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Figure 8.1 Positions of stable (P) and unstable (Q) equilibrium for a par
whose potential energy @ varies with x in the manner shown.
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Asevery physicist knows, a dynamical system which is in equilbrium may be stable
or unstable. The simplest casc of the distinction is that of a particle of mass m
which can move only in one dimcnsion, in circumstances where the particle’s
potential energy @ varies with its position x in the manner suggcsted by fig. 8.1.
The particle expericnces no force when it is situated at the minimum, P, or at the
maximum, Q. and in principle it can remain at rest indefinitely in either of thesc
positions. However, if it is slightly displaced from P it accclerates towards P,
whereas if it 1s slightly displaced from Q it accelerates away from Q; in the first
position the particlc 1s stable and in the second it is unstablc. Near any minimum
such as P the restoring force 0@/ix can normally be expanded as a Taylor series in
powers of displacement £, = x ~ x,. Since it is zero at P itsclf, an adequate
approximation tor small values of &, is
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in which case the equation of motion of the particle is linear in &p,
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The oscillations which it describes are then simple harmonic, with angular
frequency wp such that

An equation of motion similar to (8.1) applies in the neighbourhood of Q, but
since (&’ @/9x?) g is negative the roots for w are necessarily imaginary, w = £isg
with s real. Hence the displacement §¢, = x — x of a particle which starts at rest
at 1 = 0 from a position such that &5 = &, 1s given at later times by

Eo %gﬂ (%! + e50),

as long as it remains small. If & is infinitesimal, then by the time the displacement
becomes apparent cxp(sof) must be very much greater than unity, in which case
exp(—sof) must be negligible. When a particle leaves a position of unstable
equilibrium, therefore, its displacement normally grows in an exponential
fashion.




Suppose now that (3@/dx); is necessarily always zero— perhaps because of some
symmetry requircment — while (a’®/ax”)p can be reduced in magnitude and
ultimately reversed in sign by altering the external constraints which determine @.
In that case P is always an equilibrium position, but the equilibrium 1s stable in one
range of the constraints and unstable in an adjacent range. Where the changeover
occurs one has |
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and this is the condition for what is called margina! stability. When it is satisfied.
the force experienced by a particle near P is normally determined by (6 ®/ox*),
or, if (0°@/ax’)p is zero for symmetry reasons, by (a*@/ax),; it is then pro-
portional to & or &) rather than to &p. -
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(b) (c)

Fig. 9.3. (a) A stable state. (b) An unstable state. (c¢) A state which is
stable to infinitesimal disturbances but unstable to disturbances which
exceed some small threshold amplitude.
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Similar results apply, of course, to any mechanical system for which energy is
conserved. It the system is a complicated one. a full description of its state requires
specification of a great many different coordinates of position. There always exists
a set of normal coordinates ,,, however, such that for small £, the potential energy
@ and kinetic cnergy T of the system may be expressed in the form
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where @, is the potential energy of the equilibrium state for which all {,, are zero,
and the equilibrium is stable if and only if m,w? > 0 for all values of n. In
continuous systcms the normal coordinates often describe periodic modes of
distortion of the system as a whole, rather than displacements of isolated parts of
the system.

Figure 8.2 A strut under compression. The broken curves suggest two 26
normal modes of flexural distortion, correspondington = L and n = 2.



Dissipative systems F o en . T
T

In so far as the above remarks apply to conservative systems they may seem to
have little relevance to viscous fluids, which are inhcrently dissipative. If,
however, a particle moving in the potential of fig. 8.1 is subject to a dissipative
retarding force proportional to its velocity, the principal effect of thisis merely to
damp — and perhaps overdamp — oscillations in &, and to slow down the
exponential rate of growth of §5. That does not invalidate the conclusion that P
and Q represent states of stable and unstable equilibrium respectively. Indeed,
the fluctuations which always accompany dissipation in thermal equilibrium now
make it impossible in principle, as well as in practice, for a particle to remain
indefinitely at Q. Nor does the existence of dissipation invalidate the conclusion
that when, as a result of a continuous change in the form of @{x}, the equilibrium
at P changes from being stable to being unstable, this equilibrium passes througha

state of marginal stability.
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The general procedure for investigating the stability or otherwise of patterns of
fluid flow involves perturbing the pattern in various ways and calculating whether
the amplitude —say &, {t} — of each perturbation mode decrcases or increases with
time; the amplitude may well deseribe a velocity rather than a displacement, but
that is a rather trivial distinction in this context. The modes must be consistent
with the boundary conditions to which the fluid i1s subject, and they should form,
like the periodic normal modes of the Euler strut, a complete set in terms of which
any possible perturbation may be expanded. The exact equations of motion of the
fluid are always non-linear in §,,, and one¢ cannot achieve a detailed understanding
of what happens once an instability has developed without taking non-linear terms
into account. As afirst step, however, it may suffice to cstablish the condition fora
state of marginal stability to exist; having done that, one may confidently assert
that true stability lies on one side of this condition and instability on the other.

Since marginal stability requires

% _ ) (8.2)
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to first order only in &,,. the condition for its existence may be established using
approximate equations of motion from which all terms which are non-linear in g,
have been deleted. If, as is often the case, there arc scveral competing modes of
instability, the first to develop once the condition for marginal stability has been
exceeded is normally the one for which s, (=, 'aZ,/01) is largest. Linearised
equations of motion suffice to settle this question as well.
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Oscillatory instabilities

A characteristic of dissipative systems, which cannot readily be illustrated by
reference to simple mechanical models of point masses moving in varable
potentials but which is familiar in the context of electrical circuits, is that they may
spontaneously oscillate. To do so they must incorporate a source of power, of
course, and some feedback mechanism which selectively amplifies an oscillatory
component in the thermal fluctuations of the system. At the onsct of an oscillatory
instability a system is said to become overstable (a potentially misleading term for
which Eddington was responsible). If the amplitude £, {7} of the overstable mode
is taken to vary with time like exp{—i(e,, 4+ 1s,)¢} for small {,,, where w,, (# 0) and
s, are both real, overstability requires s, to be positive whereas stability requires it
to be negative. The condition for marginal overstability is 5, = 0, 1.c.

= —iw,¢
.ﬁf M=

to first order in g,
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