
Probes of Geometry 

The Astrophysical approach 



Which FRW model better corresponds to the reality? 

To answer this question, we need to determine the values of its parameters   
H0,  Ωi, wi 

Then we will be able to: 
  
 determine the global geometry, dynamics, future behaviour (expansion, 
big bang, big crunch) 

and also to: 

 determine the evolution of the universe - thermal history, transition 
epochs, structure formation 
  
 find out what energy forms exist in the universe (dark matter, dark energy, 
neutrinos) 



Direct measurements 

The best way to find the cosmological parameters is to estimate them from 
measurements of “cosmological functions”, i.e., quantities like distances or power 
spectra that depend on the cosmological model.  

Before presenting that approach in detail (based on model-dependent indirect 
measurements of cosmological properties), we will discuss an alternative approach, 
which is based on making direct measurements of some astrophysical properties that 
may provide good approximations to the values of the cosmological parameters.  

 Examples of these direct measurements are:

Determination of baryonic matter density  

 Big Bang Nucleosynthesis 
 Cosmic budget ! measuring all the baryonic mass in the Universe should 
provide a good approximation to  Ωb 

Determination of total mass and Mass-to-Light ratio (M/L) 

 Galaxy mass (from rotation curves) 
 Cluster mass (from various methods: kinematic, X-ray gas, strong 
gravitational lensing, weak gravitational lensing)



Determination of radiation density 

 CMB Temperature ! directly gives the energy distribution of primordial 
CMB photons  

Determination of the age of the universe 

 Nuclear chrono-cosmology (decay of radioactive elements) 
 Age of oldest stars (globular clusters) ! lower-bound to the age of the 
Universe 

 Cooling of White Dwarfs 

Determination of the Hubble constant (independently of the values of the density 
parameters) 

 Redshift drift !  The redshift is a ratio between the scale factor at two 
different times. In a second observation of the same object, this ratio will be changed 
(because of acceleration) ! the redshift of a comoving object changes with time 
!  Measuring the redshift at different times gives information on H(z).  

 Calibration of the distance ladder 
 Gravitational lensing time-delays in double images of variable sources 



Let us now discuss the direct measurements of the density parameters. 

We will not discuss here the direct measurements of the Hubble parameter 
(which have recently become an active field again due to the so-called Hubble 
tension).



Radiation

            Ωr = Ωγ + Ων (relativistic)  

The main contribution to the cosmological radiation are the CMB photons. 

The energy density of the CMB photons is found by summing up the energy of all 
photons. The CMB has a blackbody spectrum and so the energy distribution of the 
photons is well-known and is determined by the temperature. 

The energy density is then the integral of hν with a window function (the Bose-
Einstein distribution): 

using T_CMB = 2.725 K

(here h is the Planck constant)



Dividing by the critical density, ρc = 3 H0
2 / 8πG = 1.88 x 10-29 h2 g cm-3 ,    

the dimensionless radiation density is   Ωγ = 2.4 x 10-5 h-2 

The massless neutrinos also give an important contribution to the radiation of 
the Universe.  The energy density of massless neutrinos is computed in the 
same way, but using the Fermi-Dirac distribution instead and a different number 
of degrees-of-freedom: 

From the thermal history of the Universe, we know that  
neutrinos decouple before the CMB, when the temperature 
was higher, such that: 



and in terms of the dimensionless density parameter:  Ωr = Ωγ + Ων ~ 0.00004 h-2 
(a negligible contribution to the density of the Universe today). 

Note however, that neutrinos are massive, and the massless neutrinos scenario is 
only a good approximation when the temperature of the Universe is T >> Mν . 
 Later in the Universe, neutrinos become non-relativistic fermionic particles and the 
density of massive neutrinos is computed as:

So, their density is ρν = 0.68 ργ 

using again:

The result is:



The density depends on the neutrino mass (here Mν is the sum of the masses of 
the 3 neutrinos) and is no longer fully determined by the temperature.  

For example, a neutrino mass of 0.1 eV would give a small but non-negligible 
contribution to the total energy density of  Ω ~ 0.001 

Neutrinos then contribute both to the radiation density and to the matter density. 

