
Cosmological Observations

Gravitational lensing



Deflection of light
The basis of gravitational lensing is the effect of deflection of light caused by gravity.



In general, we define a source - lens - observer system

source position in the source plane

deflection angle

impact parameter in the lens plane

image position in the image plane

optical axis

Light from a point emitted at an angular position β is observed at a different angular 
position θ.

It is deflected by a deflection vector α induced by gravity.



The lens equation, relating source and lens planes can be found from the diagram
above, by using simple trigonometry (vector addition on the source plane):

α is determined by the properties of the lens : it contains the physical (gravitational
field) information we want to find out. 

Measuring the change between θ and β we can find α if we know the distances
(there is a degeneracy with the distance).



How does the deflection angle relate to the lens gravitational 
potential?

Let us consider light propagation from source to observer in the Universe 
described by the Robertson-Walker metric (here written in conformal time) with a 
small inhomogeneity representing the lensing potential: 

The deflection may be derived using the principle of Fermat:  light follows a path
of extremal time.

Light follows null geodesics, and setting ds2 = 0 we can immediately write the speed
of light when travelling in the gravitational field of the lens. 

It is:



In terms of properties of light propagation, the perturbed metric is like a medium
where the speed of light is v < c à it bends the light with respect to the homogeneous
spacetime where v = c.

We can think of the gravitational field as a “change of medium” since it effectively 
changes the speed of light propagation. 

This medium is thus associated to an effective index of refraction, given by:



Now, let x(l) be a light path crossing the medium.

The light travel time is then proportional to: 
(since the refraction index is basically dt/dx)

and we want to find the path of extremal (minimum) time, i.e.,

This is a standard variational problem, that as we know will lead to the Euler-
Lagrange equations.

The extremal light path verifies:

where λ is an arbitrary affine parameter, labeling the positions along the path, 

and we found out that has the has the role of a Lagrangian. 



Having found the Lagrangian we can now describe the light path using the
Euler-Lagrange equations:

From our Lagrangian, we compute:

(u is the normalised vector tangent to the path)

This means that the Euler-Lagrange equation is an equation for the evolution of      ,
which is a vector tangent to the light path.  

=



and so, the Euler-Lagrange equation is:

= 0

ó

this is the gradient of n perpendicular to the light path

and therefore, the gradient of the potential.

ó

= 0



Now, the derivative of the tangent vector is by definition the deflection. 

So we found that the deflection is the gradient of the lens potential in the plane 
orthogonal to the tangent to the path (i.e. on the lens plane).

Notice the minus sign, meaning the gradient of the potential points away from the lens centre 
and the deflection angle points toward the lens (light is pulled towards the lens).

The potential changes from point to point along the light path, so the total deflection
is the integral over the ”pull” of the gravitational potential perpendicular to the light 
path:



Note that:

• The integral should be made over the actual light path 
(a priori unknown before computing the deflection à so it is a recursive problem).

However, given the smallness of the potential                     the deflection angle is 
usually small and in practice we can integrate over the unperturbed light path. 
(This is called the Born approximation, also used in scattering theory).

• Since the speed of light is effectively slowed down in the gravitational field, the 
travel time to cross a given length is larger than it would be in the absence of a 
lens. This is called the Shapiro delay.



• The deflection angle can also be computed for Newtonian gravity

This can be done in two ways

- Classical approach - A particle emitted with velocity v=c at infinity, follows a 
hyperbolic trajectory (corpuscular theory of light) - result derived by von Soldner in 
1801

- Special relatvity approach - gravitational field equivalent to acceleration of the 
reference system (equivalence principle) 

Minkowski space-tme in an accelerated frame 

Doing the same derivation with the refraction index, the result is different by a
factor of 2:
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Having found the relation between deflection angle and gravitational potential, 
we can compute the deflection of the light emitted by a point source when passing 
by a lens.

Let us consider a point mass lens, with potential

Light from the source travels along the z-axis towards the observer and crosses 
the lens plane (i.e., the plane x,y orthogonal to the z-axis), at a distance b from the 
point mass.  b is called the impact parameter.



The potential on the lens plane is

where

and the resulting deflection vector is:

From the x and y components of the deflection angle vector, we compute its norm, 
which is the well-known result:



Application 1: Deflection angle

Given the mass of the lens M,  and an impact parameter b 
à determine the deflection angle

This was used to test GR in 1919 (Eddington eclipse expedition )

For b such that the star is at the sun’s limb à the deflection is 1.75 arcsec (GR)

For b such that the star is at the sun’s limb à the deflection is 0.87 arcsec (Newton)



Why this factor of 2?

because acceleration (which is equivalent to gravity in Newtonian thory) 
induces only a change in time

while gravity (as described by GR) induces a change in time and in 
space (it is the curvature of space-time)

fit to 
data points

General Relativity

Newtonian

data points are stars at various values of b



The source emits light in all directions, and various light paths reach the lens plane. 
But only one is deflected towards the observer. 

