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DIA DA TERRA

De 1984 a 2020: as imagens que mostran
um “Portugal natural ameacado”

Campos vazios que se transformaram em estufas de agricultura intensiva, milhares de
hectares ardidos, construcao desordenada junto a costa, a erosao costeira a mudar as
praias. Com a nova ferramenta da Google Earth, a associacao Zero quis mostrar como a
paisagem mudou em 36 anos.
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A associacao ambientalista Zero pegou na nova ferramenta da Google Earth que, em
progressio rapida (time-lapse), nos permite ver a evolucdo de diferentes locais do
mundo entre 1984 e 2020. Em Portugal, descobriu espacos profundamente
alterados. O impacto do crescimento urbanistico e as marcas de desastres naturais
relacionados com as alteracoes climaticas sdo visiveis. No Dia da Terra, que se
assinala nesta quinta-feira, a seleccao da Zero mostra-nos, segundo a propria, “um
Portugal natural ameacado”.

1 | Parque Natural do Sudoeste Alentejano e
Costa Vicentina

De campos praticamente vazios, a estenderem-se até ao mar, a hectares e hectares
de areas cobertas com o plastico das estufas. Aqui, a paisagem alterou-se
radicalmente, com a marca da agricultura intensiva. O que a imagem nio mostra,
mas a Zero lembra, é que esta mudanca foi acompanhada do uso de pesticidas,
fertilizantes e de um grande consumo de agua, que “poem em causa os valores
naturais que deveriam estar salvaguardados”.

https://www.publico.pt/2021/04/21/sociedade/noticia/1984-2020-imagens-mostram-
portugal-natural-ameacado-1959431 3
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| 1. Ilhas-barreira na Ria Formosa (Algarve)

Este sistema constituido por cinco ilhas e duas peninsulas, na Ria Formosa, no
Algarve, estd muito vulneravel a e as tempestades oceanicas. Eventos
potenciados pelas IS C i ma i ie:4, como a subida do nivel do mar e
intensificacdo de temporais violentos, colocam em risco estas ilhas, incluindo a de
Tavira e Cacela. As ilhas da Ria Formosa sio classificadas como protegidas pelo
estatuto de Parque Natural, datado de 1987, e integram da Rede Natura 2000.

ALTERACOES CLIMATICAS

A destruicao silenciosa
ameacadas em Portugal

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

| 2. Montado de Sobro e Azinho (Alentejo)

As previsdes sugerem mudancas muito significativas nas azinheiras, porque estio
dependentes de uma certa quantidade de precipitacio. Se as chuvas escassearem, as
azinheiras “deixam de ter condicoes de sobreviver” e talvez passem a ser viaveis
cada vez mais para norte. “0 sobreiro acaba por sofrer stress hidrico e pode vir a
desaparecer. Isto ja estd mais ou menos estipulado que podera acontecer. Este
mosaico que nos temos hoje no Alentejo vai ser profundamente afectado pelas

alteracoes climaticas”, afirma Paulo Lucas. Em 2001, foi criado o enquadramento

legal que est cce as medidas de proteccdo ao sobreiro e d azinheira.

| 5. Arrozais da Comporta (Lisboa e Vale do Tejo)

A agricultura que se faz na continuidade dos estuarios, muitas vezes até abaixo do
nivel do mar - como € o caso dos arrozais no estuario do Sado, na peninsula da
Comporta - também constitui uma paisagem portuguesa ameacada. “A intrusio
salina vai acabar com este tipo de cultivo mais tarde ou mais cedo. Ha dreas que ja
estdo a ser abandonadas. Ha inclusivamente zonas que hoje ja nao sio produtivas
devido ao sal”, refere Paulo Lucas. Os arrozais integram a Reserva Natural do

Estuirio do Sado e a Rede Natura 2000.
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Heatwave across
India

DETAILS RELATED

India is currently facing a prolonged heatwave, with

v temperatures exceeding 42°C in numerous cities across the
country. This comes just weeks after India recorded its hottest
March since the country’s meteorological department began its

Land surface temperature b b 3 records over 120 years ago. This image, produced using data

29 April 2022

from the Copernicus Sentinel-3 mission, shows the land surface
e — P -

<2( 37.5 »55¢( t g 2 =X b temperature across most of the nation.
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Umbra advertises SAR imagery with 15-centimeter resolution
by Debra Werner — March 12, 2021 SAN FRANCISCO — Radar satellite startup Umbra plans to

capture imagery with a resolution as high as 15 centimeters
per pixel thanks to a Federal Communications Commission
license.