An additional cosmological parameter N_eff (effective number of relativistic 
species) was introduced to model what fraction of neutrino density is considered 
relativistic and contributes to the radiation density, and what fraction is non-
relativistic and contributes to the matter density affecting structure formation on 
small scales.



        Ωb 

Its total density is determined by nucleosynthesis and also by cosmological 
probes (such as CMB anisotropies) 

Baryonic matter



1. “Direct” measurement of Ω_b: nucleosynthesis 
         (nuclear fusion in early Big Bang) 

The formation of elements during 
the first 2-5 minutes of the Universe

The lack of stable elements with 
masses 5 and 8 make it more 
difficult for nucleosynthesis to 
progress beyond Lithium and 
even Helium  



The evolution of the abundances with time (shown as M_element/M_H) 

Formation of these elements is finished before 1000 s of cosmic time.



The interesting point is that the reaction rate for element formation depends 
on the total amount of baryons present in the Universe (before 
nucleosynthesis they are mainly in the form of protons and neutrons)

higher Ω_b ! more He4 forms 
(the most stable species) 

higher Ω_b ! less D ou He3 form 
(because He4 is formed instead) 

This provides a powerful way to 
estimate Ω_b : we just need to be 
able to measure the total amount of 
one of these species.



But this is difficult because the abundances of the species do not remain 
constant.  

After star formation, stars destroy some elements and create others:  

Deuterium ! destroyed in stars from fusion  

He 4 ! produced from fusion 

Li 7 ! destroyed in stars from fusion and  
 also created in the interstellar medium from impact of cosmic-rays (spallation)  
  
He 3 ! produced by burning deuterium and 
      also  destroyed to produce He 4  

 



Measuring the abundances  

Deuterium 

Observe gas clouds in the early universe (where stars have not yet formed), 
looking for absorption features of rare elements (deuterium) on the spectrum 
of background bright sources (quasars)

 to control, 
 check if  
    there  
    are  
heavier 
 elements

Result: [D/H] ~3 x 10^-5



Helium 4 

Observe recombination lines from HII regions in low metallicity galaxies 
(oldest galaxies) 

Measure abundance ratios of many elements He, O, N, H (metallicity) 

Mass fraction 
of baryons 
in He 4

Metallicity



Lithium 7 

Observe absorption in the atmospheres of cool, metal poor population II halo 
stars  

Need to model the atmosphere of stars  

Metallicity



Results

Ω_b ~ 0.04

(the most useful result comes 
from Deuterium measurements)



We found out that Ω_b ~ 0.04. 

It would be interesting to “count all the baryons” and try to find out where is the 
baryonic matter ! the cosmic baryon budget 

2. Cosmic baryon budget 



Baryonic mass density in stars  
(in galaxies) 

Estimate mass from light 

L ~ M^3  
M/L ~ M^-2  

low mass stars → high M/L ratios  
high mass stars → low M/L ratios  

Integrating over the Initial Mass Function, 
we can compute an average M/L ratio. 



complication: the M/L ratio of a population of stars (eg. stars from the same 
galaxy) depends also on the age  

but age can be estimated from color:  

red galaxies ! old 
blue galaxies ! young 

Need to sum all luminosities  
(which are proxies for mass)  
and using the corrected mass functions,  
over the various populations (i.e., over  
many galaxies), using the  
luminosity function 

Results:  



Baryonic mass density in neutral atomic hydrogen 
HI (in galaxies) 

Hyperfine structure 21 cm

Spectra of a spiral galaxy at 21cm

Results: 



Baryonic mass density in molecular hydrogen H2  
(in galaxies) 

Difficult to search for H2 since it has no observable transitions  

Assume CO emission is a good tracer of H2 (CO emission caused by H2 
molecules colliding with CO)  

Examine ratio of atomic hydrogen to molecular hydrogen in galaxies and then use 
this to convert from atomic hydrogen mass density  

Results:  

So the total from galaxies is (very low, only 6.5% of the total baryonic 
density):



Baryonic mass density in galaxy clusters (intra-cluster medium ICM) 

Measured from X-ray photons coming from bremstrahlung radiation !   

 proportional to ρ_gas^2 x T_gas^(1/2) 

