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Overlap of atomic states
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Energy bands
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Electronic energy along a line of atoms
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Bloch’s theorem

we can rewrite the Bloch theoremequation  (z + a) = exp(ika)Y(z)alternative form
U (@) = u(x exp(ikr)

where u(x) is periodic with the lattice periodicity.

unit cell function

Bloch function

Conceptofthe Bloch functions. We can think of the exp(ikx) as being an example of an “envelope”
functionthat multiplies the unit cell function u(x)
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Bloch function (real part)
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Bloch function (bue real, red imaginary) written in two
different ways with (k,-k,) a reciprocal lattice vector

(t'l;kl x
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Bands of copper in the 100 direction

I
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Band overlap
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Bonding and anti-bonding states & energies
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Many atoms: bands

AE
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Tight binding model in 1d

Tight-Binding Model, N=23,a=2

go+ t

&p 1

go—t

g-2t4 E(k) = g9 — 2tcos(ka)

n
-

e}

Tight-Binding Model, N =23,a=2

g+ 2t

Eo+

&p

Eo—t

&o— 2t A

T
® Eigenvalues of H

—— FE(k) =&p — 2tcos(ka)

e

Simon, S. H. (2013). The Oxford solid state basics. Oxford, UK: Oxford Univ. Press.
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EXAMPLE 7-2 (a) Find an expression for the energies of a tight binding
band for a crystal with a simple cubic lattice and a basis of one atom. Assume
the atomic orbital x(r) is real and spherically symmetric and take A(R) to be
zero except for nearest neighbors. (b) Find expressions for the minimum
and maximum energies in the band.

SOLUTION (a) Take the unit cell to be a cube with edge a and place a
Cartesian coordinate system with axes parallel to cube edges. Each atom
has nearest neighbors at +ax, +ay, and +az. Since X is spherically sym-
metric, the integral for A(R) has the same value for all nearest neighbor
pairs. If A = [x*(N[U,(r — R) — U(r)]x(r — R) dr for nearest neighbors,
then :

Ekk) = E, — «
Sk A[eikxa + e—ikxa + elkya + e—ikya + eikza + e—ikza]
=iEa=Sal=42Alcos(kia)is cos(k,a) + cos(k,a)] .

(b) Since the Brillouin zone is a cube with edge 2m/a, k,, k,, and k, each
range from —m/a to +m/a. If A is positive the minimum energy occurs for
k =0andis £, — a — 6A. The maximum energy occurs for k, = k, =
k, = m/aand is E, — a + 6A. The band width is 12A. [ |



Free electron bands in 1d

I1b
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Free electron bands in 1d

Energy
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EXAMPLE 7-3 A certain simple cubic crystal has cube edge a = 5.7 A
Calculate the four lowest free electron energies if the wave vector k in the
reduced zone scheme has magnitude w/2a and is normal to a cube face.

SOLUTION Orient a Cartesian coordinate system with its axes parallel to
cube edges and take k = (m/2a)%. Reciprocal lattice vectors have the form
G = k(2m/a)X + K2w/a)y + ((2w/a)2 so, for Uy = 0, the energy levels are

h? T 21\ > (217(’9)2 (21’1’@)2]
E(k) 3 [(23 s ) : 5
2
_ 2t [(1 % K) al2 o+ 82] :
ma? 4

i i four values. For
Select integer values for , £, and [ to obtain the lowest
(000), E = 4.59 X 10-2°J (0.287 eV); for (100), E = 4.14 x 107" (2.59 eV);
e (010)), /2 = 70l 3% 0l N ArsS eV fandfor (00 Ee=1 15 S 105" | (7.1.8
eV).

given by




Brillouin zones in 2d
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Free electron bands of the square lattice (2d)

Folded parabola along 'X (reduced zone scheme)

1 * In reality, there are
energy gaps at BZ
boundaries because of
the Bragg reflection

* The folded parabola
along 'M is different

M

I X

* Usually we only plot
the major directions, for
2D square lattice, they
are X, XM, Ml
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Free electron bands of sc lattice in the [100]
direction

ek k,k.) = (*2m)(k + C)?
= (B*2m)[(k; + G)* + (k, + G)* + (k. + G.)] ,

Band Gal2xr €(000) €(k 00)
|
1 000 0 kf

23 100,100 (2w/a)? (k, 2wla)?

4567 010,010,001,001 (2'lr/a)2 kf + (2‘!1’/a)2

8.9.10.11 110,101,1T0,10T 2(2'lr/a)2 (k, + 2wla)® + (21r/a)2
12,13,14.15 TlO,TOl,ﬁO,TOT 2(21r/a)2 (k. — 2mla)* + (2'tr/a)2
16,17.18,19 01 l,OTl,O lT,Oﬁ 2(2mr/a)? kf + 2(27/a)?
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Free electron bands for bcc, fcc and
hexagonal closed packed (empty lattice)
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Bragg reflection of free electrons

[1/r Potential| |
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Free
electron
theory

Band gaps of nearly free electrons in 1d

-2n/a =m/a 0 w/a 2n/a 3n/a

-37n/a

1st zone 2nd zone 3rd zone

3rd zone 2nd zone
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Nearly free electron bands in 1d

Energy

—15|Gy|

15 |Gy |

FIGURE 7-7 Energy as a function of propa-
gation vector magnitude for nearly free elec-
trons. The propagation vector is taken to be
parallel to reciprocal lattice vector G;, which
is bisected by a Brillouin zone boundary. The
curves are similar to those of Fig. 7-6b but gaps
occur at k = *3G,. The gap width depends
on the Fourier component U(G,) of the po-
tential energy function.
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EXAMPLE 7-4 A certain simple cubic structure has a cube edge of 4.85 A.
Take the zero of energy to be at the bottom of the lowest free electron
band. (a) Assume the electrons are completely free and calculate the energy
of the lowest energy state with propagation vector at the center of a Brillouin
zone face. (b) Suppose U(G;) = 0.24 eV, where G; is the reciprocal lattice
vector perpendicular to the Brillouin zone face of parta. Calculate the energy

of the two lowest nearly free electron states with the propagation vector
used in part a.

