
The Inhomogeneous Universe

Parameterization of the density contrast field



Two-point functions (power spectra and 2-pt correlation functions) of a given 
Gaussian cosmological inhomogeneous field contain the complete spatial 
information of the field.
(example of cosmological inhomogeneous fields are: density contrast, peculiar velocity, 
gravitational lensing shear, CMB temperature anisotropy, metric perturbations such as Φ
and Ψ gravitational potentials).

From a 2-pt function, we can make a realization of the field, obtaining a map, i.e., the 
field as function of spatial coordinates (2D or 3D depending if we consider 3D or 
projected 2-pt functions), at a given time.

Remember: the density power spectrum does not give the values of δ(x) in specific 
coordinates, but it has all the information needed to produce realizations of δ(x) à
cosmological theory does not predict the exact maps of the universe

These 2 universes have the same 
cosmological parameters values à the same
power spectrum.

However,  the values of δ(x) in points with the 
same coordinates are different.

Space and Time description of Gaussian random fields



The time evolution of the field is obtained from the time evolution of the two-point 
correlation functions or power spectrum. 

The time evolution of the power spectrum of the density contrast can be computed 
from the cosmological theory, and this evolution is what is known as structure 
formation. 

It is computed from a system of differential equations of motion for the various modes 
(scales) δk (t) and for the various cosmological species (δ_cdm, δ_baryons, 
δ_radiation).

The equations of motion are given by the Perturbed Einstein equations:

from a perturbed metric (scalar, vector, tensor perturbations and gauge 
transformation) + energy-momentum tensor of inhomogeneous fluids à Einstein 
equations for the inhomogeneous Universe (‘Friedmann-like’, ‘Raychaudhuri-like’ and 
other new equations) + energy conservation equations (continuity-like or alternatively 
the perturbed Boltzmann equation, which is needed when considering energy 
distributions at particle level instead of coherent fluid, like in the case of relativistic 
species).



It is also possible to derive the equations of motion in the 

Euclidean approximation (valid for non-relativistic species and for sub-
Hubble scales, i.e. scales smaller than the Hubble radius) 

In this case, the power spectrum can be computed from classical fluid equations 
(Poisson, Euler, continuity) and there is no need to use Einstein equations.

The equations of motion allow us to compute the evolution of the power
spectrum for each cosmological species. 

For this, besides the equations of motion, we also need initial conditions for the 
power spectrum. These introduce new cosmological parameters.  

There are also initial conditions between species, which introduce additional
constraints between the various power sepctra (ex: adiabatic perturbations, 
isocurvature perturbations).



Remember:

- The equations of motion compute δk (t) for all scales k and all cosmological species, 
i.e., they compute the cosmological variances, which is the function
P(k) = δ2(k) (i.e., the power spectrum). 

They do not compute a unique solution δ(x).

- The power spectrum is not enough to describe the inhomogenous Universe if the 
perturbations are non-Gaussian à in that case we also need to consider higher-
order n-pt functions. 

- Note that the evolution of δ occurs while the universe is expanding “in the
background”. 
The evolution of the homogeneous universe is also called background evolution.



For the initial conditions of the density perturbations we need a set of N values 
for each species: 

the amplitude (i.e. the variance) of each scale at a fixed time à in 
principle we will need N new cosmological parameters for each cosmological 
species.

Initial conditions

In the homogeneous universe the initial condition is a free parameter (an Ω
value) and usually is set at today’s value and not at an initial value.

In the inhomogeneous universe it is possible to derive some theoretical 
constraints on the early Universe (instead of using late-time conditions) from 
inflation.



Inflation considers that the Universe is filled with a primordial scalar quantum field 
(called the inflaton). The quantum fluctuations that naturally exist in this field, 
evolve in the inflationary expansion, resulting in an inhomogeneous gravitational 
field, i.e., after inflation perturbations in space-time curvature appear.

An interesting property of inflation is that the inflationary evolution for the curvature 
perturbation has an  attractor solution à the result is independent of  particular 
realizations of the quantum fluctuations. 

This is a key aspect of inflation à It allows the computation of the post-
inflationary metric perturbations independently of the original initial 
conditions à no fine-tuning  (the result depends only on the inflationary model 
used).



A given inflationary model thus computes the metric perturbations (created by the 
inflaton field).