Measuring T and light ! mass (isothermal) 

Results:   Ω_ICM ~ 0.001 

Baryonic mass density in between galaxies (inter-galactic medium IGM) 

Measurements of  Lyman_α forest  
 (absorption by IGM clouds of photons 
emitted by background quasars ) 

Results:   Ω_IGM ~ 0.008 



Putting all the results together, we get 

   Ω_b from galaxies+IGM+clusters ~ 0.014 

This is known as the problem of the missing baryons



Missing baryons 

Baryonic mass density in MACHOs 

First it was thought the solution might be a large amount of low-brightness 
objects: the Massive Compact Halo Objects, 
i.e., a large amount of black holes, white dwarfs, neutron stars, large planets  

In the 1990s: 

Extensive search for microlensing events 

Results: Ω_MACHOs ~ negligible 
 



ICM  
intracluster 
medium : hot 
gas inside 
clusters 

IGM  
intergalactic 
medium: 
diffuse gas 
between 
galaxies (Ly 
alpha forest) 

WHIM  
warm/hot 
IGM: cosmic 
web between 
clusters

Baryonic mass density in the cosmic web between clusters or 
field galaxies (warm/hot intergalactic medium WHIM)



In the 2010s: 

Detecting the WHIM 



Thermal Sunyaev-Zeldovich effect 

When CMB photons pass by hot ionized gas (like in a cluster), the photons can 
gain energy by scattering off of the hot electrons ! T_CMB increases in the 
direction of a cluster 

The amplitude of the effect (y) depends on the density of 
hot electrons ! SZ is a measurement of the baryonic 
density 

for clusters ! y ~10^-6



“A Search for Warm/Hot Gas Filaments Between Pairs of SDSS Luminous Red 
Galaxies“, H. Tanimura, G. Hinshaw, I. McCarthy et al, MNRAS 483, 1, Feb. 2019  
(arXiv:1709.05024) 

Used the tSZ map from Planck 2015 and the luminous red galaxies LRG catalog from 
SDSS-DR12 (luminous galaxies at cluster centers) ! found 260 000 LRG pairs. 

Stacking the signal from all pairs in one image (to increase SNR) and subtracting the 
cluster tSZ signal (with a model for cluster amplitude y), they found the residual signal 
coming from WHIM:  

Stacked  
pairs:  
before and 
after 
subtracting 
the cluster 
signal

It has δ ~ 5 ! filaments are the largest and weakest-clustered 
structures

First direct detection of a LSS filament 



Absorption lines 

The ionized WHIM should emit thermal bremstrahlung radiation. 

But compared with the ICM, the WHIM gas has much lower temperature and 
density ! impossible to detect its X-ray emission. 

Use absorption techniques from its effect on background bright X-ray sources. 

In the distant Universe, sources appear so faint that it is usually easier to 
detect them through absorption that through direct emission. 

But still it may be needed a burst, like from a blazar (AGN with radio jet pointed 
toward us), to have enough signal for detection. 

Unless some way of increasing the signal is found. 
Again, through stacking: 

Using all the absorptions at different redshifts 
of a single quasar ! blueshift and stack them 
to increase SNR 



“Detection of the Missing Baryons toward the sightline of H 1821-643”, O. Kovacs, 
A. Bogdan, R. Smith et al, ApJ 872, 1, Feb. 2019 (arXiv:1812.04625) 

Adding 17 OVII absorption lines, the absorption from WHIM was seen in the 
spectra.

Results:   Ω_WHIM = 0.017 (+/- 0.005)

It seems that the baryons on large-scales dominate the baryonic content 
of the Universe.  

The current count is thus: Ω_b = 0.014 + 0.017 

 Mystery solved?



