
Structure formation

Dark matter linear clustering



In the sub-Hubble regime (small scales), the evolution of DM perturbations is 
described by 

Inserting the dimensionless density Ωm, and the evolution of the mean matter
density (from the zeroth-order continuity equation)

the evolution equation can also be written in the form:  

Let us now consider the evolution in the various epochs of the Universe.



To solve the evolution equation, we need first to insert the evolution of the scale 
factor.

From the Friedmann equation, in this regime,

The solution is,

and

à

Matter-dominated epoch



Inserting in the evolution equation for δ we can write it as:

Interestingly, this equation has an equidimensional structure (a polynomial where 
the powers of the variable, t, follow the order of the derivatives of δ )

à this implies we can look for a power law solution 

Inserting the solution, we get: 

tn-2

and the evolution equation becomes an algebraic equation for the power-law
index n:

Moreover, we also have,  



There are two possible values of n, i.e. 2 solutions for the evolution of δ:

n = 2/3 à a growing solution 

and 

n = -1 à a damping solution 

usually written as, 



Only the growing solution leads to structure formation.

This means that during the matter-dominated epoch, sub-Hubble scales grow
(cluster) at the same rate as the background expansion.

At later times, still in the matter-dominated epoch, dark energy starts to play a 
role, and the background is no longer determined by Ωm alone.
DE needs to be included in the Friedmann equation, resulting in a faster expansion
a(t) and a slower decreasing rate of H(a) à this increases the Hubble drag. 

The evolution of δ is also affected through the change in a(t) in the third term, 
brought by dark energy. 

Only the mean matter density in the third term is not affected, because there is 
energy conservation per component, i.e., the decreasing rate of the mean matter 
density does not depend on the components present in the cosmological fluid, i.e., 
there is a zeroth-order continuity equation per component.



The solution for the growth of δ in the matter epoch (but in the presence of dark 
energy) deviates from being proportional to the scale factor. 

In general, the growth becomes slower than δ ~ a à DE works against 
structure formation. 

This also implies that observations of structure formation - for 
example measurements of the matter power spectrum at various 
redshifts - are an indirect probe of dark energy.
(two examples are tomographic weak lensing and galaxy clustering à this is 
in fact the main goal of the Euclid mission).

In order to emphasize the deviation from the standard growth rate δ ~ a, solutions 
δ(a) for the various cosmological models are usually written in terms of the growth 
function g  

δ ~ a * g

Alternatively, it is also common to define the growth function f:



Note that f compares            with instead of comparing δ with a (like g does) 

Note also that for a power-law growth, the growth f is exactly the index of the power-
law:  

δ ~ af

Note also that both f and g change with redshift. 

Each dark energy model leads to a different growth rate of the dark matter 
clustering (different from δ ~ a ). 
For each case, the δ differential equation can be solved numerically (which implicitly 
also needs the solution of the Friedmann equation a(t) for that particular case of 
dark mater + dark energy).

The result for any dark energy model can be written with a general expression (a
fitting function for the growth rate):

The integral goes from a chosen 
normalization scale factor, ai, to 
the a of interest, with g (ai) = 1.



This fit introduces a new cosmological parameter: the growth index γ.

Each dark energy model has a given value of the growth index. This is not a new 
independent free parameter. Its value can be found from the equation-of-state 
parameter of the dark energy model. That relation is also given by a fitting function:

Naturally, the growth index is also related to the f growth function (besides being 
related with the g growth function). The relation is:

So, for a given dark energy model (characterized by w, or γ) and a given value 
of its density (ΩΛ , or Ωm from the Friedmann constraint) à we find the growth 
rate (g, or f) solution relying on these fitting functions.



In particular, we see that:

- higher Ωm (lower ΩΛ ) à faster growth

- higher w0 (less negative) à faster growth

For a generic model, γ encapsulates the solution for δ and parameterizes the 
deviation from the ΛCDM growth (for ΛCDM, γ = 0.55). 