The FCC granted Umbra, a Santa Barbara, California, startup
preparing to launch its first X-band synthetic aperture radar
(SAR) microsatellite this year, an experimental license in
February to operate high-bandwidth SAR using the 1,200 MHz
band centered on 9.8 GHz and low-bandwidth SAR with the
600 MHz band centered on 9.6 GHz.

“Bandwidth is the limiting factor in determining slant range
resolution, and ultimately ground plane resolution in the cross-

Umbra has a patent for an antenna designed to stow compactly for launch and expand in orbit with a series of ribs

attached to a central hub. The antenna is covered in a flexible reflective material. Credit: Umbra traCk direCtion;” DominOCielo Said by ema”- Hlmprovement in
resolution is proportional to the amount of bandwidth
available for use by the sensor.”

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) Umbra advertises SAR imagery with 15-centimeter resolution - SpaceNews


https://spacenews.com/umbra-15-centimeters/
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Topicos
5. Machine Learning

» What is machine learning?
» Bibliography and software
» Tasks for machine learning
» Machine learning models
» Generalization, Overfitting
» k-NN algorithm
» Linear Models
» Decision Trees
» Neural Network
» Convolutional Neural Network

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 8
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Remote sensing multispectral image data, behavioural geography data (person
location and trip), transportation network data... BIG DATA of geography.

Machine learning is believed to be the powerful tool to explore and analyze the
geography big data.

What is machine learning?

Machine learning evolved from the study of pattern recognition and
computational learning theory in artificial intelligence (Al).

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 10
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Machine Learning

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E” — T. Michell (1997)
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A brief history of machine learning

Artificial Intelligence
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It is all about machine learning...

What can | help you with?

Intelligent voice assistant

http://www.apple.com/ios/siri/ @

Predictive policing
http://www.predpol.com/

Facial recognition Self-driving car

http://www.face-rec.org/ https://www.google.com/selfdrivingcar/ 8

13
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How to connect the machine learning

with geospatial data? Geospatial Big Data
Remote sensing multispectral image data,

behavioral geography data (person trip),
transportation network data,
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Software

@ python

ANACONDA .

“The Most Popular Python Data Science Platform”

orange3

3.13.0
“"Component based

° » “Interactive data mining framework.
A computational Data visualization and

environment, in which data analysis for novice

Ju pyter you can combine code and experts. Interactive
\ / execution, rich text, machine learning in Python  workflows with a large

mathematics, plots and toolbox.
o rich media."

T TensorFlow

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 17
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t ‘ O rfeo TO O I B O X Forum Download Documentation Blog Community

Orfeo ToolBox is not a black box

Orfeod0olBox is an open-source project for state-of-the-art remote sensing,
including a fast image viewer, apps callable from Bash, Python or QGIS, and a
powerful C++ APL

Open Source processing of remote sensing images

2 ¢ =

Start using OTB OTB features Documentation OTB community

AL i @ 5)

Developers corner Media External projects Blog
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> . The 10 Algorithms Machine Learning Engineers Need
Top 10 Machine Learning 161 KRG

Algorlthms

v

List of Common Machine Learning Algorithms

1. Naive Bayes Classifier Algorithm I Llne.or. Regresspn

2. K Means Clustering Algorithm 2 Log|§’r.1c RegreSSIOn

3. Support Vector Machine Algorithm 3. Decision Trees

4. Apriori Algorithm 4. SVM (Support Vector Machine)

5. Linear Regression 5. Naive Boyes

6. Logistic Regression 6. KNN (K- Nearest Neighbors)

7. Artificial Neural Networks 7. K-Means

8. Random Forests 8 chdom Foresfs

8. Decision Tiees 9. Dimensionality Reduction Algorithms
10:: Nedrest Neighbours 10. Gradient Boosting & AdaBoost

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 19
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MACHINE LEARNING

The most common machine learning tasks are predictive, in the sense that they
concern predicting a target variable from features. .

&= |Binary and multi-class classification: categorical target

&= Regression: numerical target

g= Clustering: hidden target
Descriptive tasks are concerned with exploiting underlying structure in the data.