From the lens equation (from the source-lens-observer diagram), we can see it is 
the one that passes at b = Dd Dds / Ds 

Dd = distance from observer to lens (deflector)
Dds = distance from lens to source
Ds = distance from observer to source

For this reason, all lensing systems have a fundamental degeneracy between 
distances and lens properties. 

We can only compute the mass of the lens if we know the distances involved in the 
system. 

Conversely, lensing can be used as a geometric probe of the Universe (i.e., it can 
be used to measure cosmological distance and use them to infer the density 
parameters) if the mass of the lens is known.

Application 2: Mass of the lens



Let us consider that the lens is not a point mass, but it is an extended object 
(extended lens)

Since the deflection angle depends linearly on the mass M, the effect from a finite 
lens in a plane is just the sum of the deflection angles created from all points in the 
lens. If we discretize the lens as a set of N point lenses of masses Mi at positions ξi
on the lens plane, then the deflection angle of a light ray crossing the plane at ξ will 
be: 

We can also consider a lens in 3D with mass density ρ. The z extension of the lens is 
always just a small segment of the full source-observer light path, and it can be 
considered that it is in a plane - the thin-screen approximation. In this approximation, 
the lensing matter distribution is completely described by its surface mass density:

and the total deflection is given by:



Gravitational Lensing
Gravitational lensing, in a strict sense, refers to the case of extended sources, 
which give rise to differential effects.

Indeed, neighbouring points in the source suffer slightly different deflections in the
lens plane: it is a differential effect that makes the image of an extended source 
(i.e. non point-like) to become distorted.

This is easily seen if we Taylor-expand the lens equation. Remember the lens
equation is a mapping from image positions to source positions (it is usually written
in that order, and not as a mapping from source to image). So a given point θ in the 
image plane corresponds to an original position β(θ) in the source plane, related by 
the deflection angle: 

(here the vectors have absorbed the distance factors present in the original
lens equation) 

The Taylor expansion of β(θ) to linear order is



Now, remember that a general matrix can be decomposed in 3 parts:

(traceless) symmetric + (traceless) antisymmetric + diagonal

where A is the amplification matrix (the Jacobian) and describes the lensing 
transformation between source and image planes to first order:

it is a 2D matrix, since β (position 
in the source plane and θ (position 
in the lens plane) are 2D vectors.

γ1 γ2
γ2 -γ1 k

k 0
0

Applying a diagonal matrix to an image will expand it (or contract it) radially in an 
isotropic way à k is called convergence.

Applying an antisymmetric matrix to an image will rotate it à ω is called rotation. 

Applying an symmetric matrix to an image will distort it in an anisotropic way, 
contracting in one dimension and expanding in the other à γ is called shear. 



This means that any linear distortion of an image is a combination of
convergence/expansion, rotation and shear

A = The amplification matrix is then written as

Note that usually actual lensing distortions do not include rotation because the 
gravitational field is a gradient field (completely defined by a potential),
and so, its rotational is zero (it is a so-called E field) and the deflection vector field 
does not produce rotations. 

The presence of rotations in a lensed image (due to so-called B-modes) is an 
indication of systematic effects, i.e., distortion effects with non-lensing origin.



isotropic distortion (k, convergence) à a 
circle expands/contracts (full rotational 
symmetry)

anisotropic distortion (γ, shear) à a circle 
transforms into a π-rotational symmetric 
shape (an ellipse)

These are the fundamental distortions (also called the optical scalars) and 
contain the dependence on α à which contains the information on gravity

The determinant of the amplification matrix 
defines the magnification:

The distortions applied to a circular image result in:

second-order distortions (by continuing the Taylor expansion) (F, G, flexion) à a 
circle transforms into a 120º-rotational symmetric shape (a banana-shape F or a 
“Mercedes logo” G) 



The magnification, and the amplitude of the optical scalars - which are fields in the 
2D sky - define the gravitational lensing regime that occur in the positions of the 
sky. 

There are two regimes - weak lensing and strong lensing - that occur in regions of 
the image plane where the values of the k(θ) and γ (θ) fields are small (<<1) (weak 
lensing) or large (strong lensing).

The observable effects are very different in the two regimes. 

SL

WL



Weak Lensing occurs at larger separations from the source-lens-observer line (the 
line-of-sight), or with lenses of low density contrast. 

The effects are: small increase of ellipticity of the source galaxy (shear), alignment of 
images.