Dark matter

           Ωdm 

The value of Ω_dm can be determined in various ways: 

- direct mass measurements 

- probes of structure formation: CMB anisotropies, weak lensing, galaxy clustering  

- probes of geometry: Supernovas, BAO  

There are 2 general types of dark matter: 

- Cold dark matter (CDM): heavy particles (eg. WIMPs - weakly interacting 
massive particles)  
 
- Hot dark matter (HDM): low mass particles (eg. neutrinos) - can erase small-
scale perturbations



I. Evidence for dark matter 

There is evidence for the existence of dark matter on various scales

Large-scale structure (LSS)   

- From the small amplitude of CMB anisotropies ! not enough time for 
baryonic matter to form the observed collapsed structures 

- From the detection of correlations between galaxy ellipticities ! well 
explained by the coherent deflection induced by “invisible” gravitational 
potentials 

Clusters 

- From their dynamics ! need more mass  

 
Galaxies 

- From their rotation curves ! need more mass 



Dark matter in Galaxies (rotation curves)

The rotation rate of a spiral galaxy 
can be measured by letting light 
pass through a slit along the axis of 
the galaxy and taking a spectrum  

If the galaxy is not edge-on, we 
need to apply an inclination angle 
correction  



If the mass of the galaxy is mostly 
at the inner part ! v_rot 
decreases with distance to the 
center (r)

However, the observed v_rot is 
approximately constant (beyond a 
certain radius) and it continues flat to 
very large distances 

if v_rot flat ! M increases with r



In principle, this does not need to be a problem, the distribution of mass in the 
galaxy could naturally be such that it increased with radius (no need to be 
concentrated in the center). 

But the problem is that the light in a galaxy decreases exponentially  
with radius ! for large radius, the total light inside  
the radius tends to a constant 

This means that the light is restricted to the inner part, up to a typical scale r = h 

! matter emitting light (baryonic matter) is also mostly in that part ! the 
mass that increases with r cannot be luminous ! dark matter is needed



Dark matter in Clusters (clusters collisions)

The observation that the velocities of individual galaxies in clusters could only be 
explained if total mass of the cluster was much greater than that seen in galaxies 
was already suggested in 1933 (Fritz Zwicky), based on observations of the 
nearby Coma cluster. 

The observations of the colliding Bullet Cluster (2006) are well understood if there 
is dark matter in clusters.

X-ray emission and mass 
concentration (from weak 
lensing) are not at the 
same position



ICM (X-ray emission) and 
mass concentration (from 
weak lensing) are not at the 
same position ! ICM gas 
is not the dominant mass 
contribution. 

This is dark matter. 

Notice that the galaxies of the 
clusters also passed right through. 



II. “Direct” measurement of Ω_dm 

A useful way to quantify the amount of dark matter in a structure is  
the mass-to-light ratio (M/L). It compares the total mass with the mass expected 
based on the luminosity. 

The stars set the scale : (M/L)_stars ~1  

Since stars have almost no dark matter and we saw that in stars Ω_b ~ 0.002  
! M/L =1 means Ω_m = 0.002 (and Ω_dm ~0) 

Dark matter density in galaxies 

Total mass measured from rotation curves:  

is (M/L)_gal = 20 ! Ω_m_gal = 0.04 ! Ω_dm_gal ~0.04



Dark matter density in clusters 

The total mass of a cluster can be determined in 3 different ways. 

Each method makes some assumptions about the state of equilibrium of the cluster 

1. Dynamics of the cluster galaxies ! virial theorem 
 
2. X-rays emission ! hydrostatic equilibrium  
 
3. Gravitational lensing ! cluster symmetries  
 
 



1. Galaxy motions 

For systems that have collapsed gravitationally and are relaxed, the virial theorem 
is 
   E_kin = -1/2 E_pot 

Galaxy are observed in spectroscopy ! Doppler shifts are measured along the 
line-of-sight ! the measured dispersion in the average velocity along the l-o-s  
is  

dispersion of the average velocity

!



Typical values: v ~1000 Km/s;  R_cl ~1 Mpc ! M ~10^15 Msun 

Knowing that the total mass of the galaxies in a cluster is ~10^13 Msun 

! M/L = 160  

! Ω_m_cl = 160 x 0.002 = 0.32 ! Ω_dm_cl ~0.28   

The other 2 methods give similar results:



2. X-ray profiles 

Ionized gas in clusters - assumed to be in hydrostatic equilibrium 

+ ideal gas  p = nKT   (n= ρ /m_p) 

    ! 

This is the total mass needed to keep the hot gas (with pressure p, temperature T 
and density ρ) in equilibrium.  