Predictive model Descriptive model
Supervised learning classification, regression  subgroup discovery
Unsupervised learning  predictive clustering descriptive clustering,

association rule discovery

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 20
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MACHINE LEARNING

Machine learning models can be distinguished according to their main intuition:

&= Geomelric models use intuitions from geometry such as separating
(hyper-)planes, linear transformations and distance metrics.

¢= Probabillistic models view learning as a process of reducing uncertainty,
modelled by means of probability distributions.
&= Logical models are defined in terms of easily interpretable logical
expressions.
Alternatively, they can be characterised by their modus operandi:

&= Grouping models divide the instance space into segments; in each segment
a very simple (e.g., constant) model is learned.

&= Grading models learning a single, global model over the instance space.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 21
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MACHINE LEARNING

T
/ JLinear Classifier

Jdinear Regression
NN

Jrees

Hules

Associati

JLogistic Regression
Kmeans

o VM

Grouping

Grading/ Classification

< SMM

l 1 Jaive Bayes 1 |

Models that share characteristics are plotted closer

together: logical models to the right, geometric models on The colours indicate the type of
the top left and probabilistic models on the bottom left. model, from left to right: logical
The horizontal dimension roughly ranges from grading (red), probabilistic (orange) and
models on the left to grouping models on the right. geometric (purple).

23
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MACHINE LEARNING

Task Label space Output space Learning problem

Classification Z£ =€ XY =€ learn an approximation ¢ :
X — € to the true labelling
function ¢

Scoringand Z£ =% @y =Rl learn a model that outputs a

ranking score vector over classes

Probability L =€ @ =10,11""" learn a model that out-

estimation puts a probability vector over
classes

Regression =R U =R learn an approximation f :

Z — R to the true labelling
function f

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 24
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A classifieris a mapping ¢ : & — €, where € = {Cy, C»,...,C} is a finite and
usually small set of class labels. We will sometimes also use C; to indicate the
set of examples of that class.

; ; T A fand 1 -— ixel h ticulor
We use the ‘hat’ to indicate that ¢(x) —7 ighiness viue n each band
. . Band 6 T
function ¢(x). Examples for a classit —

_ _ Band 5 e Wat Whea
an instance and c(x) is the true clas — RS
b . Ban & , Nlww

y hoise). ~Tw w
W
|
Learning a classifier involves constrt
as closely as possible (and not just ¢
Safellite image data Map of labels

Instance space &).

Classification

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 25
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Generalization, Overfitting, and Underfitting

Trade-off of model complexity against training and test accuracy
If a model is able to make accurate predictions _

on unseen data, we say it is able o Training
to generalize from the training set to the test e

set. We want to build a model that is able to R

generalize as accurately as possible. R T

Sweet spot

Generalization

. _ . ‘
Overfitting occurs when you fit a model too ey

closely to the particularities of the training P
set and obtain a model that works well on R
the training set but is not able to generalize
to new data.

Underfitting Overfitting

Model complexity

More complex the model => better we will be able to predict on the training data.
However : Too complex => focusing too much in our training set => not generalize well to new data.
There is a sweet spot in between that will yield the best generalization performance.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 26
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MACHINE LEARNING

Scatter plot of training dataset

2 bands and 2 classes Predictions made by the one-nearest-
6 , 1 . . . neighbour model on the dataset
A
st A t LN A ] | | . |
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PY A A A A“ @® trainingclass 0
° M i °T A t A A training class 1 |7
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MACHINE LEARNING

Predictions made by the three-nearest-

Instead of considering only the closest neighbour, we neighbours model on the dataset
can also consider an arbitrary number, k, of | | |
neighbours. A ® training class 0
°T A AL A A training class 1 |[]
This is where the name of the k-nearest neighbours Al * testpredO .
algorithm comes from. % testpredl
3 -
When considering more than one neighbour, we ®
use voting to assign a label. This means that for each r ° o )
test point, we count how many neighbours belong to L@ |
class 0 and how many neighbours belong to class 1.
o} °® .
We then assign the class that is more frequent: in o
other words, the majority class among the k-nearest i 8 9 10 11 17

neighbours.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 28
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o e K-NN (K-Nearest Neighbours)
1 neighbor(s) 3 neighbor(s) 9 neighbor(s)
7)) A 7)) A
A.‘A AA A A.‘A AA 2

feature 1
feature 1
feature 1

feature 0 feature 0 feature O

Decision boundaries created by the nearest neighbours model for different values
of k_neighbours

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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MACHINE LEARNING

Linear models are a class of models that are widely used _
in practice and have been studied extensively in the last .. — S
few decades, with roots going back over a hundred 5 | 5

years.