Weak lensing is a very useful probe in a cosmological system where the lens is the 
large-scale structure of dark matter distribution. In this case the shear is so small that 
it cannot be detected in individual galaxies. What can be detected is a correlation of 
those ellipticities because their orientations get some degree of alignment and cease 
being randomly oriented à this effect is used to probe the structure formation of the 
Universe.

Increased ellipticities: 
weak lensing of galaxies by the 
large-scale structure of the 
Universe 



The effects are: very strong distortions (giant arcs), multiple images, flux 
magnification.  They occur near lines where det A = 0 (infinite magnification), which 
are called critical lines of the image plane (the observed sky), and map back to the 
source plane to lines known as caustic lines.

Strong Lensing  occurs near the line of sight, with lenses of high density contrast. 

point  sourceimage image extended source

Example:
Spherical lens

Example:
Elliptical lens

image extended sourceimageextended source



Actual observations of strong lensing:

Giant Arcs: Strong lensing of galaxies by a cluster
Giant Arcs: Strong lensing and Einstein ring 
of galaxies by a group that includes two 
massive ellipticals (The Cheshire Cat)

Einstein ring: Strong lensing of a galaxy by a galaxy, 
an infinite number of multiple images forms on a 
circle

Einstein cross: 
Strong lensing 
of a quasar by 
a galaxy, 
forming a 
quadruple 
image of the 
quasar



When the angular scale of the strong lensing effects is small 
(ex: multiple images have small angular separation and are not 
resolved): 

the strong lensing is called microlensing.

Increase of flux: à Microlensing of a star by 
a planet (used to detect exoplanets).



In summary, gravitational lensing has a number of
fundamental properties:

- it depends on the projected 2d mass density distribution of
the lens
- it is independent of the luminosity of the lens
- it does not have a focal point
- it is achromatic, there is no frequency shift from source to 
image
- it involves no emission or absorption of photons
- it conserves the surface brightness

that lead to a number of observable features:

- change of apparent positions
- magnification (increase of size), which combined to the
conservation of brightness implies an increase of flux à
natural telescope
- distortion of extended sources (ellipticities, tangential giant
arcs, radial arclets)
- multiple images
- time-delay between multiple images



These observables (positions, fluxes, distortions) can be used to estimate the 
total mass and mass distribution of the lens. For example:

- in (strong or weak) cluster lensing à mass distribution of the cluster
- in LSS weak lensing (cosmic shear) à dark matter power spectrum 

In all systems, the general recipe to estimate the physical properties (or
cosmological parameters) is:

i) (theoretical) define a lens model and derive its gravitational potential.

For example the potential of a mass distribution, or the potential of a 
cosmological model

ii) (theoretical) derive the deflection and optical scalar fields from the
gravitational potential

From the definitions in the amplification matrix, we see that shear and convergence
are derivatives of the deflection field, and second-order derivatives of the potential:



shear

convergence

where ψ is the gravitational potential projected on the lens plane (i.e. integrated 
along z) and dimensionless (with the distance factors included), i.e., 

this is called the lensing potential. 

Note that indeed:



Note also that the convergence is the Laplacian of the lensing potential. This 
implies, from Poisson equation, that the convergence is a (projected) mass. 
In particular, it is the (dimensionless) surface density:

with

iii) (theoretical) predict the observables from the optical scalars fields
(shear, image positions, fluxes)

iv) (observational) measure the observables in astrophysical images

v) (statistical) estimate the lens model parameters by fitting the theoretical
predictions to the data 



Example: estimate the mass of a galaxy cluster (lens)

We need to build a complex model that takes into account different 
components of mass distribution: dark matter halo, gas, galaxy distribution, 

and need to define a spatial distribution of background galaxies (sources)

and then predict the distortions, positions and fluxes on the image plane of 
source background galaxies. 

Let us consider that the cluster only has one matter component: the dark matter 
halo  (a NFW density profile):

(with 2 free parameters)



The 2D surface mass density can be computed from the 3D density profile,
and it is:

and so, the convergence is

with

from which we can obtain the mass,



with

We can also compute the lensing potential, which is,

and the deflection angle, which is 

From this, we can predict the image positions of source galaxies, fit to the 
observed positions and constrain the two parameters rs and ρs needed to 
determine the value of the cluster mass.



We are interested in a specific gravitational lensing system: cosmological weak 
lensing, i.e., 

the weak gravitational lensing produced by the large-scale structure of dark 
matter (the lens) in the light emitted by distant galaxies (the sources)

It is a direct tracer of the dark matter distribution

Cosmological weak lensing: theory



We already derived the deflection using the principle of Fermat, and found that the
deflection is the gradient of the lens potential in the plane orthogonal to the
tangent to the path.

We want to derive the lens equation for this system. 