SOLUTION (a) At the zone face center k = w/a and £ = #2k*/2m =
(120501070 2(7 /4,858 XE105 102 /(2 B g [ 1F R 10a]) B— 5L o1 (1=
(1.59 eV). (b) There are now two distinct levels, one |U(G,)| below the free

electron level, at 1.35 eV, and one |U(G,)| above the free electron level, at
1.83 eV. B



Free electron bands in 3d: Al
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Nearly free electron bands in 3d: Al
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Bands of potassium in 3 directions

Energy (eV)

(@) (b) (0

FIGURE 7-8 Electron band structure of potassium for energies near the 4s atomic level: (a) k
in the [100] direction; (b) k in the [110] direction; and (c) k in the [111] direction. Some curves
are incomplete. The bands shown are quite similar in form to those predicted by the nearly
free electron model. (From F. S. Ham, Phys. Rev. 128:82, 1962. Used with permission.)
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Bands of silicon in 3 directions

Energy (eV)

k k k

(@ (] (@]

FIGURE 7-9 Electron band structure of crystalline silicon for energies near the 3s and 3p
atomic levels: (a) k in the [100] direction; (b) k in the [110] direction; and (c) k in the [111]
direction. Bands below E = 0 are valence bands and are associated with bonding. Higher bands
are conduction bands and are important for the electrical properties of silicon. A gap exists
between the valence and conduction bands. (From A. Zunger and M. L. Cohen, Phys. Rev. B
20:4082, 1979. Used with permission.) 169



Effective mass

Effective Mass.  Over much of the Brillouin zone electron energies in some bands
can be approximated by an expression of the form

E (k) = Alk — ko, (7-58)

where A is a constant and k, is the propagation vector associated with the
minimum energy state of the band. For a free electron band A = %2 /2m, but for
other bands it has a different value. By analogy with free electrons, A is usually
replaced by #2/2m*, where m* is called the electron effective mass. The effective
mass is not usually the same as the mass of a free electron because electrons
interact with ion cores of the crystal. The stronger those interactions, the more
tightly electrons are bound to atoms and the larger the effective mass. A band
with m* > m is flatter than a free electron band.

The definition of effective mass can be generalized so it is valid for every
band, even those that do not have the form given in Eq. 7-58. The generalization
takes the form of a tensor called the reciprocal effective mass tensor, defined

by
1 1 9%E(k)
[m*],-,-  h? Okok; W22
where i and j represent Cartesian coordinates. A reciprocal effective mass tensor
is defined for each electron state.
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EXAMPLE 7-5 Derive expressions for elements of the reciprocal effective
mass tensor for the tight binding band of Example 7-2. Find limiting values
for states near k = 0.

SOLUTION Differentiate E = E, — a — 2A[cos(k,a) + cos(k,a) + cos(k,a)]
twice with respect to k, and divide by #* to find

(/m = 2Aa/fr)cos(ka):

Similarly,
(1/m*),, = (2Aa*/h*)cos(k,a)

and
@/ mAer=1(2Aa%/h*Icos(k a)®

All other elements vanish. For k nearly 0, each of the cosine functions may
be replaced by 1 so each diagonal element is 2Aa?/A%. In this limit the
effective mass is a scalar and its value is given by m* = #2/2Aa?. For a tightly
bound electron, the overlap integral A is small and the effective mass is
large. If overlap increases and the wave function spreads over a larger vol-
ume, the effective mass decreases. [ |
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Fermi level
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Density of states
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Fermi surface of free electrons in 2d (square)
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Fermi surface of nearly free electrons in 20

7
7
/
) /
ShF————-—— -4 ——
(&)
nd  Second-band
rface Fermi surface
/ \ P
/l
(
. N
\\ / /7’—\\

176



BZ of the square lattice: electrons & holes

1st zone electrons Bl 1st zone holes
B 2nd zone electrons

B 1st zone holes B 2nd zone holes
S 2nd zone electrons B 3rd zone electrons

I 4th zone electrons
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BZ of the rectangular lattice: electrons &
holes

BN 4th zone electrons 178



BZ of the face centred rectangular lattice:
electrons & holes
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BZ of the hexagonal lattice: electrons & holes

2nd zone holes

| 2nd zone holes
Il 3rd zone electrons ’

Il 3rd zone elec! trons
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BZ of the oblique lattice: electrons & holes

st zone electrons B 15t zone open orbits

B 2nd zone electrons

B 2nd zone holes I 2nd zone holes
B 3rd zone electrons

I 4th zone electrons
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Fermi surface of alkali (bcc) and noble (fcc)
metals of valence 1
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Fermi surface of Cu (fcc valence 1




Fermi surface in 3d of Al (fcc valence 3
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5th & 6th BANDS

3rd & 4th BANDS
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Fermi-Dirac distribution
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Electronic specific heat
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Specific heat of solids
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