In particular, it computes the perturbed gravitational random field at all scales, i.e., 
inflation provides the post-inflationary power spectrum of gravity PΦ

(we will introduce later the metric perturbations and the two fields Φ and Ψ)

(In addition, inflation also computes the post-inflationary power spectrum of tensor metric 
perturbations, not relevant for the matter power spectrum).

The post-inflationary power spectrum is the initial condition for the 
subsequent process of structure formation à it is known as the 
primordial power spectrum of the gravitational field.

Note that in practice this power spectrum is obtained up to a constant à in 
reality inflation computes only the relative amplitudes between all scales, 
but it does not compute their absolute values.

This means that the result is a function of scale k, with free amplitude.



The result of inflation is a scale-invariant dimensionless power spectrum of the 
gravitational potential.

This  means that the amplitudes of the metric perturbations are the same for all 
scales (which means that the primordial perturbations are white noise)

à the ‘gravitational potential’ at any scale starts the structure formation 
process with the same amplitude.  A priori there is no scale that will be more 
favorable to collapse and form structure (note there is also no homogeneity 
scale for the potential).

This is also known as the Harrison-Zeldovich power spectrum - a flat spectrum

= constant



Note that this is the result expected when the expansion is exponential (like during 
the inflation): a(t) ~ eHt,   with H constant during the short inflationary period.

We can see this by thinking of a discretized expansion, i.e.

on each e-folding (equal time intervals where the Universe expands by an 
order of magnitude) the Universe “remains a certain time with a certain size”.

That size (the order of magnitude of the e-folding) defines a logarithmic scale. 

The time that the Universe stays on each scale is the same.

Since the times are the same, there is the same probability of forming 
inhomogeneities on all these logarithmic scales à leading to the same 
amplitude of Φ on all logarithmic scales à the same power per logarithmic bin 
à constant dimensionless power spectrum.



This means that the dimensionless primordial power spectrum of gravity is 
a power law (in scale k) with index ns - 1.

This introduces a new cosmological parameter - the power law index  ns -
which parametrizes the relative amplitude between all scales.

This parameter is related to inflation slow-roll parameters: 

ns = 1 - 2ε + 2η à ns is close to 1 (and smaller than 1).

It is usual to write the result in the form:

allowing for a small deviation from the exactly scale-invariant power spectrum
(the case ns = 1). 



Now, the fact that all scales have the same initial gravitational conditions 
to collapse, does not mean that all matter perturbations start with equal 
amplitudes. 

We still need to find out what is the primordial power spectrum of the 
density contrast field.

Since the gravitational potential is a metric perturbation, we need the Einstein 
equations to relate metric perturbations to matter perturbations. 

The gravitational potential is a term in the metric (00) that makes the 
inhomogeneous metric deviate from a perfect Robertson-Walker metric.  

The (first-order) Friedmann equation in the inhomogeneous metric relates 
this term of the metric to the matter density perturbation. It is a Poisson-like 
equation (as we will see later).

In the sub-Hubble (Euclidean approximation) the original Poisson equation is valid, 
and we can write:



We want to relate the power spectrum of the gravitational field to the power 
spectrum of the density.  

For this we need to take the Fourier transform of the Poisson equation. 

The right-hand side only contains spatially constant quantities and the density 
contrast, so its transform is just the transform of the density contrast:

The left-hand side contains the Laplacian of the gravitational potential.

Its Fourier transform is written as:



Using the product rule, the transform of the Laplacian of the potential may be 
written as: 

Now, in the second term of the right-hand-side we can take the second-order 
derivative of the plane wave and we are left with 

the Fourier transform of the potential multiplied by k2.

In the first term of the right-hand-side we can replace the volume integral of the 
Laplacian by the integral of the flux (the gradient of the potential) across the surface 
enclosing the volume, using the theorem of Gauss (also known as the divergence 
theorem).

So, the Fourier transform of the Laplacian of the gravitational potential is:



à

This is a very useful result: to Fourier transform the spatial derivative of a 
quantity we just need to multiply it by -(-ik)n.

So,  grad(F) à ik Fk and lap(F) à - k2 Fk

Since the domain of a d3r integral is infinity, the surface integral is made on a sphere 
with radius r à ∞ , and since r2 à 0, the first term is zero.

So, Poisson’s equation in Fourier space is simply:

Now, taking the square of both sides of the Poisson equation,  we find a “Poisson 
equation for the power spectrum”: this is the relation between the 
gravitational potential power spectrum and the matter power spectrum: 

~ ~



We have thus found that the primordial matter power spectrum
(the initial conditions for the matter fluctuations after inflation) is also a power-law, 

like the gravitational potential power spectrum, but with a different slope. 