For this we need to consider propagation of light in the inhomogeneous 
universe

We assume that a bundle of light rays emitted from a galaxy travels through the 
homogeneous spacetime and is deflected on a series of lens planes where the LSS 
are placed.

Light propagation in the inhomogeneous universe



On the other hand, when travelling through the homogeneous universe there is 
no deflection à the separation between two light rays of the bundle is just the 
trivial separation x between two light rays: 

It is useful to write this simple result as the solution of a differential equation for 
the evolution of the comoving transverse separation:

We can now add the local deflection solution (caused by the gravitational 
potentials) to this equation, to get the complete equation for the evolution of the 
comoving transverse separation  
(defined with respect to a reference light ray at x = 0):

note it has a homogenous and an inhomogenous term



The lens equation is the solution of the differential equation of the evolution of 
the comoving transverse separation. 

The general solution of an inhomogeneous differential equation is a linear 
combination of the homogeneous solution and the convolution of the equation 
Green’s function with the inhomogeneous term. 

So:

where the Green’s function of our differential equation is 

The solution is thus:

Lens equation and the optical scalars



The second term of the equation is thus the solution for the deflection as 
function of the potential.

Note that the total deflection is the
integral over all local deflections (the
gradients of the various local potentials), 
each one multiplied by the ‘weight’ that
appeared naturally in the solution (the
ratio of distances i.e. of fK functions) à
this is known as the lensing efficiency
factor:

This factor shows that the lens at halfway of
the trajectory is the one that contributes
the most for the total deflection.

Note that this is essentially a deviation to the usual triangle  x = DA θ (or x = fK θ )
(valid for the homogeneous spacetime).

In the language of the lens equation this triangle would be β = θ, i.e. a case with zero 
deflection. 

When there are perturbations  there is deflection and the ‘triangle’ changes to 
β = θ + α



Also note that the solution is recursive, because the separation x depends on the 
potential at the position x.

To get rid of this difficulty, we can Taylor-expand the solution around the 
unperturbed trajectory (the one that lies on the positions x = fK θ ). 

This results in:

Born approximation
(the same that is 
done in quantum 
mechanics 
scattering)
+
higher-order terms

Keeping only the solution in the Born approximation, we can insert the amplification

matrix definition                                 to get the optical scalars:



where we defined the 
effective lensing potential:

We recover the result that the optical scalar fields are second-order derivatives 
of the potential:

convergence

shear

rotation



We see that the convergence field is a weighted integral of the density contrast 
field. 

This also means that the power spectrum of the convergence can be related
to the power spectrum of dark matter.

Lensing produces no Rotation. This is a consequence of the fact that a 
gravitational field is a gradient field (of a potential) à its rotational is zero.

Shear γ has two components, two terms in the optical matrix à it is a polar vector

Convergence k is a scalar and is the Laplacian of the potential à it is related with 
the mass of the lens through the Poisson equation:



The convergence and shear amplitudes (i.e. the lensing signal) from the 
cosmological lensing effect over one galaxy are very small.

For example, consider a source galaxy at zs = 0.8 and a lens at zl = 0.4 with 
comoving size 8 Mpc (a cluster). For this system:

Inserting the distances DL=1120 Mpc, DS = 1500 Mpc, DLS = 400 Mpc and rH = 3000 
Mpc/h, we get:   

k ~ 0.0001

With these redshifts (which are typical of current surveys), a number N = DS / R of 
lens planes fit along the trajectory.  If a light ray typically crosses DS / R ~100 planes, 
the signal increases to  

k ~ 0.01

This is a small number, well inside the weak lensing regime.

Lensing signal



Note that a shear of 0.01 corresponds to the difference in ellipticity between the 
ellipticities of Uranus and the Moon.

This shows that the cosmological 
weak lensing signal can only be 
detected statistically, measuring it 
over a large number of source 
galaxies.

For this, we need to consider the convergence from a distribution of sources 
at various redshifts. 

The signal is integrated over the distribution:

with for example,



where

For a distribution of sources, the convergence can be rewritten as

(integral along the line of sight, over the lenses at w’)

(integral over the sources at w, for each lens at w’ )

Note that the optical scalars are perturbed quantities (as we say they do not arise in 
the homogeneous space-time). 

They have zero mean,

and the cosmological information is on the moments, i.e., in the correlation 
function and power spectrum. 



The power spectrum of the convergence field is of course related with the
power spectrum of dark matter: 

The convergence
power spectrum
is a weighted line-of-
sight integral of the
matter power spectrum

matter/gravity relation diameter angular 
distances

redshift of sources primordial power spectrum (inflation)

transfer function

linear growth

non-linear corrections

cosmological
parameters



Linear and non-linear convergence power spectrum for two different source redshift
distributions (higher zs has higher amplitude) à there is a strong degeneracy between zs
and σ8 à this shows it is crucial to know the redshifts in cosmic shear surveys.