The result of the evolution of the density contrast on all scales is the 
(theoretical) matter power spectrum:

However, remember that the solution for δ is a solution for its growth rate, the 
equations do not compute the absolute amplitude of the growth. For this, we need 
to define the initial conditions of the primordial power spectrum:

Amplitude As
Shape (power-law index) ns



The (theoretical) matter power spectrum for a given model is usually 
confronted with the (observed) matter power spectrum:

The observed power spectrum is measured within a certain range of scales 
(depending on the experiment) and at a given redshift (e.g. z=0). In general, we 
can measure its 

Shape: Γ = Ωm h
Amplitude within a range of scales (in particular at the scale 8 Mpc/h): σ8
Growth (measuring the amplitude at various redshifts): f

Note that these low-redshift cosmological parameters are not new 
independent parameters:

The shape of P(k, z=0) depends on ns and the transfer function (which depends 
on the parameters of the homogeneous universe)

The amplitude σ8 depends on As  and on the evolution (which depends on the 
parameters of the homogeneous universe)

The growth f depends on on the evolution (which depends on the parameters of 
the homogeneous universe)



Cosmological probes that measure the power spectrum of matter at a single 
redshift (e.g: galaxy clustering) are sensitive to the amplitude: σ8

Cosmological probes that measure the power spectrum of matter at various 
redshifts (e.g: weak lensing) are sensitive to the combination of amplitude 
and growth: f σ8, or S8 = σ8 (Ωm/0.3)1/2

Note also that:

DES year 1 shear : weak lensing 2pt 
angular correlation

DES year 1 w(θ) + γt : galaxy clustering 2pt 
angular correlation + galaxy-galaxy lensing 
(cross-correlation between wl and gc)



Now, remember that the parameter constraints (degeneracy directions) depend 
on the observed quantity.

Example: 

i) Let us consider that we measured the matter power spectrum at high redshift 
(observing the correlation function of the field of CMB temperature), and we want to 
fit the predictions of two cosmological models to those data. Consider that the 
models only differ in their values of Ωm:

- flat ΛCDM with Ωm = 0.3 (solid line)
- flat ΛCDM with Ωm = 0.5 (dashed line)

(the growth of structure is faster in the second model)

Since the data measures the matter power spectra at high z, we set the amplitude of 
the models by their As values à since the two models start with the same 
amplitude As in the primordial universe, the one that grows faster is the one 
that produces more structure at z=1100.



ii) Let us consider that we measured the matter power spectrum over a redshift 
range at low redshift (observing the correlation function of the field of galaxies 
positions, or the field of galaxies ellipticities) à we measure the amplitude σ8 (z=0)

Theoretical models with high-z
normalization (As)

Since the two models reach the 
same amplitude σ8 at z=0, the 
one that grows slower is the one 
that produces more structure at 
low redshift (i.e., in the redshift 
range measured in the 
neighborhood of z ~0)

Theoretical models with low-z
normalization (σ8) 



So, if we detect a power spectrum with high amplitude, the best-model fit may either 
be a model of fast structure growth (if we are measuring high-z data) or a model of 
slow structure growth (if we measure low-z data).

This explains the strong complementarity between CMB and Weak Lensing 
cosmological contours à the degeneracy direction found in high-redshift probes is 
the opposite of the one found in low-redshift probes.

Weak lensing: CFHTLenS à
low-redshift probe

CMB: WMAP7 à
high-redshift probe

KiDS

Planck However, current results
are in “tension”

σ



In the future of the universe, DE dominates à the Hubble drag term in the evolution 
equation of the dark matter density contrast starts dominating over the third term that 
goes with a-3.

Neglecting the third term, and evaluating the second term using the Friedmann
equation with only the cosmological constant, the equation becomes: 

The solution is a sum of a constant and a decresing mode that decreases 
exponentially with time:  

δ = C1 + C2 [exp(H0 ΩΛ
1/2 t)]-2 (homework)

Given the exponential expansion at the DE-dominated epoch, the clustering rate of 
dark matter may also be written as,

δ = C1 +C2 a-2

Dark Energy - dominated epoch



Remember that a linear perturbation may be thought of as a homogeneous part 
of the Universe that expands with its own rate.