In particular, it is not scale-invariant: 
small-scales (large k) start with a larger clustering amplitude than large-

scales. 

The primordial power spectrum is parameterized by only 2 free parameters: 

• a slope ns (parameterizing the relative amplitudes between the various scales). 

• an amplitude As (given at a chosen scale; any scale may be used, but usually 
k0 = 0.02 h/Mpc is chosen)

The fact that inflation is able to predict a functional form for the power 
spectrum is responsible for reducing the initial condition free parameters 
from N to only 2.



Alternatively, as we saw earlier,  the amplitude may be parametrized by the
amplitude of the matter power spectrum at z=0. 

In that case, the scale k=2π/8  h/Mpc is used. 

and this is called the σ8 parameter. 

The relation between σ8 and As depends on the evolution of the power spectrum
from early times to z=0 à it is not a simple scaling, it depends on all 
cosmological parameters.

Cosmological parameters

We have introduced 2 new fundamental cosmological parameters ns and As to 
add to the list of parameters that describe the cosmological model

(which included already H0, Ωcdm , Ωb, Ωrad, ΩΛ, ΩK)



These two are the most important new parameters, but there are many other
cosmological parameters (or functions of redshift that can be parametrized) that are 
needed to model all aspects of the cosmological model, such as:

- Describe extra species in the homogeneous universe:

neutrinos - Ων, Neff
dark energy - wDE (z) (and many other parameters depending on the specific dark

energy model)

- Describe pressure perturbations - speed of sound cs (z)

- Describe other mechanisms of the perturbed universe:

reioinization redshift (formation of the first stars) - optical depth τre
halo profiles in non-linear collapse - ρc, concentration c
power spectrum of tensor perturbations - nt, At or r
modified spectrum of initial conditions - running of the spectral index ns(k)

- Describe specific cosmological probes:

redshift of sources for weak lensing - n(z)
mass-to-light bias for galaxy clustering - b(k,z)





Overview of structure formation

Clustering and Collapse

Structure formation starts then from the primordial power spectrum, and is driven
by gravity described by General Relativity. 

We can consider two regimes of structure formation:

Linear evolution (clustering)

While the density contrast is still small, δ << 1, the harmonic modes evolve 
independently of each other, with a system of uncoupled equations.  

Scales in this regime are called linear. 

Linear scales follow the expansion (they are expanding with the comoving
background) but they expand with a slower rate (their density decreases with a 
slower rate than a-3) à they are slowly forming over-dense structures à they 
cluster, and so their spatial distribution is correlated.



Non-linear evolution (collapse)

When the density contrast of a certain scale gets large, δ ~ 1, that scale becomes
non-linear.

More precisely, it is considered that the transition happens when the growing
dimensionless matter power spectrum reaches Δ2 (k) = 1

That scale decouples from the expansion (i.e. stops following the expansion) and
starts to decrease in proper size. The density constrast starts increasing very fast, 
resulting in a gravitationally bound structure à there is a collapse and structure is 
formed (in reality linear evolution does not really produces structure, just slowly 
growing values of the density contrast).

Linearized perturbed Einstein equations are no longer valid to compute the non-
linear evolution.

Different approaches are needed à higher-order perturbation theory 
(renormalization methods, ‘Feynman diagrams’), the Halo model approximation, 
N-body simulations.



In addition, when the evolution is non-
linear, the statistical distribution of the
density contrast (Gaussian) is not
preserved and non-Gaussianities arise. 

In ΛCDM cosmology with standard values of the cosmological parameters 
(concordance model), the non-linear scales are the smallest ones:

k > 0.2 h/Mpc

The amplitude of the non-linear matter power spectrum is much larger 
than the amplitude that would be computed for those same scales 
assuming linear evolution. 

This figure shows the percentage increase
of power (PNL/PL) as function of scale:



Hierarchical structure formation

As we will see, the result of the power spectrum evolution in the standard ΛCDM 
model is a hierarchical structure formation, i.e., scales move from the clustering 
phase to the collapsing phase in different times and sequentially à smaller scales 
collapse first than larger scales:

Very small scales (stars, star clusters, satellite galaxies)
are not cosmological scales. They are below the free-streaming limit and do not
form from the structure formation process of cosmological evolution à they are sub-
clumps of galactic-size dark matter halos.