Also need to assume a density profile for the cluster (to be able compute dρ /dr), 
i.e., assume a model: 

!        !    

Typical values: kT ~10 KeV;  r ~1 Mpc;  β = 2/3 ! M ~10^15 Msun 



3. Gravitational lensing

Measuring the positions of multiple images and giant arcs, we can constrain the mass 
distribution of the lens. 

Need to model the lens. Also need to know the distance to the lens and to the source 

Simple approximation: modeling the cluster as a 
sphere of mass M concentrated in the center,  
it produces a deflection of α for a light ray 
passing at a distance D from the center !  
  
Measure the deflection α, measure the distances ! get the mass  M ~10^15 Msun  



Gravitational Lensing

(Let us take this opportunity to introduce the important effect of gravitational lensing) 

1. Deflection of light 

The basis of gravitational lensing is the effect of deflection of light caused by gravity.



In general, we define a source - lens - observer system

source position in the source plane 

deflection angle 

impact parameter in the lens plane 

image position in the image plane 

optical axis 

Light from a point emitted at an angular position β is observed at a different 
angular position θ. 

It is deflected by a deflection vector α induced by gravity.



The lens equation, relating source and lens planes can be found from the diagram 
above, by using simple trigonometry  (vector addition on the source plane):

α  is determined by the properties of the lens : it contains the physical (gravitational 
field) information we want to find out.  

Measuring the change between θ and β we can find α , if we know the distances 
(there is a degeneracy with the distance).

How does the deflection angle relate to the lens gravitational potential?

Let us consider light propagation from source to observer in the Universe 
described by the Robertson-Walker metric with a small inhomogeneity representing 
the lensing potential:  



The deflection may be derived using the principle of Fermat:  light follows a path 
of extremal time. 

Light follows null geodesics, and setting ds2 = 0 we can immediately write the speed 
of light when travelling in the gravitational field of the lens. It is:

In terms of properties of light propagation, the perturbed metric is like a medium 
where the speed of light is v < c ! it bends the light, with respect to the 
homogeneous spacetime where v = c.

We can think of the gravitational field as a “change of medium” since it effectively 
changes the speed of light propagation. This medium is thus associated to an 
effective index of refraction, given by:



Now, let x(l) be a light path crossing the medium. 

The light travel time is then proportional to:  
(since the refraction index is basically dt/dx) 

and we want to find the path of extremal (minimum) time, i.e., 

This is a standard variational problem, that as we know will lead to the Euler-
Lagrange equations. 

The extremal light path verifies: 
 

where λ is an arbitrary affine parameter, labeling the positions along the path,  

and we found out that  has the role of a Lagrangian. 



Having found the Lagrangian we can now describe the light path using the 
Euler-Lagrange equations: 

From our Lagrangian, we compute:

(u is the normalised vector tangent to the path) 

This means that the Euler-Lagrange equation is an equation for the evolution of      , 
which is a vector tangent to the light path.  



Now, the derivative of the tangent vector is by definition the deflection. So we found 
that the deflection is the gradient of the lens potential in the plane orthogonal 
to the tangent to the path (i.e. on the lens plane). 

Notice the minus sign, meaning the gradient of the potential points away from the lens centre 
and the deflection angle points toward the lens (light is pulled towards the lens). 

The potential changes from point to point along the light path, so the total deflection 
is the integral over the ”pull” of the gravitational potential perpendicular to the light 
path: 

and so the Euler-Lagrange equation is: = 0

⬄

this is the gradient of n perpendicular to the light path 

and therefore, the gradient of the potential.

⬄



Notice that: 

-  the integral should be made over the actual light path (a priori unknown 
before computing the deflection ! so it is a recursive problem). 
However, given the smallness of the potential                     the deflection angle is 
usually small and in practice it is usual to integrate over the unperturbed light path. 
(This is exactly like the Born approximation used in scattering theory). 

- since the speed of light is effectively slowed down in the gravitational field, the 
travel time to cross a given length is larger than it would be in the absence of a lens. 
This is called the Shapiro delay.

fit to  
data points

General Relativity

Newtonian

- the value of the deflection angle  computed 
in GR (that was we saw contains a factor of 2) 
is twice the value predicted by Newtonian 
gravity, or by considering the equivalence 
principle (gravity - acceleration) in special 
relativity. The well-known Eddington eclipse 
expedition of 1919 measured the deflection 
angle produced at the edge of the Sun disk 
with the purpose of comparing the 
measurement with the two predictions. It was 
the first test of GR.