If this rate is lower than the background expansion rate, then the density in the 
region becomes larger than the mean à clustering, δ increases

If this rate is higher than the background expansion rate, then the density in the 
region becomes smaller than the mean à δ decreases, and linear structures 
already in the process of structure formation will eventually dilute.

Note however that collapsed structures (non-linear structures) with high δ , have 
already decoupled from the evolution and will not get disrupted. 

They are not part of the structure formation process anymore and they will just 
become increasingly separated from each other as the expanding universe 
accelerates.



Now the third term deals both with dark matter density Ωm (since we are 
computing the matter density contrast) and with radiation density (through the 
dependence on the scale factor).

The second term is determined by the expansion in the radiation epoch.

Let us consider the Friedmann equation, neglecting now the contribution of the 
matter density to the expansion:   

Radiation-dominated epoch

à



Inserting these terms results in,

which is no longer a simple equidimensional equation.

Since the approximation of neglecting Ωm in the Friedmann equation did not result 
in a simple equation to solve, let us keep both matter and radiation mean densities 
in the Friedmann equation,

where we introduced the normalized scale factor y: 

and aeq is the scale factor of radiation-matter equality:



With these definitions, the equation for the density contrast evolution may be written 
using derivatives with respect to y as, 

where                     and                           is given by the Friedmann equation. 

Inserting H and H’ from the Friedmann equation, and some manipulation, the equation 
can be written in the following form, 

This is known as the Meszaros equation and is approximately equidimensional. The 
second term is of type 1/y  (even though it has an additional constant in the 
numerator) and the third term of type 1/y2



Note that, since no approximations were made, this equation is valid both for the 
radiation and the matter dominated epochs. 

Indeed, for the (deep) matter epoch, i.e., when a >> aeq à 1+y ~y and 2+3y ~3y

the equation becomes

Inserting a power law solution

the equation for the index will be

The solutions are thus: a growing solution n=1 and a damping solution n = -3/2.

So, the growing solution is (naturally) the same we found before,

δ ~ y à δ ~ a



But we are interested in the (deep) radiation epoch, when a << aeq à we can 
neglect terms in y2

The equation is then,

It is no longer equidimensional (the third term has 1/y and not 1/y2) but it is easy to 
solve.

The solution is,

δ = y + 2/3

This result is very important. It tells us that deep in the radiation epoch,  δ remains 
constant à the (Newtonian, sub-Hubble) scales do not grow à the amplitudes 
of the dark matter perturbations remain “frozen” for a period, before 
starting growing with “a”.



Super-Hubble scales

The Newtonian equation for the evolution of the dark matter density contrast is 
not valid for theses scales and the evolution of perturbations must be computed 
from the Einstein-Boltzmann equations.

However, it is possible to obtain an exact solution by using only zero-
order background equations!

Let us consider that a very large perturbation is a homogeneous region of 
the universe of radius R that expands slower than the background à this 
region has a scale factor aR slightly lower than the mean one ‘a’ à this region is 
clustering, and its density is slightly larger than the mean density of the 
universe. 

It is a mini-universe, inside the universe.



Let us first see how the mini-universe expands during the radiation epoch.

The density of the mini-universe is slightly larger than the mean density of the 
universe: ΩrR = Ωr + ε . 

The density contrast of the mini-universe is then

It is useful to write the Friedmann equations for the two “Universes”  (in the radiation 
epoch, where Ωr is the dominant component).

The background is flat, its Friedmann equation only involves Ωr. However, the mini-
universe is a confined region in the Universe à it must have a spatial positive 
curvature (K =  - Ωk H0

2 < 0). The Friedmann equation in the mini-universe is then:



Let us consider an instant in time. In that instant, the mini-universe and the universe 
have different scale factors ‘a’ and aR.

Expressions for time can be computed for both universes from the respective 
Friedmann equations. 

For the mini-universe, time is given by,

where

is the ratio between the curvature and radiation densities.



