fields.

T Obtained from one-seventh-power law.

T Obtained from one-seventh-power law combined with empirical data for turbulent flow through smooth

pipes.

Local friction coefficient, laminar flat plate:
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