Weak lensing cosmic shear surveys
measure a lensing signal in the scale range 
from few arcmin to few degrees. A typical
scale of cosmic shear measurements is:

θ=30 arcmin à l=1000
if zs=1  à k=0.8 h/Mpc à r = 8 Mpc/h

(mildly non-linear scales)

The convergence power spectrum is a projected power spectrum.

At each angular scale l = 2π/θ, its amplitude has contributions from various k scales 
from the matter power spectrum at different redshifts: 

k = l /fK (w (zlens) )



We can also derive the power spectrum of the shear.

Since shear and convergence are both second-order derivatives of the 
cosmological lensing potential, their power spectra are related.

The Fourier transform of a function of the form                            is:

and so:



Computing the shear power spectrum:

we get 

i.e., the shear and the convergence power spectra are identical.



We can also derive the correlation function of the shear

Writing the scale vector (l1, l2) in polar coordinates, 

d2 l = dl l dφ, and the angular part dφ can be integrated out, since from
isotropy the power spectrum only depends on the modulus of l.

The integral of the angular part of the plane wave is given by a Bessel
function: 

Bessel function of the first kind, with order n



After integrating out the angular part, the correlation function is the following 
radial integral of the power spectrum:

This shows that, as usual, the correlation function is a filtered version of the
power spectrum, mixing the power of its scales, depending on the filter function.



We can also define a power spectrum and correlation function for individual 
components of shear:

and so it relates with the convergence power spectrum as,

The corresponding correlation function is the Fourier transform of P11. 

After integrating out the angular part, the 11 correlation function is:



Usually the following linear combinations of shear correlation functions are defined:

Solid: filter ξ+ (low-pass band)
Dotted: filter ξ- (narrow-band)

Similarly for the other components:



The cosmological weak lensing power spectra define various filtered versions of the
matter power spectrum Pδ

The cosmological weak lensing deflections are produced by LSS gravitational
potentials à by the total mass in the structure (which is mostly dark matter) à
lensing is sensitive to the total mass, It is independent of the nature of matter 
(baryonic or dark) and of its dynamical state (relaxed or merging)

It is sensitive to the cosmological
parameters:

- through structure formation (Pδ) 
- through direct dependences on H0, Ωm
- through the background evolution
(DA(z) in the function g(w) )

Cosmological content

It is mainly sensitive to Ωm and to the amplitude of Pδ (i.e., to σ8) with a well
defined degeneracy direction, and to the sources redshift distribution



Lensing Analysis Pipeline

Cosmological weak lensing: estimator



only stars and foreground galaxies
are visible in this image

background galaxies are visible now, 
and also the “ghosts” from a 
saturated star



Masking

Stars
Saturated stars

Galaxies

Artifacts
Stars (green) / Galaxies (red) separation 



Shear estimator

The estimator of shear is the ellipticity.

The shapes of distant galaxies in a 2D image are approximately ellipses (valid for 
both elliptical and spiral galaxies). They can be described by 2 parameters: 
eccentricity |e| (deviation from a circle) and orientation φ. These 2 parameters 
define the ellipticity, which is a traceless symmetric tensor.

Note that under a rotation of α, a traceless symmetric tensor transforms in 
the same way as a vector under a rotation of 2α.



For this reason, traceless symmetric tensors are also called pseudo-vectors, which 
have π  symmetry, instead of 2 π. 
They are also called spin-2 quantities and its components can be written in vector 
form:

The ellipticity of an object is computed from the second-order moments of
brightness (with respect to the centroid of the image),

as,

So, component e+ measures the normalized excess of flux along 
the x-axis with respect to the flux along the y-axis 

and component eX measures the normalized excess of flux along the 
y = x line with respect to the flux along the y = −x line 



The ellipticity ranges from 0 à the ellipticity of a circular object, to 1 à the limiting 
case of an extremely elliptical object that becomes one-dimensional.

It is dimensionless, not containing information about the size of the object, which is 
encoded in the trace Qxx + Qyy



To understand why the ellipticity is an estimator of the shear, let us consider
a 2D image of a galaxy (the source shape) that is subject to weak gravitational
lensing and will be transformed into a slightly different 2D (the image shape). 

The moments of the source are transformed by the lens equation (the lensing
transformation) into the moments of the image:

For example, for the trace of the moments we get,

Computing the transformation for all moments, and combining them to form the 
ellipticities, we get an expression for the transformation of the ellipticities.

We may neglect quadratic terms in the transformation, because we are in the weak 
lensing regime:

where g is the reduced shear



In the weak lensing approximation the resulting transformation is:

and this is the shear estimator.