On the other hand, for the flat background universe time is given by

For any given instant t, the time computed in these two different ways, is of course, 
the same. This allows us to relate the quantities of the two systems:

This equation is an 
expression for δ: 

In the radiation epoch, “a” and also aR are << 1,  we can thus neglect the a4 term and 
obtain

1+ δ ~ 1 + FR aR
2 + ¼ FR

2 aR
4 à δ ~ aR
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This means that the density contrast of the large relativistic scales (the super-
Hubble scales) grows in the radiation era with a rate:

We found that while dark-matter perturbations on sub-Hubble scales 
are “frozen” (do not cluster in the radiation era), the large super-
Hubble scale dark matter perturbations continue to cluster 

à this creates a scale-dependent effect in the general growth

i.e., this process produces a relative suppression of amplitude of
the small scales with respect to the large scales. 

This is the reason why the power spectrum today (z=0) has a peak, while the
initial condition for the amplitudes of the density contrast (the primordial power
spectrum)  had larger amplitudes on small scales and smaller amplitudes on large
scales. 



Let us now see how the mini-universe expands during the matter epoch.

We can follow the exact same procedure, but now the Friedmann equation is 
dominated by Ωm.

Now, matching the times leads to a different result:

and the result is

This shows that super-Hubble scales grow in the matter era, with the same 
rate as the sub-Hubble scales 
(and slower than they evolved in the radiation epoch) 

à during the matter era the growth is scale-independent.

And so, the shape of the (linear) power spectrum at z=0 is 
determined in the radiation era.



We just saw that during the radiation era

large (super-Hubble) scales grow fast, 

while small (sub-Hubble scales) do not grow at all.

The Hubble radius is the threshold between large (general relativistic) and small
(Newtonian) scales. 

Now, remember the Hubble radius rH (a) = c/H(a) increases as the Universe expands
(at a different rate than the expansion) 

So this threshold is not fixed (for this reason, the Universe is more relativistic in early
times and becomes more Newtonian with time) à Scales (perturbations) are 
gradually caught by the growing Hubble sphere, passing from super-Hubble to 
sub-Hubble and “freeze”.

Dark matter linear power spectrum



λ1 < λ2 < λ3       δ1i > δ2i > δ3i

scale initial δ

The growth of a scale of size R is
suppressed by a factor  

[aeq / a_enter (R)]2

à the earlier it enters the Hubble 
sphere (i.e., the smallest it is), the 
largest the suppression factor.

Note that scale 1 starts with the 
highest amplitude, since it is the 
smallest scale, and thus it is the 
first to be caught by the growing 
rH . Scale 1 remains frozen a long 
time and its amplitude is 
eventually overtaken by the larger 
scale 2 à a peak will be formed.



This process creates a peak in the matter power spectrum that corresponds to 
the largest scale overtaken by the Hubble radius during radiation era.  

This scale is the largest scale to freeze à it has the size of the Hubble radius at 
matter/radiation equality.

rH (a = aeq)  = c / H (aeq)

(its comoving size is 64 Mpc/h  - concordance model).

The peak position is a distinctive feature of the matter power spectrum, useful to 
constrain cosmological parameters. 

The relative suppression of amplitude of the small scales in relation to the large
scales gives an effect of ‘transfer of power’ in the shape of the power spectrum. 
The change in the shape of the spectrum from the primordial one is known as the
transfer function T(k), which models the scale-dependent evolution. 



There are fitting formulas to compute the transfer function as function of cosmological 
parameters, to avoid the need of solving the equations for each parameter value, 
allowing fast likelihood computations. 

An example is the BBKS fit:

where the scale q contains the cosmological dependence: 

The transfer process (and the peak position) depends mainly on the value of aeq. 

In terms of cosmological parameters, it directly depends on Ωm h2 (the physical 
matter density). The parameter combination Γ = Ωm h is usually introduced to model 
the peak position and is called the shape parameter.

(Note that even though the dependence is on Ωm h2, Γ is used because one of the h 
factors is absorbed in the dimension of length -Mpc/h- )

The impact of a cosmological model on the peak position is the following:
a model with higher Γ has a shorter radiation epoch à smaller rH (aeq) à the 
largest scale to freeze is smaller à peak moves to the right.