Point source 

Having found the relation between deflection angle and gravitational potential,  
we can compute the deflection of the light emitted by a point source when passing 
by a lens. 

Let us consider first a point mass lens, with the usual potential

Light from the source travel along the z-axis towards the 
observer and crosses the lens plane (x,y) 

The potential on the lens plane (the 
orthogonal plane) is 

and the resulting deflection vector is:

with

the light path crosses the lens plane 
at a distance b from the point mass. 
b is called the impact parameter



From the x and y components of the deflection angle vector, we compute its norm, 
which is the well-known result:

Note that the impact parameter is strongly constrained. The source emits in all 
directions, and various light paths reach the lens plane. But only one is deflected 
towards the observer. From the lens equation (from the source-lens-observer 
diagram), we can see it is the one that passes at b = Dd Dds / Ds  

Dd = distance from observer to lens (deflector) 
Dds = distance from lens to source 
Ds  = distance from observer to source 

For this reason, all lensing systems have a fundamental degeneracy between 
distances and lens properties. We can only compute the mass of the lens if we 
know the distances involved in the system. Conversely, lensing can be used as a 
geometric probe of the Universe (i.e., it can be used to measure cosmological 
distance and use them to infer the density parameters) if the mass of the lens is 
known. 



Let us consider now an extended lens 

Since the deflection angle depends linearly on the mass M, the effect from a finite 
lens in a plane is just the sum of the deflection angles created from all points in the 
lens. If we discretize the lens as a set of N point lenses of masses Mi at positions ξi 
on the lens plane, then the deflection angle of a light ray crossing the plane at ξ will 
be:  

We can also consider a lens in 3D with mass density ρ. The z extension of the lens is 
always just a small segment of the full source-observer light path, and it can be 
considered that it is in a plane - the thin-screen approximation. In this approximation, 
the lensing matter distribution is completely described by its surface mass density: 

and the total deflection is given by:



2. Gravitational Lensing

Gravitational lensing, in a strict sense, refers to the case of extended sources, 
which give rise to differential effects. 

Indeed, neighbouring points from the source suffer slightly different deflections in the 
lens plane: it is a differential effect that makes the image of an extended source 
(i.e. non-pointlike) to become distorted. 

This is easily seen if we Taylor-expand the lens equation. Remember the lens 
equation is a mapping from image positions to source positions (it is usually written 
in that order, and not as a mapping from source to image). So a given point θ  in the 
image plane corresponds to an original position β(θ) in the source plane, related by 
the deflection angle: 

(here the vectors have absorbed the distance factors present in the original 
lens equation)  

The Taylor expansion of β(θ) to linear order is



Now, remember that a general matrix can be decomposed in 3 parts: 

 (traceless) symmetric + (traceless) antisymmetric + diagonal

where A is the amplification matrix (the Jacobian) and describes the lensing 
transformation between source and image planes to first order:

it is a 2D matrix, since β (position 
in the source plane and θ (position 
in the lens plane) are 2D vectors.

γ1 γ2
γ2 -γ1 k

k 0
0

Applying a diagonal matrix to an image will: expand it (or contract it) radially in an 
isotropic way ! k is called convergence. 

 Applying an antisymmetric matrix to an image will: rotate it ! ω is called 
rotation.  

Applying an symmetric matrix to an image will: distort it in an anisotropic way, 
contracting in one dimension and expanding in the other ! γ is called shear. 



This means that any linear distortion of an image is a combination of 
convergence/expansion, rotation and shear

A = The amplification matrix is then written as 

Note that the lensing distortion does not includes rotation 
because the gravitational field is a gradient field (completely defined by a potential), 
and so its rotational is zero (it is a so-called E field) and the deflection vector field 
does not produces rotations.  