So the reduced shear produced by the lensing effect (which is g ~γ)
adds linearly to the intrinsic (source) ellipticity of the galaxy to produce the
image galaxy ellipticity. 

The estimator cannot give us the exact value of the shear acting on a galaxy
because we do not know the source ellipticity es of a galaxy.

But it can be used to estimate the shear from the measured ellipticity, if we know the
properties of the intrinsic ellipticity distribution.



If the galaxies have intrinsically random ellipticities, which implies random
orientations à <es> = 0 à the estimator is unbiased.

If the galaxies eccentricities and orientations are intrinsically correlated (for example
for having been formed together in the same DM halo) à <es> ≠ 0 à the estimator
is biased.

In general it is always possible to find a sample of uncorrelated galaxies in the same 
2D area of the sky, and have an unbiased estimator.

We already saw that the typical
convergence (and shear) signal is 0.01.

The measured rms of ellipticity distributions
is ~0.3 à it is much larger that the cosmic 
shear signal à it is due to the intrinsic 
ellipticities dispersion.

This means that the shear estimator is very
noisy à a large number of galaxies is 
needed to be able to detect the 
cosmological lensing signal. intrinsic ellipticities distribution



But the ellipticity of a galaxy image is not only induced by gravitational lensing à
there are several other effects

So in reality the estimator is biased, and the non-cosmological distortions need
to be corrected.

The dominating effect is the Point Spread Function (PSF) produced by the
atmosphere and by the optical system of the telescope.

The PSF model convolves the image. 
The amplitude of the PSF effect is much larger than the cosmological
effect.



The types of PSF present in the optical system are characterized when building 
the telescope by simulating its wavefront.



The bias can be corrected because the PSF can be measured using stars.  
Stars are not affected by cosmological lensing à any ellipticity detected in the 
stars in the image is produced by the PSF.

The biased shear estimator can be written as:

It includes the PSF anisotropy q à modeled as an additive bias
and the PSF isotropy, which decreases the response of the galaxies to shear, 
producing a change in the factor 2 in the original unbiased estimator à modeled 
as a multiplicative bias

In fact, stars are point-like and would not even be seen in an image if there was 
no isotropic PSF (like the seeing produced by the atmosphere).



PSF is measured at stars positions à It is then interpolated across the FoV to 
find its values at the galaxies positions

PSF deconvolution:

The PSF can then be subtracted
(deconvolved) from the image.

Simulations with known cosmic shear and
PSF models may be used to check for 
residuals of the correction procedure à to 
calibrate the result:



Multiplicative and additive residuals 
for 6 PSF simulations:

m and c evolution with redshift

If shear simulations are not used, the values of the residuals are not known. In 
that case they may be included in the estimator as nuisance parameters à
PSF calibration



Alternatively, PSF may be corrected with forward model fitting:

The PSF (measured from stars) is convolved (multiplied in Fourier space) with 
models for the galaxy image.

Compare the results with the observed image à Bayesian analysis to find the 
best model.

In both cases calibration nuisance parameters are introduced, to ensure greater 
accuracy.



The goal of weak lensing measurements is to go from ellipticity measurements à to 
2D correlation function of shear à to 2D metric (potential) power spectrum or dark
matter power spectrum à to compare with theoretical predictions

We are interested in the statistical properties of the ellipticity field and not on finding 
the individual shear of each galaxy à we may estimate directly the shear 
correlation function instead of the shear.

Roughly speaking, we saw that the shear is estimated from

e = es + γ (neglecting calibration factors)

So the ellipticity correlation function is an estimator of the shear correlation 
function:

Shear correlation function estimator



The ellipticity correlation function of a discrete galaxy field is measured from the 
correlation of ellipticity pairs as function of separation: 

θ

x x



However, the ellipticity correlation function does not give us directly the shear 
correlation function. It is a biased estimator of it, due to the two additional effects 
that also contribute to the ellipticity correlation function:

- correlation function of the source ellipticities (i.e., the 
intrinsic distribution of ellipticities, before the lensing effect).