Then, after a=aeq, all scales growth at the same rate, and the shape of the (linear) 
dark matter power spectrum remains fixed, with a scale-independent evolution, D+.

the transfer function depends on the 
equality time aeq, while 

the scale-independent growth D+(a) 
depends on the dark energy model.

remember that the characteristic of dark energy (or modified gravity) directly relevant to 
structure formation is the growth index γ

D+ (a) = g(a) a   or   D+ (a) = af(a)

The linear power spectrum can thus in general be written as,
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For a < aeq

At first, the primordial power spectrum
is linear in k.

Then the ‘freezing’ process changes 
the shape:

- Scales that remain always super-Hubble  
keep their relative power ~ k.

- Scales that are frozen during all radiation 
era end up with a relative power ~ k-3.

- Scales in between, are frozen part of the 
time, get in-between power à a peak forms 
in the shape of the spectrum, showing the 
last scale to cross rH (at aeq).

- For even smaller scales there is a cut-off, 
their amplitudes are completely erased due 
to free-streaming.

Matter linear power spectrum:

- Dark matter only (dashed line)
- DM + baryonic (solid line, contains 
wiggles) (to be seen later)
- Dimensionless (dotted line)



For a > aeq, all scales grow with the 
same rate ~a or slower, depending on the 
dark energy model. 

The power spectrum only changes in 
amplitude, not in shape.

The dimensionless power spectrum Δ2(k) 
varies with k^(ns+3) ~ k4 on large scales
and
with k^(ns-1) ~ k0 on the smallest scales. 

As such, it does not show a peak. 

The dimensionless power spectrum shows that even with the freezing 
period small scales still reach the highest amplitude (except for the ones 
below the free-streaming scale) à they are the ones to reach first non-linearity 
δ>1 and form structure à galaxies form first than clusters or large-scale 
structure.

For a > aeq



Free-streaming: which is the first scale to form structure?

In the early universe, dark matter particles are relativistic and their velocity is v=c 

Later on, at a certain t = ttr, they become non-relativistic and their dispersion 
velocities start decreasing with the temperature of the universe (i.e., proportional to 
the scale factor a). 

The redshift at which this transition occurs depends on the mass of the particle à
the lighter a particle is, the longer it remains relativistic. 

A good approximation for the transition redshift is:

Now, while the DM particles are relativistic it is not possible to have growing 
localized densities of matter à the particles move and any density contrast 
that starts to grow will quickly dilute.



The maximum possible distance the dark matter particles can travel while they are 
relativistic is their particle horizon, i.e., the distance traveled with velocity v from the 
Big-Bang to the transition time. 

This defines the largest scale where structure can be destroyed from 
free-streaming: the free-streaming scale (lFS)

(which is also the smallest scale where structure can form from the 
cosmological/gravitational process).

Its physical (proper) size is then:

Density values inside a region of this size will mix à scales smaller than the free-
streaming length are smoothed-out and structure does not form.



The free-streaming scale is a characteristic of the type of dark matter particle. 

The detection of the smallest cosmological structures is a probe of the type of 
dark matter in the cosmological model.

Assuming the transition occurs in the radiation epoch when a(t) ~ t1/2 and that the 
particle’s velocity is v(t) = c while relativistic, then the free-streaming scale is given 
by:

2 c tnr
(notation: tr or nr, used for transition to non-
relativistic)

nr nr

nr



Types of dark matter:

i) WIMPS (weakly interacting massive particles)

These particles have mass ~1 KeV à ztr ~ 2 x 106

In the concordance model this redshift corresponds to ttr = 0.2 years (since the Big 
Bang).

They become non-relativistic in the very early universe and the density contrast can 
start to grow very early à for this reason they are called cold dark matter particles.

Their proper free-streaming size lFS is  

2 x 3x108 x 0.2 x 3.15x107 m = 4x1015 m = 0.2 pc



The comoving size (equal to the proper size today given the expansion) is computed 
dividing this by the scale factor :

lFS (comoving) = 0.2 Mpc

Now, the 8Mpc scale (clusters) has a mass of 1015 M_Sun, and we just found out that 
the WIMP lFS scale is a factor 8/0.2 = 40 smaller in size. 

In a homogeneous universe, the mass in a region 40 times smaller than another one 
has a mass 403 (i.e. ~105)  smaller à M ~ 1010 M_Sun à corresponding to galaxies.