Linear models make a prediction using a linear
function of the input features, which we will explain

shortly. For regression:

y=w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

Here, x[0] to x[p] denotes the features (in our case, the spectral - . 77777777777 A 77777777777777 -
bands, p+1) of a single pixel (or set of pixels), wand b are
parameters of the model that are learned, and y is the prediction For a dataset with a single feature, this is:

the model makes.
y=w[0] *x[0] +b

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 30
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Assess the usefulness of the temporal coherence matrix on the
estimation of the soil moisture changes

 Machine Learning Regression Techniques
* Linear Regression (LR)
 Random Forest Regressor (RFR)
* ExtraTree + Bagging Regressor (ETBR)

e Data inputs: INSAR coherence, phase and soil type

* Data output: soil moisture change between two dates

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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SM estimation vs SM observation
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e Linear Models for Classification

Linear models are also extensively used for classification. LinearsVC

ap 2
In this case, a prediction is made using the following formula: o A A = !
y=w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b >0 2 ® . 4

£l o O o
o

The formula looks very similar to the one for linear regression, o ®
but instead of just returning the weighted sum of the hd

Feature 0

features, we threshold the predicted value at zero.

LogisticRegression

A

If the function is smaller than zero, we predict the class —1; if N B R A R Class 1
it is larger than zero, we predict the class +1. o A A

This prediction rule is common to all linear models for
classification. Again, there are many different ways to find the o o ¢ Class 0
coefficients (w) and the intercept (b).

Feature 1

Feature O
Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 33
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e Linear Models for multiclass Classification

A common technique to extend a binary classification 15 | .

algorithm to a multiclass classification algorithm is the one-vs.- . Cle;ss 0
rest approach. Class 1
107 \4 ss 2 |]
In the one-vs.-rest approach, a binary model is learned for each \
class that tries to separate that class from all of the other o 2T Ap |
classes, resulting in as many binary models as there are classes. 2 A 7N D
g ol A /
Having one binary classifier per class results in having one A
vector of coefficients (w) and one intercept (b) for each class. -5t -
The class for which the result of the classification confidence ~10 .
formula given here is highest is the assigned class label: 10 ° 0
ormula given here is highest is the assigned class label: Foature 0
w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b The classifier that has the highest score on its single class

“wins,” and this class label is returned as the prediction.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 34
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Multiclass decision boundaries derived from the three one-vs.-rest classifiers

Feature 1
Feature 1

-10 ] | ] ] ] | ] |
-10 -8 -6 -4 -2 0 2 4 6 8 Feature 0 o a0
Feature O A Class 1
¥V Class 2
@® Lineclass0
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culatra_soma_ndwi.rd vs culatra_std_ndwi.rd
I 1 1 1 I 1 1 1 I 1 1 1 l 1 1 1 I 1 Il 1 I 1 1 L

Blue: water
Red:Land
Green: intertidal

Band 1
012 013
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Decision trees are widely used models for classification and
regression tasks. Essentially, they learn a hierarchy of if/else
guestions, leading to a decision.

Has feathers? | penas

Imagine you want to distinguish between the
following four animals: (barbatanas)

False

bears, hawks, penguins, and dolphins. True True

False

Your goal is to get to the right answer by asking
as few if/else questions as possible. Hawk ‘ Penguin | ‘ Dolphin I ‘ Bear |

In this illustration, each node in the tree either represents a question or a terminal node (also called a /eaf) that contains
the answer. The edges connect the answers to a question with the next question you would ask.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 37
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Learning a decision tree means learning the 15+
sequence of if/else questions that gets us to [ .. ® Class0
) ° ° A Class1
the true answer most quickly. o
1.0 A [ [ ]
: : : e ‘. @ : A

In the machine learning setting, these 0@ (C
questions are called tests (not to be confused 0 05| @® e® A A L)) AA A