It depends on the type of pairs involved:

- for i=j it is a monopole constant term à a shot noise 

- for i ≠j it is the correlation of the intrinsic ellipticities between 
different galaxies à an intrinsic alignment (II)

- shear-ellipticity cross-correlation 

It is the correlation between the intrinsic shape of a galaxy 
and the shear produced in a second galaxy (its i=j contribution is
zero, but i ≠j is not zero)à another type of intrinsic alignment (GI)

Bias of the estimator



The contamination from              (II) is zero if we do not consider galaxies at the 
same redshift bin

The contamination from            (GI) depends on galaxy formation. It can be 
measured with <eδ> (galaxy-galaxy lensing)

Randomly oriented 
source galaxies

Sheared galaxies get 
tangentially oriented
with respect to halo GG > 0 

GI <  0 



Elliptical galaxies near halos are tidally streched à creates II

Spiral galaxies orientation near halos determined by angular momentum L à do 
not correlate with halo orientation à no GI

Origin of the intrinsic alignments



However, if the galaxy pairs in the correlation are at different redshifts, the dominant 
contribution for the ellipticity correlation is the shear correlation (GG): 

II is zero (because the two galaxies are distant in redshift)

GI < 0 and  ~ 10% GG
GI can be estimated from galaxy-
galaxy lensing measurements using 
early-type (ellipticals) and late-type 
(spirals) galaxies

So the shear correlation function estimator is biased by construction, due to 
the presence of intrinsic alignments. 

GI



Besides the fundamental intrinsic alignment biases, there are 3 other main 
classes of systematics that affect the measurement of the shear signal and 
impact the estimation of cosmological parameters. 

They come from the measurement of the ellipticities, from the determination of 
the source redshift distribution, and from uncertainties on the shear theoretical 
power spectrum.

i) Bias in the shear measurement : there are many sources of bias in the 
measurement of shear, besides PSF residuals, that propagate into the correlation 
measurement. For example:

- Light-profile model bias: due to noise, the brightness moments need to be 
computed using a filter. This needs to correctly model the light profile, otherwise it 
will introduce a bias. It is easy to use a non-appropriate filter in cases of non-
elliptical isophotes, or when there are color gradients (different profiles in different 
filters à bias broad-band measurements)



- Noise bias: in general, ellipticity is non-linear in pixel data à the simple fact that the 
flux values in the image pixels are noisy changes the shear-to-ellipticity linear 
relation à if we use it, we introduce a bias

- PSF residuals 

- Detector effects: charge transfer inefficiency (CTI)

ii) Bias in the redshift distribution: 

- Wrongly identified photometric redshifts

Typical filters   u ; g r i y z ;  I J K  

used to detect the strongest features, like 
the 4000 Angstrom-break for galaxies at 
various redshifts 



Some properties of photometric redshift estimation:

In the redshift desert, z ~ 1.5 - 2.5  à neither 4000 A-break or Ly-break in visible 
range à very hard to access from ground. 

Confusion between low-z dwarf ellipticals and high-z galaxies and confusion 
between Balmer and Lyman break à catastrophic outliers

UV band and IR needed for high redshifts à but UV is very inefficient and IR is 
absorbed by atmosphere à need space observations.

Need spectroscopic galaxy sample for comparison and calibration, or also for cross-
correlation.  

The typical accuracy of photo-z determination is:  σ ~ 0.05 (1 + z) 

- Selection effects: for example, blended galaxy images are discarded à under-
representation of galaxies in crowded fields, which are high-density regions and 
have typically lower redshifts à biased n(z).



iii) Bias in the shear power spectrum from baryonic effects: 

- on small scales 1 < k < 10 h/Mpc
gas pressure is important (baryonic matter is 
no longer dust) à suppression of structure 
formation, gas distribution is more diffuse 
than DM à less power in the total matter 
power spectrum

- on very small scales k > 10 Mpc
(~ R < 0.1 Mpc) there is baryonic cooling
and AGN+SN feedback à

The shear correlation estimator can then be written with all the biases terms by 
including N = 4 + n_zbins nuisance parameters:

where the calibration parameters (m,c) account for all shear measurement biases.

increase condensation of baryons à formation of stars and galaxies à increase of 
power spectrum amplitude 



The full measurement of a cosmological quantity of interest (power spectrum, 
correlation function, etc) must include not only the estimate of the quantity but
we also need to quantify the precision of the measurement (compute the error 
bars). 

is the estimator of the correlation function à it is the measurement. 

The measurement      is interpreted as one possible realization of the true
value of ξ. 

is the true value of the correlation function à it is the theoretical 
computation of ξ, computed from the model (structure formation).

Even for direct measurements in the real space,
and            are different because of noise (variance of the estimator, and also

intrinsic ‘cosmological noise’) and bias (the estimator may have systematic errors
that need to be corrected or taken into account in nuisance parameters).

Variance of the estimator



The variance of the estimator is:

In the case of the cosmic shear correlation functions, we can already see that, since 
ξ depends on  <e e> à <ΥΥ> à <δδ>, its variance will depend on 4-pt functions
<δδδδ> à the full computation of the error bars of a power spectrum requires 
the theoretical computation of the trispectrum. (It is the variance of a variance)



Let us consider the estimator for ξ+

(assuming all external biases are accounted for)

ξ+ combines the two components (t,X) of the ellipticity. 

The weights are needed to distinguish the quality of the measurements of 
different galaxies. 