With this rough approximation, we conclude that the DM density contrast on scales 
smaller than galactic scales are washed out à no cosmological structure 
formation below galactic scales in a CDM model.

This means there is a cut-off in the power spectrum at galaxies scales à
astrophysical objects smaller than galaxies (stars, planets, etc.) are not formed 
from the cosmological process à they do not form inside an individual DM halo à
they are not cosmological structures à they are formed from astrophysical 
processes within the galaxies.



ii) Hot Neutrinos 

In principle neutrinos could also be candidates for dark matter particle.

Neutrinos have much smaller masses than WIMPS. In some cases they can even 
still be relativistic particles today.

The figure shows the evolution of equation-of-state parameter for three cases of 
neutrinos masses:  m=1 eV ;  m=0.1 eV ;  m=0.01 eV

In all cases w changes from 1/3 (relativistic) to 0 (matter) - the lightest case is the 
one that takes longer to reach the transition.

For example for m = 0.1 eV: 
à ztr ~ 200 
à ttr = 5.7 x 106 years

They become non-relativistic late à they
are hot dark matter particles.



The proper free-streaming size lFS is  

2 x 3x108 x 5.7 x 106 x 3.15x107 = 1023 m = 3 Mpc

and the comoving size is  lFS = 600 Mpc.

This would be the size of the smallest DM halo formed in this model, corresponding to 
a mass of 1020 M_Sun à no structure formation possible in HDM models

Structure could only form in the future.

Consider a future evolution of the HDM scenario, assuming there is no dark energy
and the density contrast continues to evolve at a rate δ ~ a:

Given that the initial condition for the amplitude is P(k) ~ k, and that there is a factor of 
75 between the HDM lFS and the cluster scale in CDM à the HDM lFS scale would be 
the first structure to collapse but only in a = 75 (z = -0.987).

At that time in the future, a 600 Mpc structure would form and it would be the 
smallest cosmological DM halo à smaller objects (clusters, galaxies, stars, planets) 
could perhaps form in sub-regions of these large halos but only from astrophysical 
processes.



HDM is an extreme scenario, with low mass neutrinos. 

A more realistic case needs to consider observational constraints on the mass 
density.

The mass density of neutrinos is given by: Ωm = 0.02 x m(in eV) à to get Ωm = 0.3 
only from neutrinos we would need neutrinos of m=15 eV

In this case the free-streaming scale is lFS = 15 Mpc, 
corresponding to a MFS ~ 1015 M_Sun à this is roughly the scale of clusters.

If warm dark matter particles were the dominating type of dark matter particles,
clusters would be the smallest structures formed from the cosmological process à
galaxies would not form as a direct result of the evolution of perturbations but by
later fragmentation of clusters.

iii) Warm Neutrinos 

This is called a top-down scenario of structure formation (first clusters then
galaxies),  while the CDM case is called a bottom-up scenario.

The two scenarios were in discussion in the 1970s. With astrophysical data 
showing that clusters are only observed at lower redshifts, while galaxies exist at
higher redshifts (and also at low redshift) à the top-down scenario was ruled out.



The result of the power spectrum evolution in the standard ΛCDM model is thus a 
hierarchical structure formation, i.e., scales move from the clustering phase to 
the collapsing phase in different times and sequentially. 

In particular, since smaller scales collapse first than larger scales, this hierarchical 
procedure is also called a bottom-up scenario of structure formation.

The behaviour of the various scales is the following:

Very small scales (stars, star clusters, satellite galaxies)

These are not cosmological scales. 

They are below the free-streaming limit and do not form from the structure formation
process of cosmological evolution à they are sub-clumps of galactic-size dark 
matter halos.

Hierarchical structure formation



In addition, when the evolution is non-
linear, the statistical distribution of the
density contrast (Gaussian) is not
preserved and non-Gaussianities arise. 

Small scales (galactic scale) 

These are the first to reach non-linearity and to decouple from the expansion. 

They are the first to form structures (those structures are the galaxy DM halos). 

On these scales Δ2 > 1 today à non-linear scales are the smallest 
cosmological scales. For the ΛCDM concordance model the non-linear scales 
are the ones with k > 0.2 h/Mpc.