. rest s ®e *%N ¢ 2 o A
with the test set, which is the data we use to = o A % [ ] r

: ) ) [ ]
test to see how generalizable our model is). = A AQ M, A
0.0 A A A i
¢ A A‘A A AA
Usually data does not come in the form of binary yes/no A A A A
features as in the animal example, but is instead —05 - ® AAAA A
represented as continuous features such as in the 2D A A
dataset shown in figure. r r . ' - - '
-1.0 -05 0.0 0.5 1.0 1.5 2.0
Feature O

The tests that are used on continuous data are of the
form “Is feature i larger than value a?” Two-moons dataset on which the decision tree will be

built

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 38
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depth =1

(Root)

X[1] <= 0.0596
counts = [50, 50]

True False
0.0596

To build a tree, the
algorithm searches over all
possible tests and finds the
one that is most

|nformat|\{e about the "R ‘A N counts = [2, 32] counts = [48, 18]
target variable. o AA&
A A

Splitting the dataset horizontally at x[1]=0.0596 yields the most information; it best separates the points in
class O from the points in class 1. The top node, also called the root, represents the whole dataset,
consisting of 50 points belonging to class 0 and 50 points belonging to class 1. The split is done by testing
whether x[1] <= 0.0596, indicated by a black line. If the test is true, a point is assigned to the left node,
which contains 2 points belonging to class 0 and 32 points belonging to class 1.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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Decision trees

Even though the first split did a good job of separating the two classes, the bottom region still contains points belonging
to class 0, and the top region still contains points belonging to class 1. We can build a more accurate model by repeating

the process of looking for the best test in both regions.

depth = 2

X[1] <= 0.0596
counts = [50, 50]

THV wlsc

X[0] <= -0.4177
counts = [2, 32]

X[0] <= 1.1957
counts = [48, 18]

counts = [2, {ouuls = [0, 32]

counts = [47, hums =[1, 10]

This recursive process yields a binary tree of decisions, with each node containing a test.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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Decision trees

depth =9

X[1] <= 0.0596
counts = [50, 50]

Tmy w]se

X[0] <= -0.4177 X[0] <= 1.1957
counts = [2, 32] counts = [48, 18]

A
B B X[1]1<= 04951 | [X[01<= 1.6725
counts = [2, ﬁums = [0, 32] counts = [47, hw“s =1, 10]

‘_/ A J
X[0] <= 0.5692 X[0] <= -0.0472 X[0] <= 1.659 _
counts = [15, 6] counts = [32, 2] counts = [, h‘”“s =10.7]
a /N I
()

(..) (...) (..) ..) (..)

Typically, building a tree as described here and continuing until all leaves are pure leads to models that are very

complex and highly overfit to the training data. The presence of pure leaves mean that a tree is 100% accurate on the
training set; each data point in the training set is in a leaf that has the correct majority class.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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B8 0729
. B?_O?zg |
Instead of looking at the whole tree, there are B4 (508 e—
1 1 |
some useful properties that we can derive to B12 0808
summarize the workings of the tree B 2 e R
g . E B 0619 e —
The most commonly used summary is feature B4_0803  m———
. . . B8 0813 s
importance, which rates how important each 7 074
feature is for the decision a tree makes. BS 0303  s—
B7 0803 s

(=]

0.01 0.02 0.03 0.04 0.05 0.06
Importancia relativa

It is @ number between 0 and 1 for each
feature, where 0 means “not used at all”
1 means “perfectly predicts the target.”

and
m2018 ND m2019 ND

Importancia relativa das variaveis na classificacdo com RF para dados de
2018 (a azul) e de 2019 (a laranja). As denominacdes das variaveis
dizem respeito a banda, més e dia de aquisicao da imagem,

respetivamente.
Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 43
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The Random
Forest
overfits less
than any of
the trees
individually

In any real
application, we
would use many
more trees (often
hundreds or
thousands), leading
to even smoother
boundaries.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

Tree 0

Tree 1

Tree 2

Tree 3

Tree 4

Decision boundaries found by five randomized decision trees and the decision

boundary obtained by averaging their predicted probabilities
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Multilayer perceptrons (MLPs) are also known as feed-
forward neural networks, or sometimes just
neural networks.

MLPs can be viewed as generalizations of linear models that
perform multiple stages of processing to come to a decision.