Small scales (galactic scale) 
are the first to reach non-linearity and to decouple from the expansion. 
They are the first to form structures (the galaxies). On these scales Δ2 > 1 today.



Intermediate scales (clusters scale)
are the scales that are collapsing today at z=0 (meaning that only today did 
Δ2 at this scale reach the value ~1.

In the standard model, the theoretical calculation finds that this scale is 
k = 0.78 h/Mpc à R ~ 8 Mpc/h.  

Consider a homogeneous sphere of this size with density twice the mean density of 
the universe (i.e. δ = 1). Inserting the standard values for the critical density and 
matter density,  the mass of this region is

M = 4/3π 83 ρc Ωm (1+δ) ~ 1015 M_Sun / h 

which is a typical mass of a cluster, thus confirming that galaxy clusters are the 
largest collapsed structures. 

Large scales (R > 8 Mpc/h) 
for example filaments, are still linear today (Δ2 < 1) and did not form bound collapsed 
structures yet à not dense enough for star formation à they are non-luminous.
But they continue to evolve and will form large bound structures in the future.

Very large scales (R > 500 Mpc)
δ is so small that perturbations are still negligble today.
If Δ2 à 0 on large scales, the Universe has a homogeneity scale. 



Collapsed structure
(formed)

Linear structure
(in formation)

Non-cosmological structure
(formed from fragmentation
and astrophysical processes)

δ(z=0)



The dark matter power spectrum today (z=0)

The structure formation process 
transforms the primordial matter
power spectrum of the early 
Universe into the current matter 
power spectrum at z=0,

by making an overall increase 
of the amplitude (by a growth 
factor D+(a) ) and a change in 
shape (T(k) ): 

the change in shape is called 
the transfer function.

The figure shows the theoretical 
dark matter power spectrum at 
z=0, computed for the concordance 
model.

0.2864105comoving size [Mpc/h]

(concordance model)

Clusters
(~10)

Galaxies
(~1)

LSS
(~100)

Homogeneity
(~1000) (~0.1)

free 
streaming

NLrH (aeq)
sound
horizon
(adec)

large scales small scales



0.2864105comoving size [Mpc/h]

(concordance model)

Clusters
(~10)

Galaxies
(~1)

LSS
(~100)

Homogeneity
(~1000) (~0.1)

free 
streaming

NLrH (aeq)
sound
horizon
(adec)

k1

k0

k-1

k-2

The shape changed from the 
original power-law k1 to a sequence 
of power-laws with indexes 1,0,-1,-
2,-3

Some important scales are shown:
- sound horizon at decoupling 

(z=1100)
- Hubble radius at radiation-matter 

equality (z ~3500)
- non-linear scale at z=0
- free-streaming scale at z=0

The dashed line shows the non-
linear power spectrum. It deviates 
from the linear one for scales 
smaller than the NL scale.

k-3



Its shape is a a sequence of power-laws 
with indexes 4,3,2,1,0

The dimensionless power spectrum 
increases for small scales, while the 
power spectrum has a peak.

The amplitude of clustering is directly 
seen in the dimensionless power 
spectrum and not in the power 
spectrum. The reason is that the power 
spectrum has dimensions of volume 
(inverse of k-volume), so the amplitude 
it shows on small scales is greatly 
decreased by a factor of k3.

The linear Δ2 is the dashed red line. All the 
other lines show the non-linear Δ2 

computed in different ways. Notice that:

-The ratio between non-linear and linear is very 
large on these small scales. 
- Different methods to compute the non-linear 
solution give quite different results.

The figure shows the theoretical
dimensionless dark matter power 
spectrum at z=0, up to an extremely 
small scale.



CMB Temperature
CMB Polarization
CMB Lensing
Galaxy Clustering
Lyman-α Forest
Weak Lensing

The figure shows 
the measured
dark matter 
power spectrum
by various 
cosmological 
probes of the 
inhomogeneous 
universe, 
measured in 4 
different surveys

Each survey may 
observe at a 
different redshift 
(but all results are 
transposed for 
z=0)

The various probes observe different scales:
- Probes of high redshift (CMB) measured in surveys of high resolution (Planck) may measure 
correlations on small angular scales, but even a small angular scale corresponds to a large  
size (given the high z) , and so to a large scale (small k) when transposed to z=0.   
- Probes of lower redshift - DES measured correlations of WL on smaller scales than the GC 
measurements made by SDSS that covered a larger area of the sky. 


