Energy systems

Class	Topics	Deliverables	
1	Energy Supply.		
2	Tutorial work	Biblio revision	
3	Students' presentations (1).	PPT1 & DOC1	
4	Students' presentations (2).		
5	Energy demand.	DOC1_final	
6	Tutorial work	Biblio revision	
7	Students' presentations	PPT2 & DOC2	
8	Energy storage and transmission		
9	Students' presentations	PPT3 & DOC3	
10	Energy system		
11	Tutorial work		
12	Students' presentations	PPT4 & DOC4	

Group	Application	Obser	Questions
1	Electricity	Batteries	
2		H2	kW kWh
3		Compressed air	€/kWh Kg/kWh
4		Pumped storage	
5		Transmission	€/kWh/km
6	Heat	District heating	Losses

Storage electricity | parameters

Capacity (kWh)

Density energy/power(MW/kg; MWh/kg)

Specific density (MWh/m³)

Efficiency (%)

Charge/discharge time

Operation cost(€/MWh)

Investment cost (€/MWh)

Lifetime (years/days)

Examples:

Car battery capacity

Domestic battery capacity

Assume 1 battery per home /2 days autonomy (discuss ownership)

Examples:

Pumped storage

Available power

assume max waterflow

Capacity

- dam size (500 x 500 x 18 m³),
- conversion efficiency (75%)
- output in kWh/person.

and

Compressed air

(timescale, costs, capacity, etc)

Hydrogen

- •H2 production from electricity
- Conversion efficiency (overall)
- Heat?
- •Domestic or mobility use
- •Costs: actual, not foreseen

Transmission electricity

Grid caracterization

Customers/line km

(depends on geography and population density, e.g. Madeira = 3x continental Portugal)

- AC or DC?
- Underground or aerial lines? Health ipmacts,
- Losses (transport and distribution)
- Costs(ERSE)

Heat transmission

- Technolgy, range
- Cost €/kWh and losses
- Final discussion of heat system management.

Energy 35 (2010) 1381-1390

The role of district heating in future renewable energy systems

H. Lund a,*, B. Möller a, B.V. Mathiesen A, A. Dyrelund b

Department of Development and Planning, Aalborg University, Fibigerstraede 13, DK 9220 Aalborg, Denmark

b Ramboll Denmark Ltd., Teknikerbyen 31, DK 2830 Virum, Denmark