The presence of rotations in a lensed image (due to so-called B-modes) is an 
indication of systematic effects, i.e., distortion effects with non-lensing origin.



isotropic distortion (k, convergence) ! a 
circle expands/contracts (full rotational 
symmetry) 

anisotropic distortion (γ, shear) ! a circle 
transforms into a π-rotational symmetric 
shape (an ellipse) 

These are the fundamental distortions (also called the optical scalars) and 
contain the dependence on α ! which contains the information on gravity

The determinant of the amplification matrix 
defines the magnification:

For example, the distortions applied to a circular image result in:

second-order distortions (by continuing the Taylor expansion) (F, G, flexion) ! a 
circle transforms into a 120º-rotational symmetric shape (a banana-shape F or a 
“Mercedes logo” G) 



The magnification, and the amplitude of the optical scalars - which are fields in the 
2D sky - define the gravitational lensing regime that occur in the positions of the 
sky.  

There are two general regimes - weak lensing and strong lensing - that occur in 
regions of the image plane where the values of the k(θ) and γ (θ) fields are small 
(<<1) (weak lensing) or large (strong lensing).

The observable effects are 
very different in the two 
regimes 



Weak Lensing  occurs further from the line of alignment of source-lens-observer, 
or with lenses of lower density contrast. 

The effects are: small increase of ellipticity of the source galaxy (shear), alignment of 
images. 

Weak lensing is a very useful probe in a cosmological system where the lens is the 
large-scale structure of dark matter distribution. In this case the shear is so small that 
it cannot be detected in individual galaxies. What can be detected is a correlation of 
those ellipticities because their orientations get some degree of alignment and cease 
being randomly oriented ! this effect is used to probe the structure formation of 
the Universe.

Increased ellipticities: Weak lensing of galaxies by a 
cluster (The Bullet Cluster)



The effects are: very strong distortions (giant arcs), multiple images, flux 
magnification. They occur near lines where det A = 0 (infinite magnification), which 
are called critical lines of the image plane (the observed sky), and map back to the 
source plane to lines known as caustic lines. 

Strong Lensing  occurs near the line of alignment of source-lens-observer, with 
lenses of high density contrast. 

Giant Arcs: Strong lensing of 
galaxies by a cluster

Giant Arcs: Strong lensing and 
Einstein ring of galaxies by a 
group that includes 2 massive 
ellipticals
(The Cheshire Cat)



When the scale of the strong lensing effects is small (ex: multiple images have small 
angular separation and are not resolved) this type of strong lensing is called 
microlensing.

Produces 
also an 
increase of 
flux ! 
used to 
detect 
exoplanets.

Einstein ring: 
 Strong lensing 
of a galaxy by a 
galaxy, an 
infinite number 
of multiple 
images forming 
a circle

Einstein 
cross:  
Strong lensing 
of a quasar by 
a galaxy, 
forming a 
quadruple 
image of the 
quasar



Gravitational Lensing has a number of fundamental 
properties: 

- it depends on the projected 2d mass density distribution of 
the lens 
- it is independent of the luminosity of the lens 
- it does not have a focal point 
- it is achromatic, there is no frequency shift from source to 
image  
- it involves no emission or absorption of photons 
- it conserves the surface brightness  

This leads to a number of observable features:

- change of apparent positions 
- magnification (increase of size), which combined to the conservation of brightness 
implies an increase of flux ! natural telescope 
- distortion of extended sources (ellipticities, tangential giant arcs, radial arclets) 
- multiple images 
- time-delay between multiple images 

   These are the lensing observables

3. Conclusion



These observables (positions, fluxes, distortions) can be used to estimate the 
total mass and mass distribution of the lens. For example: 

- in (strong or weak) cluster lensing ! mass distribution of the cluster 
- in LSS weak lensing (cosmic shear) ! dark matter power spectrum  

In all systems, the general recipe is similar. We need to: 

i) (theoretical) define a lens model and derive its gravitational potential. 

ii) (theoretical) derive the deflection and optical scalar fields from the 
gravitational potential  
 
From the definitions in the amplification matrix, it is clear that shear and 
convergence are derivatives of the deflection field, and second-order derivatives of 
the potential. In particular: 

  
 shear  

 convergence



where ψ is the gravitational potential projected on the lens plane (i.e. integrated 
along z) and dimensionless (with the distance factors included), i.e., 