So the correlation for each separation ϑ is the sum of all contributions 
(ei ej) from the Np galaxy pairs in the bin ϑ :

= 0 otherwise

and is divided by the number of contributing pairs (i.e., it is an average).



The number of pairs increases with separation and depends on the survey area 
and density:

This approximate expression comes from considering that the survey is a single 
connected field of area A with N galaxies  (density n) à the galaxies on a circular 
shell of radius ϑ around a central galaxy, form pairs of separation ϑ. Then, consider 
shells around all galaxies to get the total number of pairs for that separation.

Npairs

dashed : formula

solid: measured

The measured number of pairs on 
large scales is smaller due to the 
edge of the field-of-view.



Assuming no intrinsic alignments, this estimator is unbiased:

using e = es + γ we can write:

(where σe
2 is the shot noise term, i.e., the auto-correlation term)

Now, let us compute the variance of the unbiased estimator:

To compute it, we need to compute the cross-correlation between the 
correlation function at two separations:



Notice that, since the correlation function separations are not independent 
(contrary to linear power spectrum scales), we have to consider all cases
ei ej and cannot simplify them to ei

2

The calculation is involved because of this, and also due to the presence of the 
extra term of es, and also because the ellipticity and shear fields have two 
components.

Inserting e = es + γ, the quantities <(ei ej) (ek el)> become,

(greek indexes account for the 2 components 1,2)



Notice that even though none of the correlation functions ξ(θ1) and ξ(θ2) are 
computed at separation zero, their variance depends on the shot noise, because it 
includes terms θ1 = θ2 à the covariance of a quantity that is itself a pure 
covariance, also depends on the variance of the covariance (and not just on 
the covariance of the covariance).

(in other words, a 2-pt signal at non-zero separations is not affected by shot noise, 
but its covariance is).

Now, using Wick’s theorem and assuming Gaussianity (no connected 4-pt), we 
can write all 4-pt quantities as products of 2-pt quantities. In this Gaussian 
approximation, we get:



The third term is diagonal, it only affects the diagonal of the covariance matrix. 

It is the shot noise contribution to the error budget. 
It depends only on the intrinsic ellipticity dispersion, i.e., on the shape noise.

The second term contains only shear correlations. It is a purely cosmological term, 
coming from the shear 4-pt function. 

It is the only source of noise remaining in the absence of shape noise.
It is the cosmic variance contribution to the error budget.

X

X

Inserting this in the variance of the estimator, we obtain 3 different
contributions for the error budget.



The first term correlates shot noise with cosmic variance:

The variance is larger on small scales and:

- Shot noise dominates on small scales
- Cosmic variance dominates on large scales

It is a mixed term.

The error bars are the square root of the diagonal of the covariance matrix 
(or noise matrix). Their relative contribution to the error budget is:

Notice that the amplitude of the error bars 
depends essentially on the number of pairs, 
(divides all error terms) i.e., the uncertainty of 
cosmic shear surveys depends mainly on:

- Area of the survey
- Density of source galaxies



This analytical result is valid in the Gaussian fields approximation.

To compute the covariance matrix without this approximation we need to consider 
the trispectrum or measure the dispersion of the correlation function on the 
data or on numerical simulations of the shear field.

The observed shear field follows a non-Gaussian distribution, not only due to the 
non-linear regime of structure formation, but also because in practice a complex 
survey geometry introduces couplings in the measured modes and modifies the 
distribution à non-Gaussian covariance matrix is really needed.

Numerical simulations of the lensing field consist on N-body simulations + 
Ray-tracing. They are anyway needed in cosmic shear analysis for various 
reasons, besides computing the non-Gaussian covariance matrix:

- To compute the theoretical non-linear power spectrum (analytical extensions of 
the linear theory are only valid up to k ~ 0.5h/Mpc)

- To include baryonic physics, which further modify dark-matter halo properties à
hydrodynamic simulations needed.



- To model systematic effects that correlate to astrophysics or the LSS, like 
intrinsic alignments that may also be included in the N-body simulation. 

- To test the mathematical approximations made : Born approximation, neglecting 
of lens-lens coupling (second-order terms in the light-propagation equation), 
replacement of reduced shear by shear. 

Numerical shear maps are produced by ray-tracing through N-body output 
snapshot boxes:  light-rays are sent to every direction from the observer to a 
source at high redshift à they travel on straight lines between lens planes à N-
body particles are projected onto lens planes and their surface mass density and 
gravitational potential computed à the induced deflection angle α is computed à
the ray changes direction à this is repeated until reaching a source galaxy.

From multiple rays, the shear at each observing direction of the image is obtained.



Results

from the Dark Energy Survey (arXiv : 2105.13549)