Remember that the prediction by a linear regressor is given as:

v =w][0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

in plain English, ¥ is a weighted sum of the input features x[0]
to x[p] (our spectral bands), weighted by the learned
coefficients w[0] to w[p].

(“deep learning” are a revival of the neural networks tailored very carefully to a specific use case)

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 46
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Here, each node on the left represents an input
feature, the connecting lines represent the learned
coefficients, and the node on the right represents
the output, which is a weighted sum of the inputs.

In an MLP this process of computing weighted sums
is repeated multiple times,

first computing hidden units that represent an
intermediate processing step, which are again
combined using weighted sums to yield the final
result.

Neural Network

Multilayer perceptron with a single hidden layer

Inputs

This model has a lot more coefficients (also called weights) to learn: there is one between every input and every hidden
unit (which make up the hidden layer), and one between every unit in the hidden layer and the output.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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Computing a series of weighted sums is

mathematically the same as computing just one >0 —— ta'nh | | | 7
weighted sum, so to make this model truly more 252 - rely R
powerful than a linear model, we need one extra
trick.

After computing a weighted sum for each hidden
unit, a nonlinear function is applied to the result—
usually the rectifying nonlinearity (also known as
rectified linear unit or relu) or the tangens
hyperbolicus (tanh).

relu(x), tanh(x)

The result of this function is then used in the «
weighted sum that computes the output, y.
h[0] = tanh(w[O, O] * x[0] + w[1, O] * x[1] + w[2, O] * x[2] + w[3, O] * x[3] + b[0])

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 48
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For the small neural network the full formula for computing y in the case of regression would be
(when using a tanh nonlinearity):

Inputs
Hidden

X layer
h[0] = tanh(w][0, 0] * x[0] + w[1, O] * x[1] + w[2, O] * x[2] + w3, O] * x[3] + b[0]) - h:O]
h[1] = tanh(w[O0, 1] * x[0] + w[1, 1] * x[1] + w([2, 1] * x[2] + w[3, 1] * x[3] + b[1]) x(1] Output
h[2] = tanh(w][0, 2] * x[0] + w[1, 2] * x[1] + w[2, 2] * x[2] + w3, 2] * x[3] + b[2]) . h{1) f——>{ §
g =v[0] * h[0] + v[1] * A[1] + v[2] * h[2] + b ye =

Here, w are the weights between the input x and the hidden layer h, and v are the weights between the
hidden layer h and the output y. The weights vand w are learned from data, x are the input features, y is
the computed output, and h are intermediate computations.

1 pixel = 19 weights
we know (x,y) for a sample of pixels

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 49
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An important parameter that needs to be
set bY the user is the number of nodes in Hidden Hidden
the hidden layer. layer 2

This can be as small as 10 for very small or
simple datasets and as big as 10,000 for
very complex data.

Having large neural networks made up
of many of these layers of
computation is what inspired the term
“deep learning.”

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 50
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Neural Network

o ¢ o o°
O o o
0 02 © ® 0,0 O
— .Q * % 3.0 A — .Q * ‘ 3.0 AA
0 A 2 O A ®
3| 00 A, o® A | %0 ®°Q e 24 A
§ o o0 A% r 3 x o A% r

Feature O

Feature O

Decision boundary learned by a neural network Decision boundary learned by a neural network
with 100 hidden units on the two_moons dataset with 10 hidden units on the two_moons dataset

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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Neural Network

o ¢ o o°
[ o @) o
® 0.0 o o e ®
. .oo.“‘"é A , ..o.‘gﬁ”o Y.
| *ect. Aiae” o * | *ect. Ar,a® " A
: o Al @8 * o AL @0 a
AAA“ M AAA‘A M
* 41 4 * A4 A
Feature O Feature O

Decision boundary learned using 2 hidden layers Decision boundary learned using 2 hidden
with 10 hidden units each, with rect activation layers with 10 hidden units each, with tanh
function activation function

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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A quick summary of when to use each model:

Algorithm Characteristics

Nearest neighbors For small datasets, good as a baseline, easy to explain.

Decision trees Very fast, don’t need scaling of the data, can be visualized and easily explained.

Random forests Nearly always perform better than a single decision tree, very robust and powerful.
Don’t need scaling of data. Not good for very high-dimensional sparse data.