This is called the lensing potential. Note that indeed: 

Note also that the convergence is the Laplacian of the lensing potential. 
This means, from Poisson equation, that the convergence is a (projected) mass.  
In particular, it is the (dimensionless) surface density:

with



iii) (theoretical) predict the observables from the optical scalars fields 
(shear, image positions, fluxes)  
 
iv) (observational) measure the observables in astrophysical images 
 
v) (statistical) estimate the lens model parameters by fitting the theoretical 
predictions to the data 

For example to estimate the mass of a galaxy cluster (to get the astrophysical 
measurement of Ωm), we need to build a complex model that takes into account 
different components of mass distribution: dark matter halo, gas, galaxy 
distribution, and predict the distortions, positions and fluxes on the image 
plane of source background galaxies. 

Let us consider just the component of the matter distribution of the dark matter halo 
- a NFW density profile:

(with 2 free parameters)



The 2D surface mass density can be computed from the 3D density profile and it is:

and so the convergence is

with

from which we can obtain the mass,



with

We can also compute the lensing potential, which is,

and the deflection angle, which is 

From this, we can for example predict the image positions of source 
galaxies, fit to the observed positions and constrain the two parameters rs 
and ρs needed to determine the value of the cluster mass.



Epilogue: Total density

            Ω = Ωm + Ωx  = Ωdm  + Ωb + Ων (non-relativistic) + Ωx  = 1 

Going back to the direct measurements 
of the densities in the Universe, we 
found that Ω_dm_clusters ~ 0.28  

and that dark matter is increasingly 
important as we go into larger scales

This value Ω_dm ~0.28 is a good representation of the dark matter density in the 
Universe because clusters are very large quasi-linear structures that represent well 
the average densities of the whole Universe.  

Indeed, this value is confirmed by Ω_dm measurements of various cosmological 
probes (i.e., by the more cosmological approach and model-dependent “indirect 
measurements”), including the well-known supernovae observations and CMB.



Also notice that the ratio between dark matter and baryonic matter is 7 (much lower than the M/
L ratio of 160, which is the ratio between dark mater and luminous matter) ! this shows that 
most of baryonic matter is not in the form of stars/galaxies that contribute to the luminous 
matter of galaxies and clusters but as we saw, it is in the form of hot ionized gas - in clusters 
and in the cosmic web - 

So, since the 1980-90s, much before the modern SN and CMB probes, cluster 
observations already gave a hint that the total matter density in the Universe 
was less than 1  : Ωdm  + Ωb + Ων  ~0.3  ! this implies there is something else 
missing to reach the needed total of Ω = 1 (from Friedmann eq.), and moreover 
it is the dominant contribution!   

It was first thought that it could be a hint for an open Universe, oCDM. 
Indeed, curvature can be moved to the right-side of Einstein equation and be 
considered as a contribution to the densities, ΩK  

Is it curvature? ! the Universe would need to have negative curvature (which 
would also imply it is open) in order to have  ΩK > 0 (the sign of ΩK is opposite to the 
sign of K).  
But no, later on CMB measurements found that most likely Ω_K = 0 ! flat 
Universe (even though some recent data also point to ΩK < 0 ! this is part of the 
debate of the cosmological tensions - see later)



It has been a long story of missing components ! missing baryons, missing 
matter, and now the missing 70% of the Universe 

Following the discovery of the dimming of distant supernovae, there was 
evidence that the expansion of the Universe started accelerating in recent 
times. The driver for this acceleration had to be the missing density: an 
additional component that only became dominant recently and that has the 
property of accelerating the expansion. 

Since we do not know what is this new source of energy, it was decided to call 
it Dark Energy, Ωx = ΩDE 

Today there are many theoretical and phenomenological models of dark 
energy. The simplest one capable of producing the acceleration is the  
the famous Einstein’s cosmological constant, Lambda Λ . 
The direct measurements are in agreement  
with modern results:  Planck final results (2018) 
 Ω_cdm = 0.268 +/- 0.8% 
 Ω_b = 0.049 +/- 0.4% 

! Ω_m = 0.317    Ω_Λ = 1 - Ω_m = 0.683 


