FÍSICA DA MATÉRIA CONDENSADA

Problemas – 4^a Série*

1 †Nearly Free Electron Model

Consider an electron in a weak periodic potential in one dimension V(x) = V(x+a). Write the periodic potential as

$$V(x) = \sum_{G} e^{iGx}V_{G}$$

where the sum is over the reciprocal lattice $G = 2\pi n/a$, and $V_{\sigma}^* = V_{-G}$ assures that the potential V(x) is real.

(a) Explain why for k near to a Brillouin zone boundary (such as k near π/a) the electron wavefunction should be taken to be

$$\psi = Ae^{ikx} + Be^{i(k+G)x} \qquad (15.1)$$

where G is a reciprocal lattice vector such that |k| is close to |k + G|.

(b) For an electron of mass m with k exactly at a zone boundary, use the above form of the wavefunction to show that the eigenenergies at this wavevector are

$$E = \frac{\hbar^2 k^2}{2m} + V_0 \pm |V_G|$$

where G is chosen so |k| = |k + G|.

- \triangleright Give a qualitative explanation of why these two states are separated in energy by $2|V_G|$.
- \triangleright Give a sketch (don't do a full calculation) of the energy as a function of k in both the extended and the reduced zone schemes.
- (c) *Now consider k close to, but not exactly at, the zone boundary. Give an expression for the energy E(k) correct to order (δk)² where δk is the wavevector difference from k to the zone boundary wavevector.
- Calculate the effective mass of an electron at this wavevector.

2 *Nearly Free Electrons in Two Dimensions Consider the nearly free electron model for a square lattice with lattice constant a. Suppose the periodic potential is given by

$$V(x,y) = 2V_{10}[\cos(2\pi x/a) + \cos(2\pi y/a)]$$

+ $4V_{11}[\cos(2\pi x/a)\cos(2\pi y/a)]$

(a) Use the nearly free electron model to find the energies of states at wavevector $\mathbf{G} = (\pi/a, 0)$.

(b) Calculate the energies of the states at wavevector $G = (\pi/a, \pi/a)$. (Hint: You should write down a 4 by 4 secular determinant, which looks difficult, but actually factors nicely. Make use of adding together rows or columns of the determinant before trying to evaluate it!)

3 Decaying Waves

As we saw in this chapter, in one dimension, a periodic potential opens a band gap such that there are no plane-wave eigenstates between energies $\epsilon_0(G/2) - |V_G|$ and $\epsilon_0(G/2) + |V_G|$ with G a reciprocal lattice vector. However, at these forbidden energies, decaying (evanes-

cent) waves still exist. Assume the form

$$\psi(x) = e^{ikx - \kappa x}$$

with $0 < \kappa \ll k$ and κ real. Find κ as a function of energy for k = G/2. For what range of V_G and E is your result valid?

4 Velocities in the Free Electron Theory

- (a) Assuming that the free electron theory is applicable: show that the speed v_F of an electron at the Fermi surface of a metal is $v_F = \frac{\hbar}{m} (3\pi^2 n)^{1/3}$ where n is the density of electrons.
- (b) Show that the mean drift speed v_d of an electron in an applied electric field E is $v_d = |\sigma E/(ne)|$, where σ is the electrical conductivity, and show that σ is given in terms of the mean free path λ of the electrons by $\sigma = ne^2 \lambda/(mv_F)$.
 - (c) Assuming that the free electron theory is applicable

to copper:

- (i) calculate the values of both v_d and v_F for copper at 300K in an electric field of 1 V m⁻¹ and comment on their relative magnitudes.
- (ii) estimate λ for copper at 300K and comment upon its value compared to the mean spacing between the copper atoms.

You will need the following information: copper is monovalent, meaning there is one free electron per atom. The density of atoms in copper is $n=8.45\times 10^{28}~{\rm m}^{-3}$. The conductivity of copper is $\sigma=5.9\times 10^7\Omega^{-1}{\rm m}^{-1}$ at 300K.

Physical Properties of the Free Electron

In both (a) and (b) you may always assume that the temperature is much less than the Fermi temperature.

- (a)‡ Give a simple but approximate derivation of the Fermi gas prediction for heat capacity of the conduction electron in metals.
- (b)‡ Give a simple (not approximate) derivation of the Fermi gas prediction for magnetic susceptibility of the conduction electron in metals. Here susceptibility is $\chi = dM/dH = \mu_0 dM/dB$ at small H and is meant to consider the magnetization of the electron spins only.
 - (c) How are the results of (a) and (b) different from

that of a classical gas of electrons?

- > What other properties of metals may be different from the classical prediction?
- (d) The experimental specific heat of potassium metal at low temperatures has the form:

$$C = \gamma T + \alpha T^3$$

where $\gamma = 2.08 \, \mathrm{mJ \, mol^{-1} \, K^{-2}}$ and $\alpha = 2.6 \, \mathrm{mJ \, mol^{-1} \, K^{-4}}$.

- Explain the origin of each of the two terms in this expression.
- ▶ Make an estimate of the Fermi energy for potassium metal.

6 Another Review of Free Electron Theory

- > What is the free electron model of a metal.
- ▷ Define Fermi energy and Fermi temperature.
- > Why do metals held at room temperature feel cold to the touch even though their Fermi temperatures are much higher than room temperature?
- (a) A d-dimensional sample with volume L^d contains N electrons and can be described as a free electron model. Show that the Fermi energy is given by

$$E_F = \frac{\hbar^2}{2mL^2} (Na_d)^{2/d}$$

Find the numerical values of a_d for d = 1, 2, and 3.

(b) Show also that the density of states at the Fermi

energy is given by

$$g(E_F) = \frac{Nd}{2L^dE_F}$$

- ▷ Assuming the free electron model is applicable, estimate the Fermi energy and Fermi temperature of a one-dimensional organic conductor which has unit cell of length 0.8 nm, where each unit cell contributes one mobile electron.
- (c) Consider relativistic electrons where $E = c|\mathbf{p}|$. Calculate the Fermi energy as a function of the density for electrons in d = 1, 2, 3 and calculate the density of states at the Fermi energy in each case.

Chemical Potential at T = 0

Consider a system of N non-interacting electrons. At T = 0 the N lowest-energy eigenstates will be filled and all the higher energy eigenstates will be empty. Show that

at T=0 the energy of the chemical potential is precisely half way between the highest energy filled eigenstate and the lowest-energy unfilled eigenstate.

8 Heat Capacity of a Free Electron Gas*

In Exercise 4.3.a we approximated the heat capacity of a free electron gas

- (a*) Calculate an exact expression for the heat capacity of a 2d metal at low temperature.
- (b**) Calculate an exact expression for the heat capacity of a 3d metal at low temperature.

The following integral may be useful for these calcula-

tions

$$\int_{-\infty}^{\infty} dx \frac{x^2 e^x}{(e^x + 1)^2} = \frac{\pi^2}{3} = \zeta(2)/2$$

Note that for the 3d case you have to worry about the fact that the chemical potential will shift as a function of temperature. Why does this not happen (at least for low T) in the 2d case?