Support vector machines Powerful for medium-sized datasets of features with similar meaning. Require
scaling of data, sensitive to parameters.

Neural networks Can build very complex models, particularly for large datasets. Sensitive to scaling
of the data and to the choice of parameters. Large models need a long time to
train.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 53
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Classification using Random Forest algorithm
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Transfer Learning
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/\
David H. Hubel and Torsten Wiesel performed [>®
a series of experiments on cats in T i

X

1958and 1959 (and a few years later on A X
monkeys), giving crucial insights on the o — s ] )
structure of the visual cortex. ~ o
The authors showed that some neurons

react only to images of horizontal
lines, while others react only to lines with
different orientations.

Figure 14-1. Local receptive fields in the visual cortex

These studies of the visual cortex inspired the neocognitron,
introduced in 1980, which gradually evolved into what we now call
convolutional neural networks.

These observations led to the idea that the
higher-level neurons are based on the
outputs of neighboring lower-level
neurons.

An important milestone was a 1998 paperby Yann LeCun, Leon
Bottou, Yoshua Bengio, and Patrick Haffner, which introduced the
famous LeNet-5 architecture, widely used to recognize handwritten
check numbers.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 57
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CNN layers with rectangular local receptive fields

Convolutional
layer 2

Convolutional
layer 1

Input layer

A neuron located in position (i,j) in the upper layer is
connected to the outputs of the neurons in the previous
layer located in

Rows: [i x shtoix sh + fh—1]

Colunm: [jxswtojxsw+ fw—1],

where sh and sw are the vertical and horizontal strides.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

Convolutional Neural Network
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Feature
Map 1

i

" *‘\\‘\“ RN LN '-4,\\1\\?

Feature
Map 2

= Horizontal filter

l“.g‘ LU LY
5 AW

L

Aplicacao de um filtro vertical e um filtro horizontal

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

Aplicacao de multiplos
filtros em cada layer
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Max pooling layer (2 x 2 pooling
kernel, stride 2, no padding)

Typical CNN
architecture

Input

AW EQ

O TTTi

Convolution

EEELEE S ST
EECELEZI3T0

Pooling Convolution Pooling Fully connected

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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INPUT Image (RGB) Zero Padding

oo/ o0 o o0 0 00.000.0 00'0000 0 /0|0 0 0O 0 o0
o|B6|4/58|7 0 o /6561|6130 o PIER AN o 57 |0 .o A o
qsaa1u o PERRSNRIRRSN 0 oasnao 3|11 0 0 2eon
1|5 (3|3 |c o foletalt]o o Parpor oo o 3a o 0 200_
0 [NERITRRTERN o o POREGNPONIN o 0 DENRERIERREN R 0|6 N O
ololo o olo clo|o oo |0 ololo o o o 0 0/|0 o(jo|jo|o|O|O
O|O0]|O 7|7
012\ 6 | -3
O| 5| 3 FILTER 1 -4 | 6
B Iy
O|O0]|O
Total:

-14

5/12 6/12

Afilter performs simple calculations, multiplying its own number values by the pixel The resulting products for the first chunk are summed up, and the total is put down in

values in the first chunk. The filter looks for a particular feature in the image—perhaps an one cell of a grid (see next slide). Then the filter moves over one pixel to the right and looks

at the next 3-by-3 chunk.

angled line or a certain gradation of color—as represented by pixel values.
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Red FILTER 1 Groan Blve
MEIE o2 |8 I-'.rv'r
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T2 8/19

One chunk at a time, the filter scans the image to fill in grids for the red, green, and Two more simple steps finish this filter's work. In the rectified linear unit (RLU) step,

blue channels. Then the grid cells are summed up along with a number called the weight, the negative numbers among the sums are replaced by zeros. In the max pooling step, the

highest value in each two-by-two chunk is selected. The end result is a simple set of

which represents the importance of this filter for the final output. This produces a new grid
numbers called a feature map.

with the final sums.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 62
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Red FILTER 999 Grean _2_
4la|7 a|l1]s R E
alal|-e a2 0|12
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@ =50 [ rﬂ =114 .

