Rayleigh-Taylor instability

The Rayleigh-Taylor instability arises when a vessel which contains two fluids
separated by a horizontal interface — one at least of the fluids must of course be a
liquid — is suddenly inverted so that the heavier fluid lies above the lighter one.
The gravitational potential energy of the system, which was at 1ts minimum value
before inversion, ts now at its maximum, and although the system is still in
equilibrium while the interface remains horizontal the equilibrium is clearly liable
to be unstable. Whether or not it is actually unstable with respect to any particular
perturbation depends upon whether the gravitational energy which this releases is
greater or less than the increase in surface free energy. The system is marginally
stable with respect to the perturbation when the two are cqual.

Further reading: Chandrasekhar, S.
SR i (2013). Hydrodynamic and hydromagnetic
=0 - =1L stability. Courier Corporation.

Figure 8.3 A layer of one fluid with a denser fluid above it. in a container of
width L, is stabilised by surface tension against the perturbation suggested

here provided that (8.6) is satisfied.
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All possible small perturbations of the surface may be expressed in terms of

their Fourier components, a typical Fourier component involving a vertical

displacement of the interface >
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where ris a vector which lics in the z = () planc, i.e. the plane of the undisturbed
interface. Per unit area of the interface, the reduction in gravitational potential
energy associated with a single wave of this form, averaged over any integral

number of wavelengths, is [(5.29)]
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where p’ and p arc the densities of the heavier and lighter fluids respectively. The

increase of the surface free energy, similarly averaged, is
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to second order in {, where o is the interfacial surface tension. Marginal stability

is therefore only possible for one wavevector k., such that

(0" — p)g = ok;.
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A dispersion relation relates the wavenumber of a wave to its frequency
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Frequency dispersion of surface gravity waves on deep water. The m red square moves with the phase velocity, and
the e green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group
velocity. The m red square traverses the figure in the time it takes the e green dot to traverse half.

Deep water waves |=adit]
Further information: Dispersion (water waves) and Airy wave theory

The dispersion relation for deep water waves is often written as

w=\/g_k?

where g is the acceleration due to gravity. Deep water, in this respect,
is commonly denoted as the case where the water depth is larger
than half the wavelength.!! In this case the phase velocity is

Pk k'’

and the group velocity is

w1
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(Source: https://en.wikipedia.org/wiki/Dispersion_relation)

Waves on a string [ edit]
Further information. Vibrating string

For an ideal string, the dispersion relation can be written as

T M:};:Z’—A’{/L\/:(ﬁ/
I = A

where T is the tension force in the string, and u is the string's mass
per unit length. As for the case of electromagnetic waves in vacuum

Electromagnetic waves in a vacuum | edit]
For electromagnetic waves in vacuum, the angular frequency is proportional to the wavenumber:

w = ck.
This is a /inear dispersion relation. In this case, the phase velocity and the group velocity are the same:

w_dw_.
ka0

they are given by ¢, the speed of light in vacuum, a frequency-independent constant
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In order to find the rate at which modes for which k << k. grow in amplitude, one
needs to know how the velocities of each fluid depend upon ag,/dr. With that
information at one’s disposal, one may follow the routine procedure of evaluating
the mean kinetic energy per unit area and hence the total energy, a sum of
gravitational and surface terms proportional to & and kinetic terms proportional
to (0, /0)7; by equating the time derivative of the total energy to zero one may
then obtain, after cancellation of a factor ag;/ar, a linear equation of motion
relating &, to 47, /" which provides the required answer. We, however, can
make usc of a result already available as (5.40), which tells us, in the notation of

§8.1, that the dispersion relation for waves on the interface 1s (
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as long as k is greater than the critical wavevector which (8.4) describes, which
implies that when k < k. we have S, sl A 1o
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The value of k, say k,,,.«. which maximises s, and hence the rate of growth s clearly
such that
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Koo = — (8.5)

We may infer from the above results that if it were possible to invert almost
instantaneously a large vessel containing two fluids, so large that the boundary
conditions imposed virtually no limitations on the allowed values of &, the
contents would be inherently unstable. The interface would inevitably develop
corrugations whose periodicity would be the wavelength associated with & .., 1.€.
27V 30/(p' ~ p)g, which amounts to about 3 cm when the heavier fluid is water
and the lightcr one is air. In practice, however, rapid inversion 1s possible only
with small vesscls, and the fact that liquid inside an inverted bottle is stabilised by
surface tension if the opening of the bottle is small enough must be familiar to
every reader. For simplicity, suppose the vessel to be a rectangular one, with
vertical sides and a cross-section in the z = 0 plane of which the larger dimension is
L. The smallest non-zero value of k consistent with the boundary conditions [fig.
8.3 and some remarks about the boundary conditions applicable to water waves at
the start of §5.8] is then &/L. In that case the inverted contents are stable provided
that 7/L. = k_, i.c. provided that

L < .JTJ{

— (8.6)
P — p)g
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Rayleigh-Taylor
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Rayleigh-Plateau

A free jet of water, cmerging from a circular orifice, is liable to break up into a
regular succession of drops, and according to Plateau’s analysis of some obser-
vations by Savart the drops are separated by a distance 4 which is about 8-8 times
the radius a of the jet before it disintegrates. If a stationary cylinder of water could
be obtained it would break up in the same way, and indeed the droplets of water
which are to be seen on spiders’ webs after a damp cold night are probably formed
by accretion from layers of dew which are cylindrical when first deposited. The
explanation lies in the fact that, volume for volume, spheres have smaller surface
areas than cylinders,

Suppose an initially uniform cylinder of liquid to be subject to a small varicose
deformation, which preserves rotational symmetry about the x axis (the axis of the
cylinder) but alters its radius in a periodic fashion from a to

b = (b) + {4 cos kx (§ << a).
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The volume of the cylinder per unit length, averaged over an integral number of

wavelengths, is b

4 i o1
V= (@b%) = x(b)* + atr.

and since this must equal the initial volume per unit length, @2. we have

t

by = Va* =45 =~ a — £
4a

Thus the surface arca of the cylinder per unit length, similarly averaged, is

A= <2fo I+ (ﬁ)>
dx
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In this problem there is no gravitational term to consider, and it is the surface free
energy per unit length, oA, which plays the role of the potential energy @ of §8.1.
The condition for marginal stability is a’A/aC; = 0, equivalent to

The cylinder is inherently unstable, as Plateau was the first to note, to any periodic
deformation for which & is less than k.., i.e. for which the wavelength 4 is greater
than 2xa.

To find the rate of growth of a mode for which & < & _one may follow the routine
procedure outlined in §8.2. Provided that the viscosity of the liquid may be
neglected, i.e. provided that potential theory may be employed, it is not difficult
to calculate the fluid velocity u{x, r} associated with rate of change of {;. It is
described by a flow potential ¢p which 1s a solution of Laplace’s equation
proportional to cos(kx)f{r}(aE,/ar); the function f{r} involves Bessel functions.
Hence the constant of proportionality relating the fluid’s mean kinetic energy per
unit length to (a&, /)" may be found, and the equation of motion relating 9°&, /ar
to ¢, follows immediately. According to Rayleigh, s,, which is zero where k = k_,
reaches a maximum where & = 0697k, or where 4 = 9-02a, in reasonable
agreement with Savart’s observations. The 2% discrepancy, in the wrong direc-
tion to be due to viscosity, is attributable to experimental error,
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Rayleigh-Plateau