Note that the amplitude of the non-linear 
matter power spectrum is much larger 
than the value obtained with the linear 
equations.

The figure shows the increase (in %)
of power (PNL/PL) as function of scale



Intermediate scales (clusters scale)

These are the scales that are collapsing today at z ~0 (meaning that only today did 
Δ2 at this scale reach the value ~1.

In the concordance model, the theoretical calculation finds that this scale is 

k = 0.78 h/Mpc à R ~ 8 Mpc/h.  

Consider a homogeneous sphere of this size with density twice the mean density of 
the universe (i.e. δ = 1). Inserting the standard values for the critical density and 
matter density,  the mass of this region is

M = 4/3π 83 ρc Ωm (1+δ) ~ 1015 M_Sun / h 

which is a typical mass of a cluster, thus confirming that galaxy clusters are the 
largest collapsed structures. 



Large scales (R > 8 Mpc/h) 

like for example filaments.

These are still linear today (Δ2 < 1) and did not form bound collapsed structures yet à
which implies they are not dense enough for star formation à they are non-luminous
(because baryonic luminous matter did not yet associate with these structures).

But they continue to evolve and will form large bound structures in the future.

Very large scales (R > 500 Mpc)

In these scales δ is so small that perturbations are still negligble today.

If Δ2 à 0 on large scales, the Universe has a homogeneity scale. 



Collapsed structure
(already formed today)

Linear structure
(still in formation today)

Non-cosmological structure
(formed from fragmentation
and astrophysical processes)

The bottom-up diagram



Characteristic scales of the universe

are scales associated to physical processes that occur at certain transition redshifts 
and imprint features in the power spectrum.

Five important characteristic scales are: 

- The particle horizon of dark matter at the relativistic - non-relativistic transition à
the cut-off scale in the matter power spectrum (free-streaming)

- The characteristic scale at z=0 à the end of collapse reaching virialization (to be 
seen later)

- The turn-around scale at z=0 à the start of the non-linear regime

- The Hubble radius at radiation-matter equality à the peak in the matter power 
spectrum

- The sound horizon at z_dec à the first peak in the CMB power spectrum and also
the baryon acoustic oscillations (BAO) peak in the matter power spectrum (to be seen 
later)
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The dark matter power spectrum today (z=0)

The structure formation process 
transforms the primordial matter
power spectrum of the early 
Universe into the current matter 
power spectrum of z=0.

The shape of the power 
spectrum changed from the 
original power-law k1 to a 
sequence of power-laws with 
indexes 1,0,-1,-2,-3

The dashed line shows the non-
linear power spectrum. It deviates 
from the linear one for scales 
smaller than the NL scale.



Its shape is a a sequence of power-laws 
with indexes 4,3,2,1,0

The dimensionless power spectrum 
increases for small scales, while the 
power spectrum has a peak.

The amplitude of clustering is directly 
seen in the dimensionless power 
spectrum and not in the power 
spectrum. The reason is that the power 
spectrum has dimensions of volume 
(inverse of k-volume), so the amplitude 
it shows on small scales is greatly 
decreased by a factor of k3.

The linear Δ2 is the dashed red line. All the 
other lines show the non-linear Δ2 

computed in different ways. Notice that:

-The ratio between non-linear and linear is very 
large on these small scales. 
- Different methods to compute the non-linear 
solution give quite different results.

The figure shows the theoretical
dimensionless dark matter power 
spectrum at z=0, up to an extremely 
small scale.
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The figure shows 
the measured
dark matter 
power spectrum
by various 
cosmological 
probes of the 
inhomogeneous 
universe, 
measured in 4 
different surveys

Each survey may 
observe at a 
different redshift 
(but all results are 
transposed for 
z=0)

The various probes observe different scales:
- Probes of high redshift (CMB) measured in surveys of high resolution (Planck) may measure 
correlations on small angular scales, but even a small angular scale corresponds to a large  
size (given the high z) , and so to a large scale (small k) when transposed to z=0.   
- Probes of lower redshift - DES measured correlations of WL on smaller scales than the GC 
measurements made by SDSS that covered a larger area of the sky. 