9/12

Atypical CNN may have hundreds of filters in each convolutional layer. Each filter
performs its simple calculations and feeds its filter map forward to all the filters in the next

convolutional layer. Those filters examine the feature maps in the same chunk-by-chunk

way.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

Images (typical RGB)

| 1

Convolutional layer 1

Filter 1 Filter 999
RLU e RLU
Max pooling Max pooling

< 1 l >

Feature map s Feature map

00
e

Convolutional layer N

Filter 1 Filter 999
RLU e RLU
Max pooling Max pooling

1 1

For each digital image, a CNN uses many convolutional layers, each packed with

many filters.
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l !

Feature map eee Feature map

Feature map eee Feature map

! !

Fully connected layer

[ sm |

Fully connected layer

Ll

Diagnosis categories

000
e L
-

Convolutional layer N

Filter 1 Filter 999
RLU ese RLU

Max pooling Max pooling

l i

Feature map e Feature map

l l

Fully connected layer

bs several fully connected layers to make a final determination about the

Finally, the last convolutional layer outputs all of its feature maps to a “fully PP e e e e L B e S e

has run through all the images and made all its assessments, it checks its

connected” layer, which examines the maps in their entirety (instead of doing chun

ccuracy. Inthe next run, it will choose a different combination of filters and weights and
chunk scans).
ee if its accuracy improves.

https://spectrum.ieee.org/biomedical/devices/ai-medicine-comes-to-africas-rural-clinics
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LeNet-5 AlexNet

The LeNet-5 architecture is the most widely The AlexNet CNN architecture was developed by Alex Krizhevsky, Ilya
known CNN architecture. It was created by Sutskever, and Geoffrey Hinton.

Yann LeCun in 1998 and widely used for

handwritten digit recognition It is quite similar to LeNet-5, only much larger and deeper, and it was

the first to stack convolutional layers directly on top of each other,
instead of stacking a pooling layer on top of each convolutional layer.

Layer Type Maps Size Kemnel size Stride Activation Layer Type Maps  Size Kemnelsize Stride Padding Activation
Out  Fully Connected - 10 - - REF Out  Fully Connected - 1,000 - - - Softmax
F6  Fully Connected - 84 - - tanh F9  Fully Connected - 4,096 - - - RelU

(5  Convolution 120 1x1  5x5 tanh F8 Fully Connected — 4,006 - - - RelU

54 Avg Pooling 16 5x5  2x12 tanh a Convolution 256 Bx13  3Ix3 SAME RelU

a Convolution 16 10x10 5x5
52 Avg Poaling 6 MMx14 2x1
a Convolution 6 28x28 5x5
In Input 1 32x31 -

tanh 6 Convolution 184 13x13 3x3
tanh &) Convolution 184 1Bx13 Ix3 SAME RelU
tanh 54 Max Pooling 256 1Px13 3Ix3 VALID -

1
1 SAME ReLU
1
2

- a Convolution 256 x21 5x5 1 SAME RelU
2
4

— Pl e Ped e

52 Max Pooling 96 =21 Ix3 VALID -
(1 Convolution 96 55 % 55 =N VALID ReLU
In Input J(RGB) 227 x 227 - - - -
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Outras Arquiteturas:

GoogleNet

VGGNet

ResNet

Xception (variante da GooglLeNet)

SENet

Desenvolvidas nos ultimos 5 anos

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

input
image
tile

572 x 572

U-Net (Olaf Ronneberger, 2015)
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Imagem de Validacao Méscara Previsao U-Net
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Fig. 3.  Architecture of two baseline networks. In FCN-S, feature maps

summation and 2x upsampled prediction are utilized. In Unet-S, concat layer

is employed to concatenate two groups of feature maps. The dotted line
-.‘ represents convolution operation with 1 x 1 kernel.

‘ N Automatic road detection and centerline extraction via cascaded end-to-end

convolutional neural network,” IEEE Transactions on Geoscience and Remote
Jo3o Cataldo Fernandes (jcfernandes@fc.ul.pt) Sensing, vol. 55, no. 6, pp. 3322-3337, 2017.

Compared with the conventional
multilayer perceptron (MLP),
which only consists of fully
connected layers, the
convolutional network has less
parameters due to its local
connectivity characteristic.

For example, for a 300 x 300
image, we assume that there are
ten hidden neurons. There are
300x300x10 =900 000 weight
parameters for MLP.

In convolutional network, if we
use 10x10 local connectivity
pattern, the number of weight
parameters is 10x10x10 = 1000.

69



